
Don’t Stop Me Now:
Embedding Based Scheduling for LLMs

Rana Shahout1 Eran Malach1 Chunwei Liu2 Weifan Jiang1 Minlan Yu1

Michael Mitzenmacher1

1Harvard University
2MIT

Abstract

Efficient scheduling is crucial for interactive Large Language Model (LLM) ap-
plications, where low request completion time directly impacts user engagement.
Size-based scheduling algorithms like Shortest Remaining Process Time (SRPT)
aim to reduce average request completion time by leveraging known or estimated
request sizes and allowing preemption by incoming jobs with shorter service
times. However, two main challenges arise when applying size-based schedul-
ing to LLM systems. First, accurately predicting output lengths from prompts is
challenging and often resource-intensive, making it impractical for many systems.
As a result, the state-of-the-art LLM systems default to first-come, first-served
scheduling, which can lead to head-of-line blocking and reduced system effi-
ciency. Second, preemption introduces extra memory overhead to LLM systems
as they must maintain intermediate states for unfinished (preempted) requests.
In this paper, we propose TRAIL, a method to obtain output predictions from the
target LLM itself. After generating each output token, we recycle the embedding
of its internal structure as input for a lightweight classifier that predicts the re-
maining length for each running request. Using these predictions, we propose a
prediction-based SRPT variant with limited preemption designed to account for
memory overhead in LLM systems. This variant allows preemption early in re-
quest execution when memory consumption is low but restricts preemption as
requests approach completion to optimize resource utilization. On the theoretical
side, we derive a closed-form formula for this SRPT variant in an M/G/1 queue
model, which demonstrates its potential value. In our system, we implement this
preemption policy alongside our embedding-based prediction method. Our re-
fined predictions from layer embeddings achieve 2.66x lower mean absolute error
compared to BERT predictions from sequence prompts. TRAIL achieves 1.66x to
2.01x lower mean latency on the Alpaca dataset and 1.76x to 24.07x lower mean
time to the first token compared to the state-of-the-art serving system.

1 Introduction

Recent advances in large language models (LLMs) have sparked a new generation of interactive AI
applications. OpenAI’s ChatGPT (OpenAI, 2022) exemplifies this trend, facilitating conversational
interaction across diverse tasks. The interactive nature of these applications requires low request

Preprint. Under review.

completion time to ensure user engagement. Users expect near-instant responses, making efficient
inference serving critical for LLM-based interactive AI applications.

LLM inference requests exhibit a distinct autoregressive pattern comprising multiple iterations in
which each output token is appended to the input to generate the next token. Orca (Yu et al., 2022)
and vLLM (Kwon et al., 2023) are state-of-the-art solutions for LLM inference systems. These
systems use iteration-level scheduling, which allows new requests to be added or completed requests
to be removed at the end of each iteration, providing greater flexibility in managing the processing
batch than request-level scheduling. However, these works still process requests using a first-come-
first-served (FCFS) policy, leading to head-of-line blocking (Kaffes et al., 2019) under high load.
This problem is particularly severe for LLM inference, where many short requests may wait for
other long requests to finish.

Size-based scheduling aims to reduce request completion time by leveraging known or estimated
request sizes. For LLM requests, the execution time depends on both input and output lengths, with
the latter being unknown and potentially variable. Preemption allows for dynamic scheduling: when
one scheduled request finishes generating an output token, we can decide whether to continue this
request or preempt it with another (newly arrived) request. The Shortest Remaining Process Time
(SRPT) policy is an example of preemption scheduling. However, preemption here introduces ex-
tra memory overhead to maintain an intermediate state for started but unfinished requests. LLMs
maintain a key-value (KV) cache for each Transformer layer to store the intermediate state. In pre-
emption scheduling policies, the cache must keep the intermediate state for all started but unfinished
requests in the waiting queue, which may cause memory overflow, given the large size of LLMs and
the limited memory capacity of GPUs. (Non-preemptive policies, e.g. FCFS, do not face this issue,
as there are no unfinished requests in the waiting queue.)

Recent works propose methods to predict request sizes. S3 (Jin et al., 2023) fine-tunes a BERT
model (Sanh, 2019) to predict output sequence lengths from input prompts. While this model is
lightweight in resources, its accuracy diminishes for requests with varying execution times. Zheng
et al. (Zheng et al., 2024) employ a separate, lighter LLM to predict output lengths before schedul-
ing, achieving higher precision than the BERT model. However, this approach consumes more
resources, raising questions about its efficiency and cost-effectiveness in practical applications. An-
other method proposed by the same work is Perception in Advance, where models are asked to
predict the length of the responses they are about to generate. However, this approach is limited
by potential dependencies between the prediction and the generated output, which may affect the
quality of the output.

In this paper, we introduce TRAIL (Token Response and Embedding Adaptive Inference Layer), a
novel approach that improves the response time in LLM inference through two key contributions:
(1) iteration-level predictions for request lengths with low overhead and high accuracy to enable
size-based scheduling, and (2) preemption scheduling at token granularity that accounts for memory
overhead. For predictions, our approach takes advantage of the autoregressive nature of LLM output
generation to predict the output size and facilitate the prediction of request length at the granularity of
individual tokens. We begin with an initial prediction based on the prompt and iteratively refine these
predictions as the sequence progresses by innovatively using LLM layer embeddings. Specifically,
we “recycle” the embedding from intermediate Transformer layers of the LLM, feeding them into a
lightweight linear classifier to predict the remaining sequence length. This method, which involves
analyzing the outputs of the internal model layer by using them as input for a separate machine
learning predictor, is commonly referred to as probing (Belinkov, 2022; Hewitt & Liang, 2019;
Hewitt & Manning, 2019). This approach combines the advantages of LLM-based prediction with
computational efficiency, eliminating the need for an additional LLM dedicated solely to length
predictions. To address the memory constraints for preemption scheduling, TRAIL limits the number
of times each request can be preempted and introduces SRPT with limited preemptions. Early in
the request’s execution, preemption is allowed since its KV cache memory usage is small, making
preemption less costly in terms of memory. However, as the request progresses and its memory
consumption in the KV cache grows, preemption becomes more expensive. To manage this, we turn
the preemption off in the later stages of the request to avoid a heavy memory overhead.

Our contributions in this paper are (1) an output length prediction framework using recycled LLM
embeddings, with dynamic refinement at each iteration. In our experiments, refined predictions
from layer embeddings achieve 2.66x lower mean absolute error compared to BERT predictions

2

from sequence prompts (2) a proposed variant of Shortest Remaining Processing Time using these
predictions with limited preemptions (3) a derivation of a closed-form formula for this SRPT vari-
ant in an M/G/1 queue model. We also show via experiments that our prediction and scheduling
approaches result in mitigating head-of-line blocking. When TRAIL is integrated with a state-of-
the-art LLM system, it has 1.66x to 2.01x lower mean latency and 1.76x to 24.07x lower mean time
to first token compared to the state-of-the-art serving system tested with the Alpaca dataset. Our
TRAIL approach has the potential to significantly enhance LLM inference efficiency and reliability,
paving the way for more adaptive LLM serving systems.

2 Background and Motivation

Transformer-Based Generative Models and Key-Value Cache. At each step, a Transformer
model predicts the next most likely token based on the sequence of tokens generated so far. A
generative model of length n must perform n iterations, with each token passing through multiple
transformer layers composed of self-attention and feed-forward networks.

In a typical iteration at the i-th step, the model computes over all previously generated tokens
(t0, t1, . . . , ti−1) via self-attention. This can be expressed as:

hout = softmax
(
qi ·K⊤
√
dh

)
· V

Where qi is the query vector representing the hidden state of the current token ti, and K,V ∈ Ri×dh

are matrices representing the keys and values derived from all previous tokens.

To enhance efficiency, LLMs cache the key and value matrices (KV cache) throughout the sequence
generation process, eliminating the need to recompute them at every iteration. This caching mech-
anism significantly reduces computation time but requires substantial memory proportional to the
number of layers and hidden dimensions. As more tokens are generated, the cache stores informa-
tion from all previously generated tokens, and its memory demand grows linearly with the length of
the sequence. This makes the memory consumption of the KV cache considerable, especially for
long sequences. For example, in the GPT-3 175B model, a single request with a sequence length of
512 tokens requires at least 2.3 GB of memory to store the key-value pairs. The limited capacity of
GPU memory restricts the size of the KV cache and poses a challenge to efficiently implementing
preemptive scheduling policies.

Iteration-Level Scheduling. Iteration-level scheduling differs from the conventional request-level
scheduling approach. In request-level scheduling, the system processes a batch of requests to com-
pletion, forcing requests that finish earlier to wait until the entire batch completes, while new re-
quests must remain in a queue until the next batch begins. In contrast, iteration-level scheduling (Yu
et al., 2022) offers flexibility by processing only a single iteration (i.e., generating one output token)
for each request in the batch. After each iteration, the scheduler is called, and the completed requests
can exit the batch while newly arrived requests can be added, allowing dynamic batch adjustments.
However, the batch size remains constrained by the GPU memory capacity.

3 Method

TRAIL leverages the autoregressive nature of LLM inference and iteration-level scheduling, em-
ploying two primary strategies to reduce LLM inference response time: iteration-level prediction
and preemption that accounts for memory overhead. TRAIL uses low-overhead, high-accuracy pre-
dictions by utilizing the intermediate layer embeddings of the LLM itself to predict output length
while implementing token-granular, limited preemption scheduling to account for the memory over-
head associated with preemption. Figure 1 illustrates the TRAIL architecture. Users submit requests
to the request pool. TRAIL initially orders requests using a BERT model based on input prompts
(Step 1). This method relies exclusively on the prompt using BERT suggested in (Jin et al., 2023).
Given the predictions of the output lengths, the scheduler implements a variant of the Shortest Pre-
dicted Remaining Process Time (SPRPT) with limited preemption (Step 2, Section 3.3). Although
SPRPT is traditionally designed for single-server, sequential scheduling, we adapt it to handle multi-
ple concurrent requests while still prioritizing those with the shortest predicted remaining time. The

3

Requests
pool

In
iti

al
 O

ut
pu

t l
en

gt
h

 P
re

di
ct

io
n

Scheduler
Token-

resolution

Linear
Classifier

Scheduling

Refined Output Length Prediction

𝐿𝑎𝑦𝑒𝑟!

𝐿𝑎𝑦𝑒𝑟"

𝐿𝑎𝑦𝑒𝑟#

𝐿𝑎𝑦𝑒𝑟$

…

LLM

Probing

𝑅𝑒𝑞𝑢𝑒𝑠𝑡!
𝑅𝑒𝑞𝑢𝑒𝑠𝑡%

𝑅𝑒𝑞𝑢𝑒𝑠𝑡"

iteration-level

Figure 1: TRAIL architecture. The system (1) initially orders requests using a BERT model, (2)
schedules requests using a modified SPRPT with limited preemption, and (3) refines predictions
during token generation using embeddings from the LLM’s internal layers. At every iteration, steps
2 and 3 are repeated (represented as red dashed lines), which allows preemption at iteration-level
granularity and refined predictions. We focus on identifying the LLM layer that best predicts output
length rather than using multi-layer embeddings (i = j = 11).

0 5 10 15 20 25 30
Layer index

0

50

100

150

M
AE

Prediction w/ per-layer embeddings

Figure 2: MAE for length prediction using embeddings vs. layer (1,000 prompts).

number of requests that can be scheduled simultaneously is limited by the available GPU memory.
As the LLM generates each output token, we refine predictions using embeddings from the LLM’s
intermediate layers. A linear classifier processes these embeddings and informs the scheduler, which
adjusts based on updated predictions (Section 3.1).

3.1 Refined Output Length Prediction

In this section, we describe our method for estimating the prompt length based on intermediate layer
embeddings in the LLM.

Problem Definition. Denote by u(1), . . . ,u(N) ∈ Rd the output of some intermediate layer for
the N output tokens generated by the model (where d is the hidden dimension of the Transformer).
Additionally, we denote by u(0) the embedding of the input (during the prefilling phase), which is
generated by averaging the embeddings of all the input tokens at the given layer. Let B1, . . . , Bk ⊂
N be a choice of bins for the length prediction, i.e. Bi = {bi, bi+1, . . . , bi+1−1} for some choice of
bin boundaries b1 < b2 < · · · < bk+1. We train a linear classifier that, given some embedding u(t),
outputs a vector p(t) ∈ [0, 1]k where p(t)(j) indicates the probability that the number of remaining
tokens (i.e., N − t) is in Bj .

Our approach focuses on identifying which LLM layer provides the most accurate predictions for the
output length. One potential extension would be to select multiple layers and estimate the prediction
using either a weighted average of their outputs or training a linear classifier based on embeddings
from several layers. We leave this multi-layer approach for future work. To do so, we have to profile
numerous parameters across all LLM layers for each request.

Using LLama3-8b-instruct as our model and the Alpaca dataset (Taori et al., 2023), our profiling
process begins by extracting embedded elements from each layer during the prefilling and decoding
phases. We profile embeddings across all 32 layers for each token, using 1,000 prompts from the
dataset, and retain the embedding tensors along with the remaining token counts as training data.

4

The shape of the embedding tensor after the prefilling phase and before decoding is [1, 44, 4096],
while the embedding tensor for each decoding iteration is [1, 1, 4096].

Predictor architecture. To develop our predictor, we train an MLP using the embeddings from
each layer and evaluate prediction accuracy. We use a neural network model consisting of a fully
connected network with two linear layers. The first layer maps the input embedding to a 512-
dimensional space, followed by a ReLU activation. The second layer outputs predictions for the
number of output tokens by classifying the predicted length into one of k = 10 equal-width bins, rep-
resenting output lengths between 0 and 512 tokens. The i-th bin bi covers the range

[
512i
10 , 512(i+1)

10

)
.

For the final bin, b10, it includes the upper boundary and covers the range [460.8, 512].

The model is trained over 30 epochs with a batch size of 32, using the AdamW optimizer to control
for overfitting. We employ a cosine annealing schedule to reduce the learning rate from 0.01 to 0
gradually. The loss function is CrossEntropyLoss, appropriate for our multi-class classification task.
Here, we present one example of a predictor; our approach can, therefore, be used with any suitable
and efficient learning scheme that yields a predictor. For the first token prediction, we compute the
average of all token embeddings in the prompt, and this averaged embedding serves as input to the
predictor. Preliminary evaluations across all 32 layers (Figure 2) indicate that layers 10-15 provide
the most accurate length predictions.

Focused profiling. Based on this result, we concentrate our profiling on these layers, gathering over
7 million training pairs. Subsequently, we train the predictor, employing smoothing techniques to
improve the accuracy of our length predictions further.

Smoothing. We observe that while the predicted probability vector in each iteration is reasonable,
there can be large variance between iterations. We, therefore, employ Bayesian inference (Särkkä &
Svensson, 2023) to update the probability estimate as new predictions become available, maintain-
ing a more accurate estimate of the probability distribution over time. In the context of Bayesian
inference, the estimate from previous iterations provides a starting point for the current prediction.
After observing the current prediction, the initial estimate is updated to reflect the new information.
This update is done by adjusting the previous estimate based on how well it aligns with the current
prediction and then normalizing it. The updated estimate from this iteration will then be used as the
starting point for the next one.

At each iteration t, the prior is updated because the predicted length may shift between bins over
time. Specifically, let T ∈ [0, 1]k×k represent the transition matrix, where Ti,j denotes the probabil-
ity that a value in bin Bj at iteration t− 1 moves to bin Bi at iteration t. In our case, transitions can
only occur between neighboring bins, specifically from Bi+1 to Bi. We assume that lengths within
each bin are uniformly distributed. Therefore, the diagonal entry Ti,i reflects the probability that the
value remains in the same bin, which is 1 − 1

bin size , while the off-diagonal entry Ti,i+1 represents
the probability of moving from Bi+1 to Bi, which is 1

bin size . T is calculated once from bin sizes,
with its structure detailed in Appendix A. The estimated probability q̂(t) at iteration t is computed
as follows:

1. Initialize q̂(0) = p(0).

2. At each iteration t, update the prior: q̂(t)prior = T · q̂(t−1)
prior .

3. Update the current probability: q̂(t)(i) =
q̂
(t)
prior(i)p

(t)(i)∑
j q̂

(t)
prior(j)p

(t)(j)
.

The predicted length at iteration t is Lt =
∑

i q̂
(t)(i) ·mi, where mi is the average length in bin Bi,

namely mi = bi+bi+1

2 = 128(2i+1)
5 . This iterative process refines the prior distribution over time.

Figure 3 shows the mean absolute error for predictions from different model layers.

3.2 Computing Output Length Prediction Per Iteration

There are two approaches to computing predictions based on the embedding extracted from interme-
diate layer(s) (in our case, layer 11) of the LLM. In the first approach, we can compute the prediction
directly on the GPU using the embedding available at the selected layer. While this method avoids
data transfer, it introduces a slowdown in the decoding phase, as both the prediction computation

5

L10 L11 L12 L13 L14 L15
Layer

30

40

50

60

70

80

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)
Input
Refined
BERT

Figure 3: Mean Absolute Error for the pre-
dicted length, comparing BERT input em-
bedding (dashed red), average token embed-
ding without refinement (blue), and with re-
finement (orange), for different layers.

Device Batch Mean (µs) Std (µs)
CPU 512 9.43 3.75
CPU 1024 6.19 1.46
CPU 2048 5.94 1.09

CUDA 512 0.615 0.093
CUDA 1024 0.497 0.078
CUDA 2048 0.429 0.084

Table 1: Mean and standard deviation
of inference time per sample (TPS) for
CPU and CUDA with different batch
sizes, in microseconds (µs).

and the model’s forward pass share the same GPU. In the second approach, we can compute the
prediction on the CPU. For this, we extract the embedding from layer 11 and transfer it to the CPU.
The prediction is then computed in parallel while the LLM processes the remaining layers (in our
case, layers 12-32) on the GPU.

We note that whether we implement the length prediction on the GPU or the CPU, the overhead in
terms of computational cost is minimal. Specifically, the size of the MLP that we train for the length
prediction has around 2.1 million parameters, while the overall Llama model we use has 8 billion
parameters. Since the computation (number of FLOPs) per token is roughly scaled with the number
of parameters, the overhead of the length prediction is around 0.03%. This overhead becomes even
more negligible for larger model sizes or when using a smaller MLP for length prediction. Table 1
shows the mean inference time for length prediction of the two approaches.

3.3 Scheduling Policy

As background, traditional job1 scheduling typically assumes that job completion times are either
completely unknown, in which case FCFS is a natural strategy, or completely known in advance,
allowing strategies such as shortest job first (SJF) to minimize average wait time. In many practical
systems, exact job completion times are unknown. Several studies have explored queueing systems
with predicted, rather than exact, service times, generally to minimize the average time a job spends
in the system. Building on previous works, (Mitzenmacher, 2019; Shahout & Mitzenmacher, 2024)
analyzed the shortest predicted job first (SPJF) and the shortest predicted remaining processing time
(SPRPT) policies in the context of a single server where only one job executes at a time. SPRPT
tracks the predicted remaining processing time for each job, allowing preemption if a new job arrives
with a shorter predicted remaining service time.

Such previous work, while motivating using predictions, does not take into account the challenge in
LLM systems that preemptions introduce memory overhead, particularly in managing the key value
(KV) cache (as explained in Section 2). While preemptions can reduce response time, they increase
memory consumption, which may ultimately degrade performance due to memory constraints. This
is because, in LLM systems, when memory is full, we either discard jobs from memory and recom-
pute them once memory is available, or we swap KV cache entries from the GPU to the CPU. Both
approaches impact response time, as discarding requires recomputation, and swapping interrupts
the forward-pass of the model, causing delays for the entire running batch. Intuitively, we should
limit preemptions to avoid exceeding memory constraints; in particular, we recognize that preemp-
tions made earlier in a request’s execution consume fewer resources, while preemptions closer to
completion should be avoided.

In TRAIL, given the initial prediction r for a job (which we treat as a number corresponding to the
middle of its predicted bin), we only allow preemption for the first ⌊C · r⌋ iterations for a fixed
constant C. This restricts preemption as a job nears completion and takes substantial memory.

1The terms job and request are used interchangeably.

6

Interestingly, we can analyze a corresponding theoretical model for single-server SPRPT with lim-
ited preemptions, which we believe is interesting in its own right. While this model does not capture
the complexity of LLM systems (as it has no notion of memory, and is single-server), we think it
also provides insight into the potential of limited preemption. Using standard queueing theory as-
sumptions (M/G/1 queuing system with Poisson arrivals of rate λ < 1 and independent service and
prediction times), we can derive a closed-form expression for the mean response time (Lemma 1).

Specifically, the processing times for each arriving job are independent and drawn based on the
cumulative distribution F (x) with an associated density function f(x). Predictions, independent
over jobs, follow the density function g(x, r), where x is the actual size and r is the predicted size.
Thus,

∫∞
r=0

g(x, r)dr = f(x). A job is described by a triple (x, r, a), where x is the actual size, r is
the predicted size, and a is job age (time spent serving the job). We set threshold a0 = C · r, with C
as a tunable parameter. The system allows preemption when a < a0 and disables it when a ≥ a0,
balancing early resource use with timely completion. When C = 1, the system becomes the same
as SPRPT.

The proof of Lemma 1 below is presented in Appendix C. Simulations showing that SPRPT with
limited preemption improves memory usage compared to traditional SPRPT are presented in Ap-
pendix D. Additionally, in Appendix E, we provide another theoretical model in the same framework
for the setting of refined predictions, that may also be of independent interest.
Lemma 1. For SPRPT with limited preemption, where at age a0 the jobs become non-preemptable,
the expected mean response time for a job of true size x and predicted size r is

E[T (x, r)] =
λ
(∫ r

y=0

∫∞
xI=0

x2
I · g(xI , y)dxIdy +

∫∞
t=r+a0

∫∞
xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt
)

2(1− ρ′r)
2

+

∫ a0

0

1

1− ρ′(r−a)+
da+ (x− a0).

where ρ′r = λ
∫ r

y=0

∫∞
xI=0

xI · g(xI , y)dxIdy.

4 Evaluation

Setup and implementation. Our implementation is based on the open-source vLLM system
(v0.5.0), with chunked prefill enabled in both our scheduler and the baseline scheduling methods.
We set the out-of-memory mode to discard jobs and recompute them once memory becomes avail-
able. The evaluation is conducted on a server with a single NVIDIA A100 80GB GPU and 64 AMD
EPYC 7313 16-Core Processor cores, with 503 GiB of memory and running CUDA version 12.3.
We use LLama3-8b-instruct as a serving model with single-GPU. The workload is generated us-
ing the Alpaca dataset (Taori et al., 2023), derived from open-source conversational exchanges and
originally used to fine-tune the Alpaca model. We sample 10k unique prompts from the dataset for
model serving, distinct from those used to train the length predictor.

Benchmark and Metrics. The benchmark we use simulates a chatbot serving in a client-server
setup, where the server hosts an LLM model, and the client sends requests at a specified request rate.
The server runs the vLLM OpenAI API, while the client sends prompts from the Alpaca dataset to
mimic a real-world scenario. The benchmark measures the mean and median latency and Time To
First Token (TTFT), providing insights into the LLM’s responsiveness under varying request loads.
In addition to regular load, we evaluate performance under burst conditions.

Baselines. We compare our approach with four baselines: (1) vanilla vLLM (Kwon et al., 2023),
using First Come First Served; (2) vLLM with Shortest Job First based on BERT predictions and
chunked prefill; (3) TRAIL with refined embedding predictions; and (4) TRAIL with BERT predic-
tions.

4.1 Predictions Accuracy

Figure 3 compares the mean absolute error (MAE) of the BERT predictions from the prompts,
our linear classifier predictions from the embedding layers, and the refined predictions after using
Bayesian inference on the different layers choices. We further evaluated the accuracy of this refined
prediction from layer 11 against the ground truth and compared it to BERT predictions. A heatmap

7

was used to compare the ground truth remaining length with the predicted remaining length across
multiple sequences. Both the x-axis (ground truth) and y-axis (predictions) were divided into ten
bins, representing the remaining lengths as the sequence progresses: Where the i-th bin bi covers
the range

[
512i
10 , 512(i+1)

10

)
. Each request is counted multiple times in the heatmap, once for each

prediction made during its execution. Each cell in the heatmap contains the logarithm of the num-
ber of occurrences for a given pair of ground truth and predicted length at different stages. For
BERT, where only one prediction is made, we subtract one from the initial predicted length after
each generated token to create a comparable heatmap. As shown in Figure 4, the refined predictions
from layer-11 embedding are more accurate than the BERT predictions, as they exhibit higher val-
ues along the diagonal and lower values off the diagonal (indicating greater prediction accuracy).
Meanwhile, the BERT predictions show lower values along the diagonal and higher values off the
diagonal, reflecting larger differences between predicted and actual lengths.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Groundtruth Remaining Length

b 1
b 2

b 3
b 4

b 5
b 6

b 7
b 8

b 9
b 1

0
Pr

ed
ict

ed
 R

em
ai

ni
ng

 L
en

gt
h

0

2

4

6

8

10

(a) embedding-based predictions

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Groundtruth Remaining Length

b 1
b 2

b 3
b 4

b 5
b 6

b 7
b 8

b 9
b 1

0
Pr

ed
ict

ed
 R

em
ai

ni
ng

 L
en

gt
h

0

2

4

6

8

10

(b) BERT predictions

Figure 4: Log-scaled comparison of ground-truth vs predicted lengths bins. The i-th bin bi covers
the range

[
512i
10 , 512(i+1)

10

)
.

4.2 LLM Serving

We begin by comparing the mean latency and TTFT of TRAIL across different values of c (c =
0.5, 0.8, 1) while setting the request rate to 14. (c = 1 mimics SRPT without limiting preemption.)
Figure 5 shows that when c = 1, TRAIL exhibits higher mean latency and TTFT, while c = 0.8
results in the lowest values, closely followed by c = 0.5. We also evaluated the system with c = 0.2,
which produced higher latency and TTFT compared to the larger c values (though not shown here
to focus more closely on this range of c values). These results highlight that while preemption in
scheduling benefits LLM systems, it should be limited due to the additional memory overhead it
introduces, which can affect serving efficiency. Based on this, we set the default c value for TRAIL
to 0.8 in the remainder of the evaluation. The optimal c, however, may vary depending on system
memory and workload, as it affects the trade-off between preemption benefits and memory overhead.

c = 0.5 c = 0.8 c = 10

2

4

6

8

10

12

14

M
ea

n
La

te
nc

y
(s

)

(a) Mean Latency (s)

c = 0.5 c = 0.8 c = 10

50

100

150

200

250

M
ea

n
TT

FT
 (m

s)

(b) Mean TTFT (ms)

Figure 5: Comparison of mean latency and TTFT across different values of c (c = 0.5, 0.8, 1) at a
request rate of 14.

Figure 6 presents the mean and median latency, along with TTFT, as a function of the request
rate for four LLM serving systems: (1) vanilla vLLM (Kwon et al., 2023), which uses First Come

8

First Served (FCFS) as the scheduling policy (vLLM-FCFS); (2) vLLM with a Shortest Job First
(SJF) scheduling policy for newly scheduled sequences based on BERT predictions from sequence
prompts (vLLM-SJF BERT), which also prioritizes new sequences and implements chunked prefill;
(3) TRAIL with c = 0.8 using refined predictions from embeddings with chunked prefill enabled; and
(4) TRAIL with c = 0.8 using BERT predictions (TRAIL-BERT). The comparison between TRAIL-
BERT and TRAIL evaluates the effectiveness of embedding-based predictions, while the comparison
between vLLM (with both scheduling policies) and TRAIL (with both prediction methods) evalu-
ates the impact of limited preemption in LLM systems. The figure shows that SJF based on BERT
predictions provides minimal benefits over vLLM-FCFS, as vLLM implementation prioritizes in-
coming requests over existing running requests. Additionally, both TRAIL and TRAIL-BERT, which
implement limited preemption, achieve lower mean and median latency (Figures 6a,6c) and lower
mean and median TTFT (Figures 6b,6d) compared to vLLM, with TRAIL using refined embedding
predictions showing the lowest latency and TTFT due to more accurate predictions (Figures 3,4).

20 30 40 50 60
Request Rate (qp/s)

0

50

100

150

200

250

300

M
ea

n
La

te
nc

y
(s

)

(a) Mean Latency

20 30 40 50 60
Request Rate (qp/s)

0

50

100

150

200

250

300

M
ea

n
TT

FT
 (s

)

(b) Mean TTFT

20 30 40 50 60
Request Rate (qp/s)

0

50

100

150

200

250

300

M
ed

ia
n

La
te

nc
y

(s
)

(c) Median Latency

20 30 40 50 60
Request Rate (qp/s)

0

50

100

150

200

250

300

M
ed

ia
n

TT
FT

 (s
)

(d) Median TTFT

Figure 6: Mean and median latency, along with TTFT, as a function of request rate for four LLM
systems: (1) vLLM-FCFS, vLLM using FCFS; (2) vLLM-SJF BERT, vLLM using SJF based on
BERT; (3) TRAIL with c = 0.8 and refined embedding predictions; and (4) TRAIL-BERT with
c = 0.8 using BERT predictions.

Figure 7 shows the mean and median latency and TTFT for vLLM, vLLM-SJF BERT, and TRAIL
with two different c values (c = 0.8 and c = 1) under a burst scenario. In this scenario, all requests
arrive within a very short time interval at the beginning of the experiment, simulating a sudden
spike in demand. The results show that TRAIL continues to offer benefits with lower latency and
TTFT, as our implementation ranks all requests (running and waiting) based on length predictions
and prioritizes them accordingly, while vLLM prioritizes new requests over existing running ones.
However, since no new requests arrive during processing, preemption has no advantage, leading to
similar performance between TRAIL with c = 0.8 and c = 1.

5 Related Works

Recent efforts to optimize the serving of large language models (LLMs) have been explored. The
ORCA framework (Yu et al., 2022) introduced token-level scheduling, assuming that batches are
processed at the token level rather than the sequence level. vLLM (Kwon et al., 2023) applies

9

vLL
M

vLL
M-SJ

F

Tra
il c

=0.8

Tra
il c

=1
0

100
200
300
400

M
ea

n
La

te
nc

y
(s

)

(a) Mean Latency (s)

vLL
M

vLL
M-SJ

F

Tra
il c

=0.8

Tra
il c

=1
0

100
200
300
400

M
ea

n
TT

FT
 (m

s)

(b) Mean TTFT (ms)

vLL
M

vLL
M-SJ

F

Tra
il c

=0.8

Tra
il c

=1
0

100
200
300
400

M
ed

ia
n

La
te

nc
y

(s
)

(c) Median Latency (s)

vLL
M

vLL
M-SJ

F

Tra
il c

=0.8

Tra
il c

=1
0

100
200
300
400

M
ed

ia
n

TT
FT

 (m
s)

(d) Median TTFT (ms)

Figure 7: Mean, Median of Latency and TTFT when we have burst of requests

PagedAttention to reduce memory overhead. While these designs are effective, they rely on first-
come, first-served (FCFS) scheduling, which could face head-of-line blocking.

In traditional scheduling, methods like shortest job first (SJF) and shortest remaining processing
time (SRPT) aim to minimize response times, while multi-level feedback queues (MLFQ) adjust
job priorities dynamically without prior knowledge of job sizes. A promising direction for LLM
scheduling is based on output length prediction. FastServe (Wu et al., 2023) builds on ORCA by
scheduling each output token individually, using MLFQ to avoid head-of-line blocking. However,
this leads to frequent preemptions, which increase the cost of managing KV cache memory and
offloading to the CPU. Several works have proposed prediction-based scheduling to address these
challenges. Zhen et al. (Zheng et al., 2024) enhanced LLM inference by predicting response lengths
with an additional LLM model and scheduling them according to length predictions. While this
approach optimizes inference, it introduces prediction overhead caused by using additional LLM for
length prediction.

Other works predict output lengths using machine learning models such as DistilBERT and OPT,
improving resource allocation and reducing memory issues during inference. The works in (Jin
et al., 2023; Stojkovic et al., 2024; Cheng et al., 2024) approach length prediction as a classification
problem, while other works (Qiu et al., 2024b,a) adopt regression-based techniques. Our approach
extends this line of research by predicting output length from the LLM’s embedding, limiting pre-
emption to improve scheduling efficiency further.

6 Limitations and Conclusion

We have presented TRAIL, a novel approach that significantly improves response time in LLM
inference. Our method is built on two key contributions. First, we obtained low-overhead, high-
accuracy predictions from the target LLM itself. After generating each output token, we recycle
the embedding of its internal structure as input for a lightweight classifier. This classifier predicts
the remaining length for each running request. We demonstrated the high accuracy of this approach
and its low overhead compared to existing prediction methods that rely solely on sequence prompts.
Specifically, our refined predictions from layer embeddings achieve 2.66x lower mean absolute error
compared to BERT predictions from sequence prompts. Second, utilizing these predictions for
output lengths, we proposed a Shortest Remaining Processing Time (SRPT) variant with limited
preemption. This variant is specifically designed to account for memory overhead in LLM systems.
We derived a closed-form formula for this SRPT variant in an M/G/1 queue model and simulated it to
demonstrate its potential. By integrating TRAIL with vLLM, we have demonstrated improvements
in overall latency and time-to-first-token metrics using real-world datasets. Our experimental results
show that TRAIL achieves 1.66x to 2.01x lower mean latency and 1.76x to 24.07x lower mean time
to first token compared to vLLM tested using the Alpaca dataset.

Limitations. One key challenge is to select the most informative layer embedding to use as input
for the linear classifier. Due to time and resource constraints, we focused only on the Alpaca dataset,
as profiling embeddings across all layers is computationally demanding. There are several promis-
ing directions for future research. We plan to explore the relationship between layer selection and
prediction accuracy across multiple datasets. Another direction is leveraging multiple-layer embed-
dings through weighted averaging to enhance prediction accuracy. Additionally, experimenting with
logarithmic bin sizes for the linear classifier could offer further benefits. A potential optimization
is to compute embedding predictions at specific intervals rather than every iteration, reducing com-

10

putational overhead. Lastly, to address data drifts and maintain performance over time, we aim to
explore the dynamic retraining of the linear classifier.

Acknowledgments

We thank Sham Kakade for providing access to the Kempner cluster for evaluation. We also thank
Yonatan Belinkov for the helpful discussions. Rana Shahout was supported in part by the Schmidt
Futures Initiative and Zuckerman Institute. Michael Mitzenmacher was supported in part by NSF
grants CCF-2101140, CNS-2107078, and DMS-2023528.

11

References
Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational

Linguistics, 48(1):207–219, 2022.

Ke Cheng, Wen Hu, Zhi Wang, Peng Du, Jianguo Li, and Sheng Zhang. Enabling efficient batch
serving for lmaas via generation length prediction. arXiv preprint arXiv:2406.04785, 2024.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. arXiv preprint
arXiv:1909.03368, 2019.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 4129–4138, 2019.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. s3: Increasing gpu utilization during
generative inference for higher throughput. Advances in Neural Information Processing Systems,
36:18015–18027, 2023.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and Christos
Kozyrakis. Shinjuku: Preemptive scheduling for {µsecond-scale} tail latency. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19), pp. 345–360, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. arXiv preprint
arXiv:1902.00732, 2019.

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Power-aware deep learning model
serving with {µ-Serve}. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pp.
75–93, 2024a.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction. arXiv preprint arXiv:2404.08509, 2024b.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
university press, 2023.

Ziv Scully and Mor Harchol-Balter. Soap bubbles: Robust scheduling under adversarial noise. In
2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pp. 144–154, 2018.

Rana Shahout and Michael Mitzenmacher. Skippredict: When to invest in predictions for schedul-
ing. arXiv preprint arXiv:2402.03564, 2024.

Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse. Dynamollm:
Designing llm inference clusters for performance and energy efficiency. arXiv preprint
arXiv:2408.00741, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast distributed
inference serving for large language models. arXiv preprint arXiv:2305.05920, 2023.

12

https://openai.com/blog/chatgpt
https://github.com/tatsu-lab/stanford_alpaca

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response length
perception and sequence scheduling: An llm-empowered llm inference pipeline. Advances in
Neural Information Processing Systems, 36, 2024.

13

Appendix

Table of Contents
A Bayesian Inference Transition matrix 14

B SOAP Analysis 14

C SPRPT with Limited Preemption 15

D Simulation of SPRPT with Limited Preemption 17

E Refined Prediction Framework 18
E.1 SPRPT with refined predictions . 19

A Bayesian Inference Transition matrix

The transition matrix captures transitions between neighboring bins based on the assumption of
uniform distribution within each bin. The diagonal and sub-diagonal entries reflect the probabilities
of remaining in the same bin or moving to the adjacent lower bin, respectively. Below is the explicit
form of the transition matrix for a general number of bins.

T =


1− 1

bin size 0 0 . . . 0
1

bin size 1− 1
bin size 0 . . . 0

0 1
bin size 1− 1

bin size . . . 0
...

...
...

. . .
...

0 0 0 . . . 1− 1
bin size


B SOAP Analysis

We utilize the SOAP framework (Scully & Harchol-Balter, 2018) to derive precise expressions for
the mean response time. SOAP also provides the Laplace-Stieltjes transform of the response time
distribution, but we focus on mean response time for ease of comparison throughout the paper.

The SOAP framework is designed to analyze scheduling policies for M/G/1 queues that can be
characterized by rank functions. Recent work by Scully and Harchol-Balter (Scully & Harchol-
Balter, 2018) has categorized a broad range of scheduling policies as belonging to the SOAP class.
These policies determine job scheduling based on ranks, always prioritizing the job with the lowest
rank. (If multiple jobs share the same rank, First Come First Served is used as the tiebreaker.)
The rank function itself is a key component, assigned to each job based on certain static properties,
typically referred to as the job’s type or descriptor. For instance, the descriptor could indicate the
job’s class in multi-class models, as well as static characteristics like its service time (job size). The
rank may also depend on the job’s age, or the time it has already been served.

SOAP policies assume that a job’s rank is influenced only by its inherent characteristics and its
age, aligning well with the model and scheduling algorithm used in TRAIL. For more detailed
information, the reader is referred to (Scully & Harchol-Balter, 2018).

In SOAP analysis, the tagged-job technique is employed. Specifically, we track a tagged job J with
size xJ and descriptor dJ , and use aJ to represent the time J has already been served. The mean
response time for J is calculated as the sum of its waiting time (the period from its arrival to the
start of service) and its residence time (the duration from the start of service to its completion). To
calculate the waiting time, SOAP evaluates the delays caused by both old jobs that arrived before J

14

and new jobs that arrive after J . A key concept in this analysis is the worst future rank of a job, as
job ranks may change over time. The worst future rank for a job with descriptor dJ and age aJ is
denoted by rankworst

dJ
(aJ). When aJ = 0, the rank function is represented as rworst = rankworst

dJ
(0).

In the SOAP framework, the waiting time is equivalent to the transformed busy period in an M/G/1
queue, where the arrival rate is λ and the job size is described by Xnew[rankworst

dJ
(a)]. Where

Xnew[rankworst
dJ

(a)] is a random variable representing the time a newly arrived job will be served
until it either completes or its rank exceeds rankworst

dJ
(a). The initial workload during this period

corresponds to the delays caused by old jobs. To account for the delays from old jobs, SOAP
transforms the system by categorizing jobs according to their rank. Old jobs that exceed the rank
threshold rworst are classified as discarded and are not included in the transformed system. Those
with ranks at or below rworst, referred to as original jobs, are treated as arriving at rate λ with a
specific size distribution Xold

0 [rworst]. Where Xold
0 [rworst] is a random variable representing the ser-

vice time of an original job with respect to rank rworst. Recycled jobs, which were once above the
threshold but have now fallen below, are treated as server vacations of length Xold

i [rworst]. Where
Xold

i [rworst] is a random variable representing the service time of a recycled job for the i-th time
with respect to rank rworst for i ≥ 1. In TRAIL, jobs are recycled only once, so we only consider
Xold

1 [rworst].

SOAP shows that, due to Poisson arrivals see time averages, the stationary delay caused by old
jobs follows the same distribution as the queuing time in the transformed M/G/1/FCFS system,
characterized by sparse server vacations where original jobs arrive at rate λ and follow the size
distribution Xold

0 [rworst].

Theorem 1 (Theorem 5.5 of (Scully & Harchol-Balter, 2018)). Under any SOAP policy, the mean
response time of a job with descriptor d and size x is:

E[T (x, d)] =
λ ·
∑∞

i=0 E[Xold
i [rworst]

2]

2(1− λE[Xold
0 [rworst])(1− λE[Xnew[rworst])

+

∫ x

0

1

1− λE[Xnew[rankworst
dJ

(a)]]
da.

C SPRPT with Limited Preemption

We begin by describing the rank function for a job with descriptor (x, r, a), where x is the actual
size, r is the predicted size, and a is the job’s age. The threshold where we stop preemption from
occurring is set as a0 = C · r. The rank function is:

rank(x, r, a) =

{
r − a if a < a0
−∞ otherwise

As this rank function is monotonic, A job’s worst future rank is its initial prediction:

rankworst
d,x (a) =

{
r − a if a < a0
−∞ otherwise

(1)

When a = 0, the rank function is denoted by rworst = rankworst
d,x (0) = r.

Lemma 1. For SPRPT with limited preemption, where at age a0 the jobs become non-preemptable,
the expected mean response time for a job of true size x and predicted size r is

E[T (x, r)] =
λ
(∫ r

y=0

∫∞
xI=0

x2
I · g(xI , y)dxIdy +

∫∞
t=r+a0

∫∞
xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt
)

2(1− ρ′r)
2

+

∫ a0

0

1

1− ρ′(r−a)+
da+ (x− a0).

where ρ′r = λ
∫ r

y=0

∫∞
xI=0

xI · g(xI , y)dxIdy.

15

Proof. To analyze SPRPT with limited preemption using SOAP, based on the worst future rank
(equation 1), we calculate Xnew[rankworst

d (a)], Xold
0 [rworst] and Xold

i [rworst] for a tagged job J
with descriptor (x, r, a).

C.0.1 Xnew[rankworst
d,x (a)] computation:

Suppose that a new job K of predicted size rK arrives when J has age a. If a < a0 and K has a
predicted job size less than J’s predicted remaining process time (r − a), K will always outrank J .
Thus

Xnew
xK

[r − a] = xK1(rK < r − a)1(a < a0)

E[Xnew[r − a]] =

∫ r−a

0

∫ ∞

xK=0

xK · g(xK , y)dxKdy

C.0.2 Xold
0 [rworst] computation:

Let I be an old job in the system. Whether job I is an original or recycled job depends on its
predicted size relative to J’s predicted size. If rI ≤ r, then I is original until its completion because
its rank never exceeds r.

Xold
0,xI

[r] = xI1(rI ≤ r).

E[Xold
0 [r]] =

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy.

E[(Xold
0 [r])2] =

∫ r

y=0

∫ ∞

xI=0

x2
I · g(xI , y)dxIdy.

C.0.3 Xold
i [rworst] computation:

If rI > r, then I starts discarded but becomes recycled when rI − a = r. This means at age
a = rI − r and served till completion only if a < a0, which will be xI − aI = xI − (rI − r):

Thus, we have
Xold

1,xI
[r] = xI − (rI − r).

For i ≥ 2,
Xold

i,xI
[r] = 0.

E[Xold
1 [r]2] =

∫ ∞

rI=r+a0

∫ ∞

xI=rI−r

g(xI , t) · (xI − (rI − r))2 · dxIdrI .

Applying Theorem 5.5 of SOAP (Scully & Harchol-Balter, 2018) yields that the mean response time
of jobs with descriptor (r) and size x is as follows. Let

ρ′r = λ

∫ r

y=0

∫ ∞

xI=0

xI · g(xI , y)dxIdy.

Then

16

E[T (x, r)] =
λ
(∫ r

y=0

∫∞
xI=0

x2
I · g(xI , y)dxIdy +

∫∞
t=r+a0

∫∞
xI=t−r

g(xI , t) · (xI − (t− r))2 · dxIdt
)

2(1− ρ′r)
2

+

∫ a0

0

1

1− ρ′(r−a)+
da+ (x− a0).

Let fp(y) =
∫∞
x=0

g(x, y)dx. Then the mean response time for a job with size x, and the mean
response time of all jobs are given by

E[T (x)] =
∫ ∞

y=0

fp(y)E[T (x, y)]dy,

E[T] =
∫ ∞

x=0

∫ ∞

y=0

g(x, y)E[T (x, y)]dydx.

D Simulation of SPRPT with Limited Preemption

In our simulation, memory usage is modeled as proportional to the age of each job: the amount of
service it has received so far. This reflects the idea that jobs consume more memory the longer they
remain in the system. We measure the response time to evaluate scheduling efficiency along with
memory consumption.

We consider a single-queue setting with Poisson arrivals, where the job service time follows an ex-
ponential distribution with mean 1 (f(x) = e−x). Two prediction models are used: 1) Exponential
predictions (Mitzenmacher, 2019), where the prediction for a job with service time x is also expo-
nentially distributed with mean x, given by g(x, y) = e

−x−y
x . 2) A “perfect predictor”, where the

prediction is always accurate, given by g(x, y) = e−x.

Figure 8 shows the mean response time (blue line) and the peak memory usage (green line) under
various arrival rates and with different C values. The key takeaway is that limiting preemption;
reducing how often jobs are interrupted and rescheduled, can lead to better memory utilization while
maintaining a reasonable response time.

17

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Arrival Rate

2

3

4

5

6

7

8

9

Re
sp

on
se

 T
im

e

0.04

0.02

0.00

0.02

0.04

Pe
ak

 M
em

or
y

(a) vs. arrival rate when C = 0

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Arrival Rate

2
3
4
5
6
7
8
9

10

Re
sp

on
se

 T
im

e

15

16

17

18

19

20

21

22

23

Pe
ak

 M
em

or
y

(b) vs. arrival rate when C = 0.3

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Arrival Rate

2

4

6

8

10

Re
sp

on
se

 T
im

e

16

18

20

22

24

Pe
ak

 M
em

or
y

(c) vs. arrival rate when C = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

C

1.9

2.0

2.1

2.2

2.3

Re
sp

on
se

 T
im

e
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
ak

 M
em

or
y

(d) vs. C when λ = 0.7

0.0 0.2 0.4 0.6 0.8 1.0

C

2.4

2.5

2.6

2.7

2.8

2.9

Re
sp

on
se

 T
im

e

0

5

10

15

20

25

Pe
ak

 M
em

or
y

(e) vs. C when λ = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

C
3.6

3.7

3.8

3.9

4.0

4.1

4.2

Re
sp

on
se

 T
im

e

0

5

10

15

20

Pe
ak

 M
em

or
y

(f) vs. C when λ = 0.9

Figure 8: Comparing memory usage and response time across different arrival rates and values of
C.

E Refined Prediction Framework

We consider M/G/1 queueing systems with arrival rate λ. The processing times for each arriving job
are independent and drawn based on the cumulative distribution F (x), with an associated density
function f(x).

Given a job of size X = x, and a sequence of refined predictions Y0, Y1, . . . , Yx, where Yi represents
the prediction after processing i units of x, we model the refined predictions as follows:

The probability of the refined prediction yi at step i, given the actual size x and the entire history of
previous predictions, is denoted as:

P (Yi = yi | X = x, Yi−1 = yi−1, Yi−2 = yi−2, . . . , Y0 = y0)

18

Under the Markovian assumption, the refined prediction in step i depends only on the actual size x
and the previous prediction yi−1:

P (Yi = yi | X = x, Yi−1 = yi−1, Yi−2 = yi−2, . . . , Y0 = y0) = P (Yi = yi | X = x, Yi−1 = yi−1)

The joint probability of the sequence of predictions Y0, Y1, . . . , Yx can be modeled as:

P (Y0 = y0, Y1 = y1, . . . , Yx = yx | X = x) = P (Y0 = y0 | X = x)

x∏
i=1

P (Yi = yi | X = x, Yi−1 = yi−1)

The density function g(x, y) corresponding to the list of predictions y = [y0, y1, . . . , yx−1], where
each yi is obtained after processing one unit of job x, is obtained by summing over all possible
refined predictions:

g(x, y) =

∞∑
y0=0

∞∑
y1=0

· · ·
∞∑

yx−1=0

P (Y0 = y0, Y1 = y1, . . . , Yx−1 = yx−1 | X = x)

E.1 SPRPT with refined predictions

The relevant attributes are size and the refined prediction list r. We can model the system using
descriptor D = (size, list of refined predictions, age).

Let J be a job with a descriptor (x, r, a), where x is J’s size, r is a list of refined predictions for
J, each generated after processing one unit of the job, and a is J’s age. Thus, SPRPT with refined
predictions has a rank function rank(x, r, a) = r[a]− a for job of size x and predicted size r[a] at
time a. We denote the maximum rank function as rmax.

J’s worst future rank is:

rankworst
d,x (a) = sup

a<b<x
(r[b]− b) = max

a<b<x
(r[b]− b)

When a = 0, the rank function is denoted by rworst = rankworst
d,x (0) = rmax.

To analyze SPRPT with refined predictions using SOAP, the calculation involves solving a multidi-
mensional summation. While obtaining a closed-form expression for such sums may be challeng-
ing, in this section, we propose a method to compute the relevant components (Xnew[rankworst

d (a)],
Xold

0 [rworst] and Xold
i [rworst]) for the SOAP analysis without requiring a closed-form solution.

Let J be a tagged job with descriptor (x, r, a), based on its worst future rank.

Xnew[rankworst
d,x (a)] computation: Suppose that a new job K of predicted size rK arrives when J

has age a. K has a lower rank than the worst possible rank of job J is given by:

Xnew
xK

[rankworst
d,x (a)] =

xK∑
aK=0

1

(
rK [aK]− aK < max

a<b<x
(r[b]− b)

)
·1
(
∀j < aI , rI [j]− j < max

a<b<x
(r[b]− b)

)

where 1(·) is the indicator function, which equals 1 if the condition inside is true and 0 otherwise.

E
[
Xnew [rankworst

d,x (a)
]]

=

∞∑
xK=0

(
xK∑

aK=0

1

(
rK [aK]− aK < max

a<b<x
(r[b]− b)

)
· 1
(
∀j < aI , rI [j]− j < max

a<b<x
(r[b]− b)

)
·g(xK , y))

where the density function g(xK , y) is defined as:

19

g(xK , y) =

∞∑
y0=0

∞∑
y1=0

· · ·
∞∑

yxK−1=0

P (Y0 = y0, Y1 = y1, . . . , YxK−1 = yxK−1 | X = xK)

Xold
0 [rworst] computation: Let I be an old job in the system. Whether job I is an original depends

on its predicted size relative to J’s predicted size. I is original till it is exceeds rmax. we terminate
the summing once you encounter an age where rI [aI]− aI > rmax:

Xold
0,xI

[rmax] =

xI∑
aI=0

1 (rI [aI]− aI < rmax) · 1 (∀j < aI , rI [j]− j < rmax)

Xold
i [rworst] computation: If rI > r, then I starts discarded but becomes recycled when rI [a]−a =

rworst. This means at age a = rI [aI]− rworst and served till it will be again about rworst,

Let i be an interval index. The i-interval for job I is defined as the interval of ages during which the
rank of job I is less than rmax. Specifically:

b0[r] = 0

This indicates that the first interval starts at age 0.

c0[r] = inf{a > 0 | rI(a)− a > rmax}
Here, c0[r] is the smallest age greater than 0 where the rank function rI(a)−a becomes greater than
rmax, marking the end of the first interval where the rank is less than rmax.

For subsequent intervals i ≥ 1:

bi[r] = inf{a ≥ ci−1[r] | rI(a)− a < rmax}
This is the starting point of the i-th interval, which begins as soon as the rank rI(a)−a drops below
rmax again after the previous interval [bi−1[r], ci−1[r]].

ci[r] = inf{a > bi[r] | rI(a)− a > rmax}
Here, ci[r] is the endpoint of the i-th interval, where the rank rI(a)− a becomes greater than rmax

again.

For i ≥ 0, the i-interval work is a random variable, written XOLD
i [r], representing the sum of the

tokens where job I has rank less than rmax within its i-interval.

XOLD
i [r] =


0 if Xd < bi[r]

Xd − bi[r] if bi[r] ≤ Xd < ci[r]

ci[r]− bi[r] if ci[r] ≤ Xd

If bi[r] = ci[r] = ∞, we define XOLD
i [r] = 0.

20

21

