The following diagram shows rabbits
and its two
auxiliaries working to determine how many rabbits there are at
the end of 3 months.
Arguments | ^ Returned values 3 v | 3 *-------------* | rabbits | *-------------* | ^ | ^ 3 | | 3 | *------------* | | *-------------* | v | 2 v | 1 *-------------* *-------------* | previous | | penultimate | *-------------* *-------------* 2 | ^ 1 | ^ v | 2 v | 1 *-------------* *-------------* | rabbits | | rabbits | *-------------* *-------------* | ^ | ^ 2 | | 2 | *------------* | | *-------------* | v | 1 v | 1 *-------------* *-------------* | previous | | penultimate | *-------------* *-------------* 1 | ^ 0 | ^ v | 1 v | 1 *-------------* *-------------* | rabbits | | rabbits | *-------------* *-------------*
Each of the three cooperating functions can initiate a chain of calls that ends in a call to itself. Thus, the cooperating functions exhibit indirect, rather than direct, recursion.
The recursion bottoms out in calls to rabbits
when the value of n is either 0 or 1. Thus, rabbits
is not a
particularly efficient function, because it twice computes
the value of rabbits (1)
.