
Location Verification using Latencies and
Claimed Coordinates on the Blockchain

Pantea Karimi Babaahmadi

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Internship Project

August 2019

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Cristina Basescu
EPFL / DEDIS

Contents

1 Introduction 1

2 Background 1

3 Models and Methods 2
3.1 Attacks . 2

3.1.1 Smaller RTT with the Help of Malicious Nodes 2
3.1.2 Sybil Location . 3
3.1.3 Larger RTT by Delaying Messages 3
3.1.4 Eclipse Attack . 4

3.2 Secure Measurement of Round-trip-times [1] 4

4 Location Verification 6
4.1 Motivation . 6
4.2 Approach . 7
4.3 Finding g(d, l) function . 12

4.3.1 Finding ld . 13

5 Simulation and results 14

6 Conclusion 17

7 Aknowledgements 17

1 Introduction

In many applications such as processing of transactions, speed is an im-
portant factor. In self-organizing communities without relying on a central
party, the processing of transactions can be performed by a set of validators.
To reach higher speed in transaction validation, a Trust-but-Verify approach
can be taken. For example in paying for the daily purchase in the local su-
permarket with cryptocurrency, a user can rely on the local consensus and
enjoy the fast processing of the transaction, but can still verify the global
state to make sure at the end that the transaction was also verified in the
global consensus and was not a double-spend. However, the user has a choice
not to trust the local consensus and wait longer for the global consensus.
In the Trus-but-Verify approach, nearby validators can start processing the
transactions and provide a fast, weak, and temporary proof, while the global
verification is being computed by all the validators in the system [2]. To find
all the nearby validators for local consensus, each validator should know its
latencies to all the other validators in the system. The primary goal of this
project is to devise a scalable fault-tolerant algorithm to estimate the pair-
wise latencies among all the nodes of the system. The challenge is that some
nodes are malicious and behave arbitrarily, including attempts to mislead
others about their latencies.

2 Background

When building a system based on the latencies of the nodes of the system,
one solution is to know all the pairwise latencies to make sure they all make
sense together and the adversary nodes can not report malicious latencies
contradicting with some of the other latencies [1]. However, this approach
has some deficiencies. First, measuring all the pairwise latencies makes
the system unscalable. Second, even with having all the latencies, it is
difficult to detect who is a malicious node [1]. Third, Sybil Location attack
is possible in this scenario [1], which enables a validator to contribute to
the local consensus in multiple distinct regions and might attempt double-
spend in different regions. Although the double-spend transaction will not
be verified in the global consensus, the adversary might be able to enjoy
local services if the users trust local consensus before the global consensus
is reached. It can be shown that for small latencies, geographical distance
and latency are correlated [3]. Thus, the possible solution to solve the Sybil
Location attack is to demand the nodes to commit to their geographical
location on a secure shared ledger, Blockchain. By doing this, all the nodes
are committed to their claimed regions and can not participate in the local
consensus of two regions that are far away. However, malicious nodes can
claim wrong or arbitrary locations. To evaluate the correctness of their

1

claims, location verification methods by measuring round-trip-times can be
implemented [3].

3 Models and Methods

As mentioned in section 2 , malicious nodes can show fallacious actions when
reporting and measuring the round-trip-times. We assume that malicious
nodes can collaborate in reporting the round-trip-times and they know each
other. However, honest nodes neither know malicious nodes nor other honest
nodes.

3.1 Attacks

In this section, we explore the possible attacks that could happen when we
rely on only measuring the round-trip-times (RTTs).

3.1.1 Smaller RTT with the Help of Malicious Nodes

A malicious node can fake a closer round-trip-time and ask other malicious
nodes to answer for it when measuring the RTT.

 A

 B

 C's fake location

 C's real location

Honest node
Malicious node

Honest RTT
Malicious RTT

Fig. 1. Claiming smaller RTT with the help of other malicious nodes

Figure 1 shows how this attack is possible. Suppose that node B and
C are malicious nodes. Node C, with the help of node B, can convince all
the other nodes in the system about its claimed RTT to A. It is possible
for node C to convince any honest node in the system like A, that C has an
RTT of l ms, while the actual RTT is larger than l, as long as there is at
least one other malicious node like B closer to A than l. Our algorithm tries
to detect fake claims of malicious node C that there is no other malicious
node like B to answer instead of C.

2

3.1.2 Sybil Location

In Figure 1 , we showed how a malicious node can pretend to be closer to
other nodes with the help of another malicious node. This attack makes
another attack possible which is called Sybil Location.

C
A

C
B

Honest node
Malicious node

Honest RTT
Malicious RTT

Fig. 2. Sybil Location

Figure 2 shows two distinct regions in which local nearby validators val-
idate transactions faster to provide a weak regional verification. According
to Figure 2 node C with the help of two other malicious nodes, A and B, can
convince both regions that C is a part of them. In global view, C can not be
at two places at the same time and will contribute to the global consensus
with one vote per transaction; however, in local view, C can convince both
regions that it is a part of them. This attack allows C to contribute to mul-
tiple regions and tamper with consensus protocol in multiple regions. Note
that C might be successful in a double-spend attack in two distinct regions
in this scenario; however, C’s double-spend transactions are not verified in
the global consensus. We aim to prevent all the nodes to be able to have
contributions to multiple distinct regions.

3.1.3 Larger RTT by Delaying Messages

A malicious node can consiously delay RTT measurments to make itself look
farther away.

Figure 3 shows malicious node C that convinces both A and B of a
farther location. By doing this, node C loses its consensus power in the
region containing A and B.

3

 A

 B

 C's fake location

 C's real location

Honest node
Malicious node

Honest RTT
Malicious RTT

Fig. 3. Larger RTT by delaying messages

3.1.4 Eclipse Attack

A group of malicious nodes can consciously report false RTT measurements
for a specific honest node and make the honest node’s claims look unreliable
in that malicious neighborhood.

 A

Honest node
Malicious node

Honest RTT
Malicious RTT

Fig. 4. Eclipse Attack

Figure 4 shows honest node A that is surrounded by malicious nodes.
A’s location will remain fuzzy in this malicious region because all the close
nodes around A are malicious. In our model, we do not help A survive in its
malicious region. It means that if A’s malicious neighborhood decides that
A is not within their region, A can not trust the local consensus; however,
A can contribute to and trust the bigger overlapping regional or the global
consensus.

3.2 Secure Measurement of Round-trip-times [1]

For the secure measurement of round-trip-times, we use the method in [1].
In this section, we briefly summarize how node A measures its latency to
node B.

4

1. A sends B a message with its public key as an identifier, a nonce signed
by A, and a timestamp A1 signed by A [1].

2. B checks the received message from A to see if the public key matches
the private key, the timestamp is not old (not a response to an old
epoch), andA has not already started a new latency. If these checks are
passed, B sends back to A, A’s nonce signed by B’s private key, a new
nonce signed by B, and B’s time of reception signed by B. B computes
a clock skew based on its reception time and A’s timestamp [1].

3. A checks that the public key matches the private key and the first
nonce is the same nonce as the nonce in message 1. If these checks
are passed, A computes the round-trip-time to B, using the time of
reception of message 2 and the timestamp of message 1, and sends
back to B the computed latency signed by A’s private key and B’s
nonce signed by A’s private key [1].

4. B performs the usual checks and checks if the clock skew has remained
similar. B computes its own latency and checks to see if it is similar
to the received latency from A. If these checks are passed, B sends
back to A, A’s signed latency with the latest timestamp all signed by
B and B’s signed computed latency [1].

5. A performs the usual checks and checks if the clock skew and latency
have remained the same as before. If these checks are passed, A sends
back to B, B’s signed latency with the latest timestamp all signed by
A [1].

Fig. 5. Latency creation messaging protocol (all values are signed) [1]

5

4 Location Verification

4.1 Motivation

To solve the problem of Sybil Location, each node must commit to an initial
coordinate on the Blockchain. By doing this, each node can only be in
one location, thus we can prevent malicious multi-regional contributions by
limiting each node to one region. Location verification is necessary for two
reasons. First, honest nodes do not know other honest nodes. So, there must
be verification on the claimed coordinates for honest nodes to have some
certainty on the claimed coordinates of others in their regions. Second, the
malicious nodes can claim faulty location and we want to prevent them from
claiming random coordinates in regions where there actually is no malicious
node.

 A (0,5)

 B's fake claimed coordinate (5,10)

 B's real coordinate (50,0)

C

D

E

Honest node
Malicious node

Expected fast response time
Real slow response time

Fig. 6. Performance consideration: B slows down the consensus of the
honest region.

In Figure 6 , suppose that malicious node B claims to be closer to the
region including honest nodes A, C,D, and E. If no verification of the
claim of B’s location happens, the regional consensus of honest nodes is
going to take much longer than it should, resulting in a slow consensus.
Therefore, the verification of the claimed coordinates is necessary also for
the performance considerations.

Based on the graph by the Center for Applied Internet Data Analysis
(Caida), the round-trip-time is highly correlated to the geographical distance
up to a distance [3]. In subsection 4.3 , we show how we can use this graph
and more information on the relationship of honest distance and RTT [4] to
help us build our model.

Figure 7 shows the quartiles of round-trip times (RTTs) versus geograph-
ical distance from the probe source, which is calculated by looking up every
hop’s latitude and longitude via NetAcuity and comparing with the location
of the source [3].

To evaluate and verify the claimed locations, we use this correlation. For
small latencies, the physical distance is correlated with the latency, thus if
two nodes are close with respect to their latencies, their physical distance can

6

Fig. 7. RTT quartiles versus geographical distance [3]

approximate their latency and vice versa. This fact is not true for farther
physical distances, but since our goal is to find close nodes with smaller
latencies, we can use this correlation for small latencies. The main reason
that we wanted to find the latencies was to find the nearby validators. Thus,
the claiming of the locations will find the nearby validators with reasonable
accuracy.

4.2 Approach

Suppose that all the nodes have submitted their claimed coordinates on the
Blockchain, including node A. The system wants to verify if A’s claimed
coordinate is plausible in each region or not. We begin by some definitions.
N is the set of all nodes and n is the number of nodes in the system. We
assume that the maximum fraction of the number of malicious nodes in the
whole system to n is less than 1

3 (this is a given assumption). Note that
∀A ∈ N : A has a claimed coordinate (xA, yA) . The circle with center node
A and radius ri is defined as C(A, i) = {(x, y) | (x−xA)2 + (y− yA)2 < ri

2}
and we call it the neighborhood Ri of A. i is a positive integer from 1 to
imax, and imax is the smallest integer that C(A, i) includes all nodes in the
system. We choose ri := 2i (this is a given assumption); however, it is a
system parameter and can be changed based on the system’s preferences.
The set of nodes in the neighborhood Ri of A is shown with Ni and the
number of them is denoted by ni. We call Ri a malicious neighborhood, if

7

there are more than niβ malicious nodes in Ri, meaning that there are more
than niβ malicious nodes whose claimed coordinates are in the C(A, i). We
call the Ri an honest neighborhood, if there are less than niβ malicious
nodes in Ri, meaning that there are less than niβ malicious nodes whose
claimed coordinates are in the C(A, i). We denote the number of honest
nodes in Ni by hi and the number of malicious nodes in Ni by ni − hi, in
which ni−hi

ni
< β. β is a security parameter depending on what proportion

of the malicious nodes the local consensus can tolerate and can be chosen
as a system parameter.

Since the local consensus occurs in the local regions, it is important for
us to know whether A’s claimed coordinate is plausible in that region or
not. Meaning that if A is pinged for the consensus, A will respond within a
reasonable latency. For this reason, we try to answer the following question:
Is A’s claim to be in the neighborhood Ri of A plausible? Two scenarios
can happen as the following.

First, Ri could be a malicious neighborhood. In this scenario, whether A
is a malicious node or honest node, the consensus occurs among the malicious
nodes in the neighborhood and they can decide on whatever they want. If
A is a malicious node, the malicious neighborhood already knows A and A
does not need to prove to the neighborhood its claimed coordinate. If A
is an honest node, as in the subsubsection 3.1.4 stated, we do not try to
help A to justify its coordinate in a malicious neighborhood. The malicious
neighborhood already knows that A is an honest node and they can ignore
A’s vote in the neighborhood. The result would be for A that it will not trust
the outcome of the local consensus in the malicious neighborhood. However,
A can still trust the global consensus which happens later on.

Second, Ri could be an honest neighborhood. We want for an honest
node to be able to prove its claimed coordinate in an honest neighborhood
with a high probability and for a malicious node not to be able to prove
its claimed coordinate in an honest neighborhood if there is no malicious
node in that local region that based on subsubsection 3.1.1 can justify A’s
malicious coordinate. The latter prevents malicious nodes from claiming
random coordinates.

To evaluate A’s claim of being in the neighborhood Ri of A, or C(A, i),
A is assigned to ki randomly chosen nodes from Ni, nodes in the Ri, by a
public randomness on the Blockchain such as RandHound [5]. A is assigned
to these ki random nodes, which we call verifiers and are denoted by vi

1, vi
2,

..., vi
ki , to measure the secure round-trip-times as sescribed in subsection 3.2

and put the results on the Blockchain. Among the ki verifiers assigned to
A, suppose hki nodes are honest, vi

1, vi
2, ..., vi

hki , and ki − hki nodes are
malicious. The claimed geographical distances of these ki verifiers to A,
based on the claimed coordinated on the Blockchain, is denoted by di

1,
di

2, ..., di
ki respectively. We denote the outputs of the round-trip-times

measurments by verifiers by li
1, li

2, ..., li
ki respectively. For the RTTs that

8

are not submitted, infinity is considered as the output of the measurement.
We define the function g(d, l) as the following:

g(d, l) = 1[l < ld] =

{
1, l < ld

0, o.w.

In section subsection 4.3 , we will show how to find ld to derive this
finction. In subsection 4.3 we will show that the g(d, l) function’s output is
reliable with the probability of 1− σd. We define scorei for A in C(A, i) as
the following:

scorei =

∑ki
j=1 g(di

j , li
j)

ki
(1)

For an honest node in an honest neighborhood C(A, i), if ki is reasonably
large, we want A’s scorei to be greater than a threshold c with a high
probability. This verification is necessary for honest nodes because honest
nodes do not know each other and they do not know how much A’s claimed
coordinate in that neighborhood is reliable.

Pr(scorei > c | A is honest) > δ (2)

Pr(scorei > c | A is honest) =Pr(

∑hki
j=1 g(di

j , li
j)

ki
> c | A is honest) (3)

The purpose of this algorithm is to find out if node A is in the C(A, i)
or not. To simplify this approach, it not necessary to find all of the ldij s in

all of g(di
j , li

j) = 1[li
j < ldij] for different js. The fact is that for A to be in

C(A, i), it is sufficiant for A to show that its distance is less than ri to all the
its verifiers in Ri. Thus, we substitute ldij by lri . If the system decides that
it is essential to have more fine-grained verifications in small neighborhoods,
it can change the variable ri. We imagine the worst case scenario for the
honest node A, in which all the chosen malicious verifiers assigned to A
report g(d, l) = 0. So we simplify the approach as the following:

scorei =

∑ki
j=1 g(ri, li

j)

ki
=

∑ki
j=1 1[li

j < lri]

ki
(4)

For the neighbourhood of Ri, this reliability value is shown to be 1−σri
in subsection 4.3. By replacing Equation 4 in Equation 3 we get:

Pr(scorei > c | A is honest) =Pr(

∑ki
j=1 1[li

j < lri]

ki
> c | A is honest)

=Pr(
(1− σri)hki

ki
> c | A is honest)

=Pr(
hki
ki

>
c

(1− σri)
| A is honest)

(5)

9

We denote c
(1−σi) = γ1 and we have:

Pr(scorei > c | A is honest) =Pr(
hki
ki

> γ1 | A is honest)

=

ki∑
x>kiγ1

(
hi−1
x

)(
ni−hi

ki−x
)(

ni−1
ki

)
=

ki∑
x>kiγ1

(
(1−β)ni−1

x

)(
niβ
ki−x

)(
ni−1
ki

)
(6)

So we should choose ki ≤ ni such that:

ki∑
x>kiγ1

(
(1−β)ni−1

x

)(
niβ
ki−x

)(
ni−1
ki

) > δ (7)

As we discussed in subsubsection 3.1.1 malicious nodes can respond for
RTTs instead of each other. Thus, we try to catch the malicious nodes in an
honest neighborhood that no one responds for them. This verification helps
the system prevent the malicious node A from claiming random coordinates,
where there actually is no other malicious node to answer instead of A. We
have no assumption on the actual distribution of the malicious nodes or
their claimed coordinates. For a malicious node in an honest neighborhood
C(A, i), where there is no malicious node to respond for A’s RTTs, if ki is
reasonably large, we want A’s scorei to be less than c with a high probability.

Pr(scorei < c | A is malicious & No malicious node for A to respond) > δ (8)

We imagine the best case scenario for the malicious node A, in which
all the chosen malicious verifiers assigned to A report g(d, l) = 1. Also, A
can convince each honest verifier with the probability of σri , since g(d, l)
function has a reliability threshold. For Equation 8 we have:

Pr(scorei < c | A is malicious & No malicious node for A to respond)

=Pr(

∑ki
j=1 g(di

j , li
j)

ki
< c | A is malicious)

=Pr(
ki − hki + hkiσri

ki
< c | A is malicious)

=Pr(
hki
ki

>
1− c

1− σri
| A is malicious)

(9)

We denote 1−c
1−σri

by γ2. We have:

10

Pr(scorei < c | A is malicious & No malicious node for A to respond)

=Pr(
hki
ki

> γ2 | A is malicious)

=

ki∑
x>kiγ2

(
hi

x

)(
ni−hi−1
ki−x

)(
ni−1
ki

)
=

ki∑
x>kiγ2

(
(1−β)ni

x

)(
niβ−1
ki−x

)(
ni−1
ki

)
(10)

So we should choose ki such that:

ki∑
x>kiγ2

(
(1−β)ni

x

)(
niβ−1
ki−x

)(
ni−1
ki

) > δ (11)

Combining Equation 11 and Equation 7, we find the condition that ki
should meet as the following:

min{
ki∑

x>kiγ2

(
(1−β)ni

x

)(
niβ−1
ki−x

)(
ni−1
ki

) ,

ki∑
x>kiγ

(
(1−β)ni−1

x

)(
niβ
ki−x

)(
ni−1
ki

) } > δ (12)

If there is no ki ≤ ni such that it satisfies both Equation 11 and Equa-
tion 7, we choose ki = ni.

The following graph shows the minimum needed number of verifiers for
A’s coordinate for the β values of 1

3 and 1
2 for different numbers of nodes in

the neighborhood, ni, based on Equation 12.
As you can see in Figure 8, if the local consensus is run by at most 1

3
malicious nodes, the number of verifiers grows logarithmically as ni grows.
This approach has less complexity than measuring all the round-trip-times
in order to find the nearby validators. Notice that the smaller ri is, the more
important it is for us to have a more reliable verification approach. Figure 7
shows that for lower ri, honest latencies and distances are more correlated,
thus the reliability value of the g(l, ri), 1− σri , is higher.

From Equation 9 and Equation 3 we notice that
hki
ki

> max{γ1, γ2} = ζ.
So the approximate answer, for a reasonably large ni, would be to choose ki
such that:

ki∑
x>kiζ

(
(1−β)ni

x

)(
niβ
ki−x

)(
ni

ki

) > δ (13)

For reasonably large ni, we can further approximate Equation 13 by:

11

0 500 1000
ni

0

200

400

600

800

k i

ri = 0.1, c = 0.5, = 0.999
 = 1/3 = 1/2

Fig. 8. Minimum number of verifiers, ki, for different nis

ki∑
x>kiζ

(
ki
x

)
(1− β)x(β)ki−x > δ (14)

Note that all the measurements will be put on the Blockchain. Suppose
in the verification of A’s claim, node A is assigned to verifier B to measure
the RTT. If in the verification of B’s claim B is randomly assigned to A,
there is no need to measure the RTT again and it can be read from the
Blockchain.

4.3 Finding g(d, l) function

The joint distribution of two random variables of L, round-trip-time, and
D, distance, can be derived from the Figure 7 and we denote it by fD,L.
Moreover, based on [4], the CDF of minimum end-to-end RTT to TVHosts
for different ranges of linearized distances and geographic distances of paths
is as Figure 9. As in Figure 9, at low values of the linearized distance,
there exists a strong correlation between the delay and linearized distance
for a large fraction of end-hosts especially for small values of linearized
distances [4]. We expect this correlation to be much stronger as we compute
the minimum over a larger number of samples [4].

Suppose that two nodes have claimed they have the distance d and they
report a round-trip-time of l. For the claimed distance of d, there is a lower
bound on l. However, there is no upper bound on l. This means that if
we put a limit such as ld and we expect that l < ld, there is a probability
that two honest nodes can not satisfy this condition, but in that case, the

12

Fig. 9. CDF of minimum end-to-end RTT to TVHosts for different ranges
of linearized distances and geographic distances of paths [4]

nodes actually have high latency and the local consensus, when run, takes
long. Note that in our model we do not consider network-layer attacks
such that malicious nodes can prevent honest nodes from measuring their
round-trip-times, such as by delaying the packets.

4.3.1 Finding ld

Suppose we want to find an upper acceptable bound on the reported l, such
as ld, when the claimed distance is d. By having the joint distribution of
fD,L, we can derive the conditional distribution of fL|D. We can define ld
such that:

Pr(L > ld | D = d) < σ1∫ ∞
ld

fL|D=d(t) dt < σ1∫ ld

0

fL|D=d(t) dt > 1− σ1

(15)

The bigger ld is, the lower the probability that two honest nodes find
their claimed distances and latencies incompatible; however, if ld is too
large, then the probability that a malicious node can convince an honest
node of its faulty distance increases. So we should consider the following to
prevent malicious nodes to do that:

13

Pr(D > d | L < ld) < σ2∫ ∞
d

fD|L<ld(t) dt < σ2∫ d

0

fD|L<ld(t) dt > 1− σ2

(16)

So for a claimed distance of d, we should find ld such that it satisfies
both Equation 15 and Equation 16. We define reliability as the following:

Reliability(ld) = 1−max{Pr(D > d | L < ld), P r(L > ld | D = d)}
= min{1− Pr(D > d | L < ld), 1− Pr(L > ld | D = d)}
= min{Pr(D < d | L < ld), P r(L < ld | D = d)}

= min{
∫ d

0

fD|L<ld(t) dt,

∫ ld

0

fL|D=d(t) dt}

(17)

So we need to find ld such that it maximizes the reliability:

ld = argmaxx(Reliability(x)) = argmaxx(min{
∫ d

0

fD|L<x(t) dt,

∫ x

0

fL|D=d(t) dt})

(18)

And we can define the function g(l, d) as the following:

g(d, l) = 1[l < ld] =

{
1, l < ld

0, o.w.

As discussed earlier, this function has a reliability of reliability(ld) which
we denote by 1− σd.

5 Simulation and results

We ran a simulation to see how this algorithm works. In our simulation, we
set up 500 nodes. In this scenario, malicious nodes claim random coordinates
on the Blockchain. The claimed coordinate of node A is tested. If A is a
malicious node, its strategy is to justify its random claimed location in
C(A, i) when ki random verifiers in C(A, i) measure the round-trip-times
to A. If the verifier is an honest node, malicious node A should be able
to answer for the round-trip-time in time - either itself or with the help of
another malicious node. If node A is an honest node, the malicious verifiers
assigned to A to measure the RTTs all reject A’s coordinate; however, the
honest verifiers assigned to the honest node A, measure the RTTs truthfully.

14

For the simulation, we chose the values c = 0.5 for the score threshold,
δ = 0.9 for the security parameter, and β = 1

3 in subsection 4.2. The
imax = 7 for the simulation and the node A has the real coordinate of
(x′A, y

′
A) and a claimed coordinate of (xA, yA) in the space of a circle with

the radius of Rmax
2 . In our simulation, the real coordinates of the nodes

are randomly distributed over the space. For honest nodes, real coordinates
and claimed coordinates are the same. For malicious nodes, the claimed
coordinates are randomly distributed.

In our simulation, we varied m, the total number of malicious nodes, up
to n

3 . For a fixed m, we used the algorithm as the following. For the node
A in the neighborhood of Ri of A, we use the scorei and the threshold c
to decide if A’s claimed coordinate is plausible in C(A, i) or not; meaning
that, if the coordinate is plausible, we say the node A is honest in C(A, i)
and if it is not plausible, we say that node A is malicious in C(A, i). This
approach of classification has true positive - honest nodes that we classify as
honest - and true negative - malicious nodes that we classify as malicious-
values. For all the nodes in the system, we ran the algorithm over all of the
neighborhoods of Ri around each of them for 1 ≤ i ≤ imax. For each i and
m, we calculated true positive and true negative. The following graphs are
the results of the algorithm for three of the radiuses of the neighborhoods -
three values of i.

0 50 100 150
m

20

40

60

80

100

Pe
rc

en
t o

f N
od

es

n = 500, i = 1 , imax = 7

% Malicious caught
% Honest proved

Fig. 10. True Positive and True Negative vs m for i = 1

In Figure 10, true positive is shown with the green line and is denoted by
“% Honest proved” and measures the precentage of honest nodes that are
classified as honest by the algorithm. In Figure 10, true negative is shown
with the red line and is denoted by “% Malicious caught” and measures the
precentage of malicious nodes that are classified as malicious by the algo-
rithm. In Figure 10, i = 1 and the radius of the neighborhood is the smallest
value. As you can see, the honest nodes with a high probability can prove
their coordinates are correct. There will be some honest nodes in a mali-

15

cious neighborhood as described in subsubsection 3.1.4 that can not prove
their coordinates; however, their percentage is small when m is small and
increases when the number of malicious nodes increases. For smaller values
of m, most malicious nodes are caught; however, as the number of malicious
nodes increases, fewer malicious nodes are caught since it is more probable
that there are more malicious friends to answer for the RTT measurement
in any honest location.

0 50 100 150
m

20

40

60

80

100

Pe
rc

en
t o

f N
od

es

n = 500, i = 2 , imax = 7

% Malicious caught
% Honest proved

Fig. 11. True Positive and True Negative vs m for i = 2

In Figure 11, i =2 and the neighborhood is the second smallest neighbor-
hood. As you can see, the honest nodes with a high probability can prove
their coordinates are correct in their R2. For m < n

4 , more than 40% of the
malicious nodes are caught when they claim random coordinates.

0 50 100 150
m

0

25

50

75

100

Pe
rc

en
t o

f N
od

es

n = 500, i = 3 , imax = 7

% Malicious caught
% Honest proved

Fig. 12. True Positive and True Negative vs m for i = 3

In Figure 12, i =3 and the neighborhood is the third smallest neighbor-
hood. As you can see, the honest nodes with a high probability can prove
their coordinates are correct in their R3. The neighborhoods are bigger in
comparison with the previous graphs, and more honest nodes are in them

16

and it is easier for honest nodes to prove they are actually where they have
claimed to be. However, there are also actually more malicious nodes in the
neighborhood in terms of real coordinates and it would be easier for other
malicious nodes to fake their coordinates in that neighborhood. Note that
for imax = 7, the radius of the space is 2imax−1 = 26, and the neighborhood
R3 has the radius of 23, one eighth of the radius of space.

As i gets closer to imax, Ri covers more of the space. For a malicious
node, it means that it should prove that its claimed coordinate is plausible
to for example one-fourth of the space. Moreover, when i increases, with a
high probability most of the verifiers will be far from the malicious nodes in
the space and it would be easier for the malicious node to prove its claimed
coordinate.

6 Conclusion

The described method for β < 1
3 enjoys the lower complexity of O(nlog(n))

rather than the complexity of measuring all the round-trip-times which is
O(n2). Furthermore, we eliminated the Sybil Location attack by asking
validators to commit to their lcoordinates on the public ledger.

7 Aknowledgements

The author thanks Cristina Basescu and professor Bryan Ford, who advi-
sored and supervised the development of this project.

References

[1] Sabrina Kall. Know-thy-neighbour: Approximate proof-
of-location, DEDIS Lab semester project, EPFL. https:
//github.com/dedis/student 19 proof-of-loc/blob/master/report/
Dedis Semester Project.pdf, June 2019.

[2] Trust but Verify: Blockchain applications at
cloud scale. https://medium.com/@andysingleton/
trust-but-verify-blockchain-applications-at-cloud-scale-33aaa1b927f9.
Accessed: 2019-12-6.

[3] Rtt quartiles versus geographical distance. https://www.caida.org/
projects/ark/statistics/lax-us/med rtt vs dist.html. Accessed:
2019-12-6.

[4] Correlation between delay and distance. https://www.usenix.org/
legacy/publications/library/proceedings/usenix02/full papers/
subramanian/subramanian html/node21.html. Accessed: 2020-1-24.

17

https://github.com/dedis/student_19_proof-of-loc/blob/master/report/Dedis_Semester_Project.pdf
https://github.com/dedis/student_19_proof-of-loc/blob/master/report/Dedis_Semester_Project.pdf
https://github.com/dedis/student_19_proof-of-loc/blob/master/report/Dedis_Semester_Project.pdf
https://medium.com/@andysingleton/trust-but-verify-blockchain-applications-at-cloud-scale-33aaa1b927f9
https://medium.com/@andysingleton/trust-but-verify-blockchain-applications-at-cloud-scale-33aaa1b927f9
https://www.caida.org/projects/ark/statistics/lax-us/med_rtt_vs_dist.html
https://www.caida.org/projects/ark/statistics/lax-us/med_rtt_vs_dist.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html

[5] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scal-
able bias-resistant distributed randomness. Cryptology ePrint Archive,
Report 2016/1067, 2016. https://eprint.iacr.org/2016/1067.

18

https://eprint.iacr.org/2016/1067

	Introduction
	Background
	Models and Methods
	Attacks
	Smaller RTT with the Help of Malicious Nodes
	Sybil Location
	Larger RTT by Delaying Messages
	Eclipse Attack

	Secure Measurement of Round-trip-times Sabrina

	Location Verification
	Motivation
	Approach
	Finding g(d,l) function
	Finding ld

	Simulation and results
	Conclusion
	Aknowledgements

