
Glia: A Human-Inspired AI for Automated Systems Design and Optimization

Pouya Hamadanian*† Pantea Karimi*† Arash Nasr-Esfahany*† Kimia Noorbakhsh*†

Joseph Chandler† Ali ParandehGheibi§ Mohammad Alizadeh† Hari Balakrishnan†

*Equal contribution (alphabetical order) †MIT CSAIL §Independent Researcher

October 2025

Abstract
Can an AI autonomously design mechanisms for computer
systems on par with the creativity and reasoning of human
experts? We present Glia, an AI architecture for networked
systems design that uses large language models (LLMs)
in a human-inspired, multi-agent workflow. Each agent
specializes in reasoning, experimentation, and analysis,
collaborating through an evaluation framework that
grounds abstract reasoning in empirical feedback. Unlike
prior ML-for-systems methods that optimize black-box
policies, Glia generates interpretable designs and exposes
its reasoning process. When applied to a distributed GPU
cluster for LLM inference, it produces new algorithms
for request routing, scheduling, and auto-scaling that
perform at human-expert levels in significantly less time,
while yielding novel insights into workload behavior. Our
results suggest that by combining reasoning LLMs with
structured experimentation, an AI can produce creative and
understandable designs for complex systems problems.

1 Introduction
Can we develop an AI to tackle the design and optimization
of networked systems and produce solutions on par with,
or even surpass, those of PhD-level system engineers?

This question motivates our work. It matters because:
1. AI may soon be essential to manage complexity. Mod-

ern computer systems are extraordinarily complex. This
complexity arises from massive scale, rapidly evolving
hardware technologies, dynamic workloads, stringent
performance demands, and escalating costs. Many orga-
nizations struggle to keep pace, with engineers stretched
thin to deliver improvements. On the research front,
understanding the intricate interactions within systems

takes longer than ever, slowing innovation. We believe
today’s systems have reached a level of sophistication
that makes traditional, human-centric R&D insufficient
for continued progress.

2. The need for design velocity in the age of AI. A
central systems challenge of our time is building in-
frastructure capable of efficiently delivering AI applica-
tions. These workloads consume enormous computing
resources, process vast amounts of data, and often op-
erate under strict latency constraints. While AI models
advance at a breathtaking pace, the systems that support
them lag behind [2, 26, 29], creating a growing gap be-
tween what AI demands and what current infrastructure
can supply.

3. Intellectual curiosity and the nature of design it-
self. Given the remarkable progress of AI in many do-
mains [6, 11, 31, 51], can it also produce good sys-
tem designs? Hallmarks of good design such as sim-
plicity, clarity, and robustness [17, 77, 78] are difficult
to quantify, unlike objective performance metrics. Our
goal is thus twofold: to test whether an AI can generate
high-performing designs that optimize specific perfor-
mance objectives, and to examine whether its designs
are understandable and insightful in the way that human-
engineered designs often are.

For over a decade, researchers have explored the use
of AI and machine learning (AI/ML) for systems [25, 30,
45, 48–50, 62, 63, 68, 91]. Yet despite hundreds of papers,
real-world deployments remain rare. As we discuss in §2,
these approaches have often been incomprehensible, e.g.,
relying on opaque neural policies often developed with
reinforcement learning (RL) [42, 45, 46, 50], and fragile,
failing outside their training regimes [10, 12, 21, 44, 82].

1

ar
X

iv
:2

51
0.

27
17

6v
1

 [
cs

.A
I]

 3
1

O
ct

 2
02

5

https://arxiv.org/abs/2510.27176v1

Researchers and practitioners alike have thus had little con-
fidence that such systems will behave reliably in unforeseen
situations. There is, therefore, good reason to be skeptical
of the real-world impact of efforts in AI/ML for systems.

But this time is different. Large Language Models
(LLMs) now excel at code generation, dramatically
accelerating software development. They can ingest and
synthesize vast amounts of text, identifying what matters
and what does not, a hallmark of “understanding.” They can
also solve mathematical and analytical problems, including
those requiring symbolic reasoning and logical synthesis.

Learning from prior ML-for-systems experience, our
goal for the proposed AI is not to merely produce the
“best possible” design on a fixed set of benchmarks or
traces. Instead, our aim is to build an AI that generates
system designs and insights that impress human experts.
Performance improvements are important and a welcome
by-product. Good designs and optimizations are clear and
explainable, can be stress-tested and analyzed, and adapt
to new situations, reducing the risk of unpleasant surprises.

A natural solution might be to craft detailed prompts
for existing LLMs to produce system designs. As we
show in §3.1, however, this approach does not work
well. Fundamentally, systems research integrates four
interdependent skills: (a) developing and reasoning about
a model of the system and problem, (b) formulating
hypotheses about bottlenecks and designing experiments
to test them, (c) instrumenting and analyzing telemetry
streams that capture performance and diagnostic metrics,
and (d) synthesizing insights from these analyses into
improved designs. These skills operate in a feedback loop,
where an engineer iterates until satisfied with the outcome
(or gives up). Moreover, systems research is inherently
collaborative: teams combine complementary skills, vet
ideas, and refine them through critique and iteration.

We introduce Glia, an AI architecture inspired by
this successful human process. It comprises three main
components: (1) a front-end for humans to specify tasks
and provide background; (2) a multi-agent AI composed
of LLM-based agents with reasoning, summarization,
and analytical capabilities, each specialized for particular
tasks and capable of exploring ideas both sequentially and
concurrently; and (3) an evaluation framework that could
be a simulator, emulator, or testbed for running experiments
and generating data for the AI agents to reason about.

We apply Glia to a distributed GPU-cluster system
serving LLM inference requests. It produces new insights
in designing workload-specific adaptive algorithms for

(a) request routing (deciding which GPU should serve
a request), (b) batch scheduling (dispatching batches of
requests to individual GPUs running inference tasks), and
(c) auto-scaling (adjusting cluster size dynamically to meet
latency goals while controlling compute costs).

The key contributions and findings of this paper are:

1. Human-inspired AI design: Glia employs an agentic
workflow that mirrors how expert humans design sys-
tems—through conceptual understanding, hypothesis
formation, experimental testing, ideation, and iterative re-
finement. We compare this approach with prior methods
such as AlphaEvolve, highlighting its advantages. For
example, on a benchmark developing a request router for
a distributed LLM inference system serving a challeng-
ing workload, Glia produced a novel routing algorithm
whose mean request completion time is 2.2× lower than
a standard baseline (least-loaded queue routing) and
1.6× lower than the solution produced by OpenEvolve
(an open-source implementation of AlphaEvolve). Glia
took only two hours to match the performance of a hu-
man expert who required two weeks to achieve a similar
result.

2. Demonstration of Glia’s creativity: Glia autonomously
generated novel resource-management algorithms that
are simple and interpretable, revealing the reasoning that
led to their creation. These outputs provided new insights
even to experts. For instance, Glia discovered within
one hour that poor performance in a particular LLM
workload stemmed not from load imbalance, as initially
assumed, but from a memory management bottleneck—
an insight that took a human expert several days to
uncover independently.

3. Workload-specific adaptability: Glia operates continu-
ously, adapting to changes in workload and environment.
When the workload characteristics shift, previously dis-
covered algorithms may degrade in performance. In
such cases, Glia is able to generate new, more effective
methods tailored to the new conditions.

4. Benefits of parallel multi-context execution: Running
Glia with multiple concurrent contexts yields higher-
quality solutions than a single one-shot execution. Par-
allel exploration prevents the system from converging
prematurely on suboptimal ideas and encourages diver-
sity in solution strategies.

In §2, we survey prior work on AI/ML for systems and
recent relevant advances in LLMs. In §3, we dive into a
case study of LLM serving on a GPU cluster to analyze

2

why black-box LLM prompting alone is insufficient to
produce robust or interpretable system designs. This section
also shows the results of running Glia on the problem,
highlighting the differences from prior approaches. We
then present the design of Glia in §4, contrasting it with
systems such as AlphaEvolve [53] and FunSearch [60].
Our evaluation in §5 demonstrates Glia’s effectiveness
using several experiments on the same case study. Finally,
we reflect on our findings and discuss open challenges for
AI-driven systems design in §6.

2 Related Work

AI/ML for networked systems. A large body of work
has explored learning-based control and optimization in
networking and systems. At the transport layer, Remy syn-
thesizes congestion-control algorithms offline [79], while
PCC Vivace [13] and Aurora [22] use online learning and
deep RL, respectively. For video streaming, Pensieve learns
ABR policies that surpass engineered heuristics [45]. In dat-
acenters, researchers have applied RL to traffic optimization
and control (e.g., AuTO [7], Iroko [61]), topology/routing
management (DeepConf [62]), and packet classification
(NeuroCuts [32]). Despite impressive benchmarks, these
approaches rely on simulators that miss key real-world arti-
facts or narrow traces, yielding opaque or complex policies
with fragile generalization outside the training regime [83].

DeepRL has also been applied to cluster schedul-
ing (DeepRM [43]; Decima [47]), cache replacement
(LeCaR [73]), GPU warp scheduling (RLWS [3]), and
database systems (CDBTune [88], Bao [48]). Related
work even explores data-center control with learning and
model-based methods for cooling [28]. Taken together,
these efforts show that learning can find high-performance
policies, but they often produce black-box artifacts that are
hard to analyze, verify, or adapt under workload shifts.

In practice, RL agents try many poor algorithms before
they find a good one, and if something changes about the
system, such as the workload, objective, configuration,
or hardware, they will need to reoptimize all over again.
By contrast, Glia decomposes the task into modeling,
hypothesis generation, experiment design, and telemetry
analysis; iterates with an evaluation-in-the-loop; and
produces interpretable, stress-testable designs and insights
rather than a trained policy.

LLM-based discovery. With the rise of LLMs, multiple
efforts have been made to employ them for algorithm
discovery [36, 81]. These methods go beyond using LLMs

for simple code generation and instead propose approaches
that combine reasoning and search. Gottweis et al. [16]
employ multiple agents that collaborate through several
iterations to refine and improve solutions. Other works,
such as Evolution of Heuristics [33], ShinkaEvolve [27], Al-
phaEvolve [54], MCTS [90], LAS [34], and X-evolve [87],
develop evolutionary search approaches in which popula-
tions of programs are evolved through mutation, crossover,
and selection based on a fitness score. Recently, Multi-
Objective Evolution of Heuristics [85] has gained attention.
Some works, such as CALM [20], combine evolutionary
search with fine-tuning or employ supervised fine-tuning
on curated datasets to enhance reasoning for algorithm
discovery [35]. Recent work from Google [5] proposes an
agentic, tree-search-based approach. DeepEvolve augments
AlphaEvolve with deep web research to make sure the
idea behind each code corresponds with latest ideas in
literature [37]. SR-Scientist [80] introduces a long-horizon
symbolic regression framework where an LLM iteratively
refines equations using external tools for data analysis and
evaluation. Unlike Glia, the LLM cannot perform these
analyses autonomously and depends on pre-defined tools
for these capabilities. Thus, many of these approaches rely
on black-box exploration, as discussed in §4.

LLM-based algorithm design. Researchers across
various fields of computer science have been exploring the
use of LLM-based algorithms to improve the performance
of their systems of interest. ADRS [8] shows the potential
benefits of using LLMs in several systems problems. Shy-
pula et al. [66] explore the ability of LLMs to optimize C++
code. Wei et al. [75] introduce an Agent-System Interface
(ASI), composed of a concise Domain-Specific Language
(DSL) and a feedback interpreter called AutoGuide, to opti-
mize mapper code for parallel programs. Nagda et al. [52]
use AlphaEvolve to discover new finite combinatorial
constructions in complexity theory. Sun et al. [70] employ
LLMs to automatically discover heuristics for SAT solvers.
Press et al. [58] introduce AlgoTune, an agentic framework
for optimizing general-purpose numerical programs. Liu
et al. [39] propose ASI-ARCH, a closed-loop, multi-agent
evolutionary system for neural architecture search.
Astra [76] and GPU Kernel Scientist [4] explore the opti-
mization of CUDA GPU kernels. NADA [18] investigates
the use of LLMs for designing adaptive bitrate streaming
(ABR) algorithms. Robusta [24] combines combinatorial
reasoning about heuristics from prior work [23] with
LLM-based reasoning in an evolutionary search to discover

3

networking heuristics with improved worst-case guarantees.
He et al. [19] explores the use of LLMs in congestion
control. POLICYSMITH [14] also explores LLM heuristic
search for web caching and congestion control. MetaMuse
[41] is an approach that guides LLMs to generate novel
algorithms with structured creative ideation. It explores the
solution space using external stimuli, waypoint reasoning,
and feedback-based performance embeddings to steer
diversity and quality. It is able to discover high-performance
algorithms in tasks like cache replacement and bin packing.

Our approach in Glia differs from prior work in three
significant ways:
1. Glia focuses on generating hypotheses and ideas from

performance analysis rather than code evolution. Prior
work does not inspect the simulation results and logs to
reveal the mechanisms behind each modification and to
establish its causal relationship to observed outcomes.

2. Inspecting the simulation results and modifying the
code based on what the experimental data indicates.

3. Running experiments to understand deeper relationships
between the metrics and the bottlenecks.

3 Case Study: LLM Serving in a GPU Cluster
In this section we apply Glia to the problem of efficiently
serving inference requests across a cluster of GPUs running
large language models (LLMs), which is a fundamental
challenge in distributed LLM serving systems [2, 26, 55,
57, 86, 89]. When an inference request arrives, the system
must process it promptly and in a cost-efficient manner.
Because GPUs are expensive and often operate under di-
verse workloads, achieving high utilization without violat-
ing latency constraints is crucial. As model architectures,
hardware generations, and application workloads evolve,
maintaining and optimizing serving systems across these
combinations has become increasingly difficult.

Today’s systems implement one or two generic mech-
anisms to route requests to GPUs (discussed below). They
also employ standard batch schedulers to dispatch requests
within a GPU and may use auto-scalers to adjust cluster
capacity as load fluctuates over time. However, these com-
ponents are often tuned conservatively or manually, leaving
significant performance and cost improvements unrealized.
Optimizing them requires expert knowledge of both
workloads and system internals, requiring specialized engi-
neering teams to design and tune these systems [26, 57, 86].

We focus on a key opportunity for optimization: dynamic,
workload-adaptive routing of inference requests. The
goal is to tailor the routing method to observed workload

Current

Request
Router

Queue Processing

…

A100A100

H100

GH200

Figure 1: Illustrative pipeline of request routing for LLM infer-
ence.

patterns in order to best satisfy specified service-level
objectives (SLOs). Typical SLOs include the mean time
to first token (TTFT), which captures latency; the mean
time per output token (TPOT), which is a measure of
throughput; and the mean end-to-end request completion
time, which reflects overall responsiveness.

Request routing, illustrated in Fig. 1, is implemented
in the orchestration layer of the inference stack. Modern
LLM-serving systems such as NVIDIA Dynamo [55], Red
Hat llm-d [40], the vLLM production stack [74], and
ByteDance AIBrix [72] typically use simple, static policies
such as:
• Round-robin (RR): routes each request to the next

inference engine in sequence.
• Least-loaded queue (LLQ): routes each request to the

inference engine with the fewest queued requests.
• Prefix-aware routing: routes requests sharing a prefix to

the same inference engine to enable reuse of cached com-
putations; this technique is often combined with other
criteria such as queue length or memory availability.1

While effective under steady conditions, these heuristics
do not adapt to changing workloads or resource states. We
therefore examine the potential for dynamic, workload-
adaptive optimization of the request router using Glia.

3.1 Using LLMs As-is

A natural first step is to ask an LLM to write the
algorithm given a detailed prompt describing the problem,
environment, workload, and objectives. Even with carefully
constructed prompts and state-of-the-art reasoning models,
the resulting solutions are not competitive out of the box
for this specialized task. Fig. 11 shows an example of such
a detailed prompt. Fig. 2 shows the distribution of mean
request completion times for 100 generated programs
sampled from the same prompt using o3, o4-mini, gpt-
4o, and gpt-5. Performance varies widely across model
outputs and is consistently worse than that of a human
expert, indicating that direct prompting alone is insufficient

1We disable prefix-aware routing in our experiments to focus on the
core routing logic.

4

30 40 50 60 70 80
Avg Response Time (s)

0

20

40

60

Pr
ob

ab
ili

ty
 D

en
si

ty
 (

%
)

Ro
un

d
Ro

bi
n

LL
Q

Ex
pe

rt

LO
R

Better

o3 o4-mini gpt-4o gpt-5

Figure 2: Distribution of mean request completion times for 100
programs generated by directly prompting the LLM.

for generating efficient request routing algorithms.

3.2 Black-box LLM-in-the-loop Search

A more sophisticated approach places LLMs within a
black-box search loop. In this setting, one or more LLMs
generate or modify code candidates, an evaluator executes
each candidate on a benchmark and returns a performance
score (e.g., latency or throughput), and the LLM refines
subsequent candidates based on that feedback [33, 53, 60].
Fig. 12 illustrates a typical prompt for use with systems
such as FunSearch [60].

This paradigm has some advantages: because proposals
are in the form of code, thousands of variants can be gener-
ated and evaluated in parallel; i.e., the evolutionary loop can
explore a large design space. However, these methods treat
the problem largely as code-level mutation and optimization.
Systems such as FunSearch [60] and AlphaEvolve [53] op-
erate directly on program text, mutating or recombining
snippets without developing explicit hypotheses or struc-
tured reasoning traces. Consequently, “idea evolution” is
driven by low-level code edits rewarded by a scalar objec-
tive, with little feedback or analysis about why a candidate
works or fails. Few mechanisms exist to extract or leverage
higher-level design insights—the kind that human experts
rely on when developing new ideas. Many of the code can-
didates don’t make logical sense, but yet the system exper-
iments with them and obtains scores. This approach resem-
bles a “code monkey” that tries out code variants, instead of
reasoning about the ideas at a better level of abstraction [15].

Fig. 10 shows an example request-routing implemen-
tation generated by FunSearch. The resulting algorithm is
a weighted composite cost function over a handful of input
signals, a representation more typical of RL or ML-derived

policies than of human-engineered designs grounded
in analytical reasoning. Such solutions offer limited
interpretability, depend on ad hoc weight calibration, and
are often sensitive to small workload or configuration
changes. As we show in §5, this black-box approach
performs worse than the more explainable and adaptive
designs produced by Glia.

The core limitation is not the LLM’s reasoning capability
or the evolutionary framework itself, but the level of
abstraction at which the system operates: reasoning purely
in code, with limited visibility into system behavior or
design principles.

3.3 The Glia Approach

Rather than using LLM as a black-box optimizer, Glia uses
it to elicit systems reasoning. We design an agentic LLM
framework that mirrors how human engineers approach
design problems—a workflow loop that forms hypotheses,
conducts experiments, analyzes results, and refines ideas.

The system is named Glia, inspired by glial cells in the
brain. Just as glial cells support, maintain, and enhance
the function of neurons, Glia supports, augments, and
accelerates the work of systems researchers and engineers.

This reasoning-centered methodology is generalizable,
applying across diverse system domains, and aims to be
robust, avoiding the false paths common to brute-force or
code-mutation methods. By combining learned expertise
with continuous experimentation, Glia seeks to produce
algorithms that are explainable, adaptable to changing
workloads, and grounded in analytic reasoning rather than
opaque optimization.

We illustrate Glia’s operation in the context of the
request-routing problem. The user specifies a task prompt,
an example of which is in Fig. 14 to the Glia front-end.
Starting from a baseline such as LLQ, Glia iterates through
cycles of experimentation, analysis, idea generation, and
code modification, progressively refining its design toward
improved performance and clarity.

Experimentation. Glia begins by testing a few simple
request-routing strategies. It first evaluates the baseline
performance of LLQ, then explores alternatives such as
Least Outstanding Requests (LOR) and modified versions
of LLQ where the load signal incorporates memory
pressure. It executes each algorithm on the benchmark,
recording detailed statistics and performance metrics
for every run. Across these initial experiments, Glia
observes that none of these simple variants yield significant

5

improvement over the baseline.

Analysis. After about ten such experiments, Glia
determines that further blind exploration is unproductive:

Rather than continuing to iterate blindly, I am going to
step back, profile the baseline more rigorously and de-
rive a quantitative model of where time is actually spent
(queueing vs execution, pre-emptions, GPU-memory
pressure, ..). Once that is done we can target the domi-
nant contributor directly and should be able to reach the
desired 30% speed-up.

Glia proceeds to instrument the simulator and collect
detailed internal metrics. From this analysis, it identifies
restarts—instances where a request is evicted and
restarted—as a potential source of inefficiency, an insight
discovered autonomously without user prompting. Glia
prints the following summary:

mean e2e no restart 37.40
mean e2e restarted 48.12
fraction restarted 0.26

Glia finds that roughtl;y 26% of the requests in this
workload experience restarts, with restarted requests averag-
ing 48.1 s end-to-end latency—about 11 s slower than non-
restarted ones. Glia formulates the following hypothesis:

Hypothesis: memory imbalance → more restarts →
wasted execution time.

Modern GPUs are highly parallel devices designed to
process many requests concurrently. To achieve efficiency,
they batch requests together, making scheduling decisions
critical to performance. LLM inference workloads are
often bursty, with highly skewed and unpredictable
compute demands. Request durations vary with prefill and
decode token lengths, frequently following heavy-tailed
distributions [71, 84].

A core scheduling challenge is that the GPU memory
requirement of each request is proportional to its eventual
number of output tokens. This information is not available
at routing time. A router must either allocate the maximum
possible size [86] or allocate incrementally, assuming the
batch will fit in available GPU memory [26]. The latter
approach, used in vLLM, avoids over-provisioning but
risks out-of-memory conditions. When a GPU exhausts
memory during batch processing, the youngest request is
evicted, freeing its memory but losing all progress. This
eviction causes a restart and wastes computation.

Glia discovers a solution. Having identified restarts
as a major source of inefficiency, Glia, Glia experiments
with several techniques from the literature to mitigate them.
It reports that it has “implemented several increasingly
sophisticated global-scheduler prototypes: memory-head-
room LB, prompt-token balanced LB, elephant-house
heuristic, and size-affinity batching LB.” Its evaluation
of these approaches in the simulator finds that the best
method so far, least outstanding blocks, improves average
latency by only 3% over the LLQ baseline. It says that it
is “continuing to iterate on schedulers”.

At this point, Glia’s Supervisor agent intervenes:

It seems that we have been unable to reduce the number
of restarts. Why is that? Is there something structurally
wrong about our approach that is making it difficult to
limit the number of restarts?

This step helps the Researcher agent achieve a break-
through by triggering the following chain-of-thought
reasoning:

Why restarts stubbornly persist
1. vLLM’s pre-empt-on-growth behaviour

• vLLM allocates just enough KV-cache blocks for the
prompt.

• During decode it keeps adding blocks 1 token at a
time (1/16 of a block).

• As soon as a new block is needed and no free block
is available, vLLM pre-empts the youngest request,
frees its blocks and pushes it back to the pending
queue.

• This happens even if the replica was perfectly bal-
anced at admission time.

2. The global scheduler sees only prompt-length, not
future decode length.

• A 50-token prompt that later decodes 1500 tokens will
eventually need [1500 / 16] = 94 extra blocks.

• The scheduler cannot foresee this growth, so an appar-
ently “safe” admission can still trigger a pre-emption
many seconds later.

3. Memory stays near 100% utilisation most of the time
• LLQ (and our variants) keep GPUs busy to maximise

throughput.
• With no head-room, the *first* request that needs an

extra block causes a domino of restarts.
• Our heuristics moved load around, but average utilisa-

tion stayed > 90%. That is simply too tight.

Guided by this analysis, Glia proposes a new routing
strategy that explicitly forecasts memory usage (i.e.,

6

expected output tokens) and dispatches requests only when
sufficient GPU headroom remains:

To cut both queueing delay and pre-emptions we
must:

1. Balance memory usage / outstanding prompt tokens
across replicas, not just queue length.

2. Admit new requests to replicas that still have KV-cache
head-room so that pre-emptions become rare.

Glia formalizes this idea by introducing two tunable
parameters: the decode-to-prefill ratio r and a memory
safety margin, m. If the dynamically estimated r for the
workload exceeds a threshold and available memory falls
below (1−m) of total capacity, the router holds the request
in a global queue rather than dispatching it immediately
to a GPU. Intuitively, when r is large, the eventual number
of output tokens may exhaust GPU memory, and deferring
admission mitigates this risk when the amount of available
memory is small.

Glia implements this strategy (Fig. 9), calling it the
Head-Room Allocator (HRA), and evaluates it. The
initial implementation performs worse than baseline LLQ
(mean latency >50 s vs. 40 s) but eliminates most restarts,
reducing them from 26% to under 0.001%. Recognizing
the opportunity for parameter tuning, Glia performs a rapid
search over the (r,m) parameter space, soon identifying
a configuration that breaks the 40 s latency barrier. After
two additional experiments, it achieves a design with mean
latency just above 30 s—while maintaining low restart
rates (about 20%, mostly early in request lifetimes).

Next, the Supervisor encourages idea composition,
recalling that Glia had previously tested a shortest-prompt-
first scheduler inspired by the classical shortest-job-first
policy known to minimize mean completion time.
Gliacombines this idea with HRA and implements the
combined design. The result achieves a mean end-to-end
latency under 23 s—a 42.5% improvement over the 40 s
baseline—with queueing delay reduced from 20 s to just
3 s. These improvements arise because the number of
restarts reduces by 44%. Glia discovered this scheduler in
only 20 simulations and in under two hours, compared to a
human expert who required over 100 simulations and more
than two weeks to reach similar insights.

A key advantage of Glia ’s agentic workflow is that
it fosters reasoning-driven exploration. It formulates
hypotheses, tests them empirically, and composes ideas,
rather than relying solely on scalar feedback from

benchmark scores. This reasoning process produces both
higher performance and more interpretable designs than
black-box optimization methods.

Continuous adaptation to changing workloads and
application patterns. A key motivation for automated
decision-making is that optimal policies depend on
factors that evolve over time. Workload characteristics,
hardware configurations, and application priorities can all
shift, changing which routing policy performs best. For
instance, the solution Glia devised above is less effective in
configurations with abundant KV-cache memory and short
sequence lengths. Moreover, applications often optimize
for different metrics: interactive services may emphasize
TTFT and TPOT; background processing may prioritize
overall throughput; and agentic or multi-stage applications
may focus on end-to-end agent execution time. By running
periodically and re-optimizing in response to observed
conditions, Glia can adapt its decisions to these evolving
workloads and objectives.

4 Glia Agents

This section presents the design of Glia ’s agents. The
current implementation comprises two primary agents:
1. a Researcher, which proposes ideas, implements them,

conducts experiments to generate metrics, and analyzes
results; and

2. a Supervisor, which guides the Researcher by asking
questions, providing feedback, and approving or
suggesting revisions to proposals.
We have taught the Researcher the general principles of

systems research via its system prompt. The user prompt
specifies the simulator and optimization problem to be
solved.

To interact with the simulator, the Researcher is
equipped with access to shell commands and a cloned copy
of the simulator repository. As described in §3.3, the agent
employs standard Unix commands (e.g., ls, grep, find)
to navigate the codebase, inspect directory structures, and
identify relevant components, a process known as agentic
search [59]. The Researcher can also create and execute
scripts to analyze simulation outputs and performance
metrics, enabling data-driven refinement of its hypotheses.
Through these interactions, the Researcher conducts a
human-like research process that iteratively combines
experimentation and reasoning to discover new algorithms.

Glia ’s white-box, reasoning-driven workflow elevates
exploration from the code level to the idea level. This makes

7

its agentic research loop both more efficient (Fig. 7) and
more interpretable (§5.4) than prior black-box approaches
such as FunSearch, AlphaEvolve, and EoH [33, 53, 60].
Rather than relying solely on scalar performance scores,
Glia analyzes why a design succeeds or fails. It examines
experimental evidence, forms hypotheses about root
causes, and validates them through new experiments. As
a result, its behavior more closely mirrors that of a human
researcher, achieving both higher insight and robustness.

We first describe a single-context design in §4.1, and
then extend it to support multiple contexts in §4.2.

4.1 Single-Context Glia (SCG)

Our initial design employs a single execution context shared
by the two agents. Within this context, the Researcher may
occasionally pursue unproductive directions, lose focus, or
prematurely terminate exploration. When this occurs, the
Supervisor intervenes to provide feedback and guidance:
offering encouragement when the Researcher appears
close to a promising idea, asking clarifying questions when
potential directions are overlooked, and halting progress
along clearly unproductive paths. The Supervisor also
removes procedural obstacles, reminds the Researcher of
overarching goals, and recalls previous findings.

However, the Supervisor does not introduce new ideas
or interfere directly with the Researcher’s reasoning. Un-
like the Researcher, the Supervisor has no access to the
codebase; it operates solely from the task description and
from observing the Researcher’s outputs. In response to
Supervisor’s questions, the Researcher provides detailed
rationales in a chain-of-thought style. This design intention-
ally mirrors the dynamics of a small human research team.

Maintaining a single execution context offers the benefit
of a coherent, contiguous exploration history that is easily
accessible to the Researcher. However, it also introduces
two limitations. First, current LLMs have finite context
windows: once the limit is reached, the process must
terminate, regardless of progress. Moreover, as the context
grows, model attention becomes increasingly uneven
across earlier content [38, 59]. Second, the single-context
design scales poorly as there is no straightforward way
to improve the resulting algorithms merely by increasing
compute, budget, or iteration count. The next section
introduces two extensions that mitigate these limitations.

4.2 Multi-Context Glia (MCG)

To overcome the limitations imposed by a single finite
context window, we adopt a best-of-N sampling strategy, a

common method for scaling test-time computation [9, 69].
In this approach, we execute N independent single-context
instances of Glia, each exploring the design space along a
distinct trajectory, and select the best-performing algorithm
discovered across all runs based on benchmark scores.

We present two variants of this strategy: Sequential
MCG and Parallel MCG-N. In Sequential MCG,
single-context Glia runs execute one after another, allowing
the process to stop as soon as a satisfactory result is
achieved (up to a maximum number governed by cost). In
Parallel MCG-N, N independent runs proceed concurrently,
with N serving as a user-specified hyperparameter. For both
variants, Glia returns the best-performing design across
all runs as the final output. A performance comparison
between these modes is presented in §5.6.

Because the runtime and output quality of a single-
context instance cannot be predicted in advance, the
two modes expose different trade-offs. Sequential MCG
achieves faster early progress, as results can be assessed
incrementally after each run, but its early performance
varies depending on which trajectories complete first.

Parallel MCG-N, in contrast, requires more peak
compute but provides steadier improvement: evaluating
multiple trajectories simultaneously reduces the likelihood
that all runs perform poorly, leading to more consistent
aggregate performance. In practice, Sequential MCG
is preferable when compute resources are constrained,
while Parallel MCG-N offers lower variance and smoother
convergence. Our experiments show that most of the benefit
saturates by N=4, with larger values yielding diminishing
returns. We discuss these differences further in §5.6.

5 Evaluation
We use OpenAI o3 [56] as the underlying language model.
In the following experiments, we specified a budget of $30
per optimization.

We evaluate Glia in vidur, a simulator for distributed
LLM serving systems [1]. This section focuses on the
request routing strategy among LLM replicas in distributed
serving environments. We study how Glia discovers novel
routing algorithms that lower the mean request completion
time (RT) across all requests.

We simulate an LLM inference workload
(ShareGPT [64]) on four NVIDIA A10 GPUs run-
ning Llama-3-8B-Instruct. To emulate reasoning workloads
with heavy-tailed sequence length distributions, we
independently inflate 5% of decode lengths and 5% of
prompt lengths by 10×. The workload uses a query rate

8

Table 1: Experimental settings and hyperparameters from EoH,
FunSearch, and OpenEvolve, using the same parameter names
from their corresponding papers.

System Parameter Name Value

EoH Initial population size (N) 20

FunSearch # Prompt programs (k) 3

OpenEvolve

Number of islands 6
Exploration probability 0.6
Exploitation probability 0.4
Initial program LLQ router

Table 2: Hyperparameters for the other approaches used in our
evaluation.

of 7.5 queries per second (QPS), with bursty interarrival
times following a log-normal distribution (σ = 2). Each
LLM replica uses chunked prefill [2] for batch scheduling,
with a chunk size of 8192. We run each experiment with
ten random seeds.

The primary evaluation metric is the mean request
completion time (RT), defined as the end-to-end latency
to receive the response to a request. This metric reflects
user-perceived responsiveness in LLM serving and
measures the effectiveness of scheduling policies under
dynamic workloads. We also report the 90% bootstrapped
confidence interval.
Comparisons to other approaches. We compare Glia
to three state-of-the-art frameworks that employ LLMs
and evolutionary strategies for discovery: (i) Evolution
of Heuristics (EoH) [33], (ii) FunSearch [60], and (iii)
OpenEvolve [65]. The parameter settings for these systems
are shown in Tab. 1. For FunSearch, we restrict each island
to 20 algorithms.

Evolution of Heuristics [33] introduces a “thought” step
into algorithm design and evolves candidate heuristics
using five operators: crossover operators (E1: generate
diverse heuristics, E2: recombine common ideas) and
mutation operators (M1: modify heuristics for improvement,
M2: adjust parameters within a heuristic, M3: simplify by
removing redundancies). These operators iteratively evolve
heuristic candidates.

FunSearch [60] applies a best-shot optimization
strategy within an island model. In each generation, the
system selects top-performing code examples from the
solution database and prompts the LLM to refine them,
maintaining a bounded island of candidates through

iterative improvement.
OpenEvolve [65], an open-source implementation of

AlphaEvolve [53], also employs island-based evolutionary
search. It begins with an initial candidate program and
a task-specific evaluation function to maximize a score.
A prompt sampler generates inputs for the LLM, which
produces new program variants. The system then applies
evolutionary principles and migration across islands to
improve solutions across generations.
Baseline routing comparisons. We also compare Glia
with three heuristics from the literature: Round-Robin,
Least-Loaded Queue (LLQ), and Least Outstanding Re-
quests (LOR). Round-Robin forwards requests to replicas
in a simple cyclic order. LLQ selects the replica with the
fewest inflight requests. LOR chooses the replica with
the fewest waiting requests (those without allocated GPU
memory). We also compare against an expert-designed
heuristic, a workload-specialized algorithm developed over
a two-week design period by a senior systems researcher
with over 20 years of experience working on such problems.

5.1 Glia outperforms baselines

Fig. 3a compares the algorithms generated by Single-
Context Glia (SCG) with routing heuristic baselines and
prior algorithm design methods under a strict simulation
budget of at most 15 runs. On average, SCG discovers
algorithms that reduce mean response time (RT) by
1.3–1.4× compared to EoH, FunSearch, and OpenEvolve,
and achieves the fastest discovery rate among them.

Next, we increase the simulation budget to 100 runs.
Fig. 3b shows the best-performing algorithms produced
by Glia variants compared with the same baselines in
this case. SCG performs similarly to the 15-simulation
setting (Fig. 3a). This stability stems from SCG’s stopping
rule: it halts once the Researcher agent either completes
its reasoning process or exhausts the context window,
preventing further additions or revisions. In contrast, EoH,
FunSearch, and OpenEvolve continue improving with
additional simulations, attempting to use the extra resources.
SCG cannot benefit from these available resources because
it follows a single reasoning trajectory; because it runs out
of context, it cannot extend its research process.

Multi-Context Glia (MCG) addresses this limitation,
as explained in §4.2. MCG samples multiple independent
reasoning chains, either in parallel (MCG-Par4) or sequen-
tially (MCG-Seq), and selects the best resulting algorithms.
MCG-Par4 launches four independent SCG processes si-
multaneously to diversify the search, while MCG-Seq starts

9

SCG EoH

FunSearch

OpenEvolve
0

10

20

30

40

50

60

Be
st

 A
vg

 R
T

(s
)

 Round Robin

 LLQ

 LOR

 Expert

Be
tt

er

(a) Single-Context Glia (SCG) finds better algorithms compared
to prior methods after a strict 15-simulation run budget. Lower
response time (RT) is better. Error bars show the 90% bootstrap-
ping confidence intervals.

MCG-Par4
MCG-Seq SCG EoH

FunSearch

OpenEvolve
0

10

20

30

40

50

60

Be
st

 A
vg

 R
T

(s
)

 Round Robin

 LLQ

 LOR

 Expert

Be
tt

er

(b) Comparison of the algorithms produced by Glia with prior
methods on a more relaxed 100-simulation budget (lower RT is
better). Both versions of MCG Glia (MCG-Par4 and MCG-Seq)
find solutions that perform better than all the other methods. The
error bars show the 90% bootstrapping confidence intervals.

Figure 3: Performance of SCG and MCG Glia against other
algorithms and baselines.

a new SCG after each previous run completes. Both MCG
versions achieve the lowest average RT, outperforming
SCG, traditional routing heuristics (Round-Robin, LLQ,
LOR), and state-of-the-art LLM-based design frameworks
(EoH, FunSearch, OpenEvolve). This multi-context scaling
enables Glia to effectively utilize larger simulation budgets
and continually improve solution quality.

MCG delivers substantial gains. On average its algo-
rithms reduce average RT by 1.4× compared to SCG. It
outperforms EoH, OpenEvolve, and FunSearch by 1.7×,
1.6×, and 1.3×, respectively.

5.2 Glia ’s discoveries transfer to real systems

We implemented Glia’s routing strategy in Production
Stack [74], an open-source request router for LLM
inference using vLLM. Our testbed comprises 4 Nvidia
A10 GPUs serving the Meta-Llama-3-8B-Instruct
model. To evaluate performance, we measure Slowdown,
defined as

Slowdown=
RTsystem

RTideal
,

where RTsystem is the request response time (RT) under
the evaluated system, and RTideal is the minimum possible
RT in an ideal, load-free setting. A slowdown greater than
1 indicates system overhead.

Fig. 5 shows that, even under real-world workload vari-
ability and system uncertainty, Glia ’s discovered algorithm
consistently outperforms all baselines. In the same load
regime (QPS = 7.5), the router reduces request slowdown by
over 4.5× compared to LLQ, confirming that Glia’s discov-
eries transfer effectively from simulation to a real system.

5.3 Glia discovers new algorithms across the stack

We also applied Glia to the vLLM batch scheduler and to
the design of an autoscaler for the distributed vLLM cluster.

Within the inference engine, whenever a GPU becomes
idle, a scheduling algorithm selects which unfinished
requests should proceed. This batch scheduler forms
batches while respecting constraints such as available KV
cache memory, maximum requests per batch, and token
limits. In the experiments above, we used the Sarathi [2]
batch scheduler, which performs chunked prefill similarly
to current vLLM implementations.

Using our optimized request router, we asked Glia
to improve the batch scheduler. Glia discovered that
ordering requests by prefill length (rather than arrival
time, as done in vLLM and Sarathi) reduces end-to-end
delay by an additional 25%. The insight mirrors why
Shortest-Remaining-Time-First outperforms First-Come-
First-Served scheduling: prioritizing shorter prefills
minimizes head-of-line blocking, reducing queueing delays
for short prompts while adding negligible delay for longer
ones. This reduces mean end-to-end latency.

At another layer of the orchestration stack, autoscaling
adjusts the number of compute instances to meet latency
targets while minimizing compute cost. To evaluate this
method, we implemented autoscaling in the vidur simulator
and created a long-running workload with temporal vari-
ability (QPS varying from 7.5 to 22.5 in a slow sinusoidal
pattern). We first implemented a baseline autoscaler,

10

Off the Shelf Glia Autoscaler Glia Autoscaler
Glia Router

Glia Autoscaler
Glia Router
Glia Batch

0

20

40

60

80

100

120

140

R
el

at
iv

e
C

os
t%

(G
PU
£

ho
ur

s)

Off the Shelf Glia Autoscaler
Glia Router
Glia Batch

Glia Autoscaler
Glia Router

Glia Autoscaler

R
el

at
iv

e
C

os
t %

 (G
PU

 x
 H

ou
rs

)

Figure 4: Glia’s GPU cost reductions as we progressively use it
across the inference stack.

modeled after production systems, which scales based on
per-instance decode throughput: it adds an instance when
throughput exceeds a high threshold, removes the least
busy instance when it falls below a low threshold, and
includes a cooldown mechanism to prevent oscillation.

We then asked Glia to design a more efficient autoscaler
that minimizes compute cost while keeping the p95
slowdown below 5×. Glia proposed a proportional control
loop that adjusts the number of instances based on inflight
requests per instance. It then tuned the controller thresholds
for this specific model and workload, finding an optimal
configuration that minimizes cost while satisfying the
latency constraint.

Figure 4 shows the total GPU×hours saved when
applying Glia across different layers of the stack. The
Glia-discovered autoscaler alone reduces GPU cost by 13%
compared to an off-the-shelf autoscaler, while the full Glia-
optimized stack (router, batch scheduler, and autoscaler)
cuts total GPU×hours by 40% for this variable workload,
compared to standard serving systems (vLLM batch
scheduler, LLQ router, and throughput-based autoscalers).

5.4 Glia discovers novel, interpretable algorithms

Fig. 9 shows a representative algorithm discovered by
Glia. This algorithm is principled and, to the best of our
knowledge, introduces a new concept in this domain:
a Head-Room Admission (HRA) router that reserves
headroom to accommodate unknown decode growths. The
router follows an admission-control approach—if a replica
lacks sufficient KV-cache memory (after accounting for
headroom), the request is queued and dispatched only
when resources may have become available. It combines
this idea with a shortest-prefill-first policy, approximating
shortest-job-first scheduling, a strategy known to minimize
mean latency [67]. By maintaining a small KV-cache

Figure 5: Glia’s discovered routing algorithm (AIScheduler in
the figure) outperforms baselines in cloud experiments. The
trends observed in the cloud experiments are similar to simu-
lation though the numbers aren’t identical.

headroom on each replica at admission time, the router
effectively prevents vLLM from running out of memory,
thereby avoiding request restarts and wasted computation.

Glia ’s discovered algorithms are natural and intuitive,
often reflecting the kind of principled reasoning a human
designer might employ. In contrast, algorithms produced
by prior evolutionary frameworks such as EoH, FunSearch,
and OpenEvolve are typically more complex and less
interpretable. For instance, the program generated by
FunSearch (Fig. 10) includes numerous hyperparameters,
conditional branches, and opaque thresholds, making
it difficult to identify which components actually drive
performance. Other evolutionary baselines show similar
traits, yielding heuristics that are cumbersome to interpret
and challenging to analyze, refine, or reason about.

5.5 Glia can continuously adapt to changes

We next evaluate Glia for router optimization under a
different i) workload, ii) hardware, and iii) optimization
settings. All experiments in this section are conducted
within the simulator. The Researcher agent uses GPT5 as
its underlying model.
• Workload: Prefill-heavy, with a prompt-to-decode

ratio of about 70. The workload generator operates in
a closed loop, maintaining 200 concurrent requests in
the system—analogous to a chat application with 200
users waiting for LLM responses before sending their
next messages.

11

• Model and Hardware: Llama-3.3-70B-Instruct-
FP8-dynamic running on 8 Nvidia H100 GPUs.

• Objective: Constrained optimization—maximize
request throughput (QPS) while keeping P90 TTFT
below 1500 ms.
In this new setting, none of the routing

heuristics—Round-Robin, LLQ, or LOR—satisfy
the TTFT constraint. More importantly, the human-expert-
designed heuristic (§5.1) not only violates the constraint
but also yields a significantly higher TTFT than these
baseline routing heuristics.

This reveals a key challenge: the expert heuristic’s strong
performance in §5.1 relied on workload specialization.

Without automated adaptation, a human expert would
need to reanalyze each new workload and redesign the
routing strategy, an expensive and time-consuming process.

Glia overcomes this challenge by automatically adapting
to new operating conditions. Under the new workload,
Glia discovers a routing algorithm that meets the TTFT
constraint in all ten trials. Moreover, its achieved QPS
exceeds that of the baseline heuristics, even though those
heuristics fail to meet the TTFT constraint. This example
demonstrates Glia ’s versatility and ability to perform
constrained optimization, ensuring SLO compliance
without human intervention

To further analyze the Glia-discovered routing algorithm,
we vary the number of inflight requests and examine the
trade-off between tail TTFT and request throughput (QPS)
for both the expert-designed (§5.1) and Glia-designed
algorithms in Fig. 6. As shown in the figure, the expert
algorithm fails to maintain acceptable TTFT as QPS in-
creases, satisfying the SLO only up to 1.5 QPS. In contrast,
the Glia-discovered algorithm sustains compliant TTFT up
to 7 QPS—a 4.6× improvement over the expert algorithm.

5.6 Ablation experiments

Glia finds good algorithms quickly. Fig. 7 compares
Glia’s progress across simulations with prior algorithm
design methods (lower is better). Glia consistently
discovers stronger algorithms using far fewer simulations.
Single-Context Glia (SCG) achieves the steepest early
gains, driven by white-box reasoning and focused,
continuous refinement within a single context.

However, SCG’s scalability is limited. Because the
researcher can conclude the search regardless of available
simulations (hence the shorter SCG curve), additional
resources cannot easily improve performance. We address
this limitation with Multi-Context Glia (MCG) approaches.

2 3 4 5 6 7
Queries Per Second

1000

1500

2000

2500

P9
0

TT
FT

 (
m

s)

Expert Glia

Figure 6: Trade-off between tail (P90) Time to First Token
(TTFT) and request throughput for the expert-designed algo-
rithm and Glia-designed algorithm. The expert algorithm was
tailored to a different problem setup, and struggles in this prefill-
heavy workload.

0 20 40 60 80 100
Num Simulations

30

40

50

60

Be
st

 A
vg

 R
T

So
 F

ar
 (

s)

 Round Robin

 LLQ

 LOR

 Expert

MCG-Par4
MCG-Seq

SCG
EoH

FunSearch
OpenEvolve

Figure 7: Comparison of Glia variants with baselines and prior
methods (lower is better). SCG has the steepest early gains
thanks to coherent and continuous white-box reasoning. The two
variants of MCG—4-way parallel (MCG-Par4) and sequential
(MCG-Seq)—extend the gains and outperform other methods
by finding better algorithms more quickly. Shades show 90%
confidence intervals.

As shown in Fig. 7, both 4-way Parallel Glia (MCG-Par4)
and Sequential Glia (MCG-Seq) overcome SCG’s
constraint and continue to improve. On average, MCG
methods discover better-performing algorithms faster than
EoH, FunSearch, and OpenEvolve, achieving lower RT
than all other methods.

Supervisor impact. To illustrate the Supervisor’s impact,
we present an example intervention. In one run, early ex-
ploration produced two ideas: (i) combining backlog-aware
selection with heavy-request isolation, and (ii) bounding the

12

one-pass queue scan to prevent large requests from starving.
Instead, the Researcher pursued adaptive headroom tuning
and heavy-lane gating, which reduced latency from 55 s
to 28 s but still missed the 22 s target. Believing further
progress was unlikely, the Researcher considered stopping.
At this point, the supervisor intervened:

You’re close, but not stuck yet. A couple of quick check-
points:
1. Recall your finding that queueing delay still domi-

nates whenever memory is oversubscribed.
• Does the dynamic-headroom variant fully leverage

backlog information when deciding headroom, or
is it applied replica-independently?

• You previously tested backlog-aware selection and
heavy-request isolation separately; have you mea-
sured them together under the same admission-
control knob?

2. Your one-pass queue scan leaves large, unsafe re-
quests parked. Verify whether those accumulate and
starve; if so, a bounded re-ordering window (still
SPF) might smooth the tail without extra restarts.

If you haven’t exhausted these combinations, worth a
final sweep before concluding.

The Researcher then proceeds to revisit these earlier
ideas, combining backlog-aware selection with heavy-
request isolation and exploring bounded re-ordering, which
ultimately advanced the router beyond the plateaued
performance.

Multi-context Glia ablation. Fig. 8 compares Glia’s
Multi-Context variants. N-way Parallel Glia runs N
independent instances of Single-Context Glia in parallel
and reports the best-performing algorithm among them.
Its key advantage is scalability: with more computational
resources, more instances can be launched simultaneously.
For example, 4-way Parallel Glia outperforms 2-way
because the likelihood that all agents “go astray” decreases
as the number of parallel runs increases. This design also
mitigates early exploration risk, since at least one agent
is likely to discover a strong algorithm quickly. However,
it introduces a new hyperparameter, N, which must be
chosen; there is no obvious optimal value, though in our
experiments N = 4 achieved a good balance between
performance and resource cost. Larger values (e.g., N=6
in Fig. 8) yield diminishing returns.

In contrast, Sequential Glia requires no additional
parameters and is simpler to use. It initially reduces error
more sharply than N-way Parallel (within the first 35

0 20 40 60 80 100
Num Simulations

30

40

50

60

Be
st

 A
vg

 R
T

So
 F

ar
 (

s)

 Round Robin

 LLQ

 LOR

 Expert

MCG-Par2
MCG-Par4

MCG-Par6 MCG-Seq

Figure 8: Comparing Glia variants (lower is better).

simulations) but later slows down, taking longer to match
the performance of 4-way Parallel Glia.

6 Conclusion

We are progressing toward our primary goal: developing
Glia into an AI capable of PhD-level systems design and
optimization for real-world problems. While this paper’s
focus is on AI inference (covering both large language
models and traditional AI workloads), our broader vision
is a general-purpose system architect that autonomously
enhances the performance, efficiency, and adaptability of
emerging computing systems.

Glia demonstrates the promise of AI-driven infrastruc-
ture optimization, yet significant open questions remain.
Achieving fully self-managing computing infrastructures
will require progress across several key dimensions:
1. Robustness and safety: Automated systems must

remain stable under adversarial or unexpected condi-
tions. Glia must ensure robustness to workload shifts,
hardware failures, and network anomalies through safety
checks, formal verification, and fail-safe mechanisms.

2. Heterogeneous hardware integration: Future datacen-
ters will combine diverse accelerators (GPUs, TPUs,
custom ASICs) with CPUs, DPUs, and memory-centric
hardware. Glia’s discovery process will evolve to
navigate this heterogeneity, learning to allocate and
orchestrate resources across differing performance and
cost trade-offs.

3. Human-AI collaboration: Glia’s explainability is a
core strength, and ongoing work aims to expand how sys-
tem architects engage with AI-generated insights. Richer
visualization, interactive debugging, and co-design
workflows could further enhance productivity and trust.

13

4. Generalization across systems: Although current
results focus on AI inference stacks, our approach
holds promise for optimizing a broad range of complex
computer systems.

Acknowledgments
We thank the MIT Generative AI Impact Consortium
(MGAIC) for providing seed funding for this project.

References
[1] Amey Agrawal, Nitin Kedia, Jayashree Mohan,

Ashish Panwar, Nipun Kwatra, Bhargav S Gulavani,
Ramachandran Ramjee, and Alexey Tumanov. Vidur:
A large-scale simulation framework for llm inference.
Proceedings of Machine Learning and Systems,
6:351–366, 2024.

[2] Amey Agrawal, Nitin Kedia, Ashish Panwar,
Jayashree Mohan, Nipun Kwatra, Bhargav S.
Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. Taming Throughput-Latency Tradeoff in
LLM Inference with Sarathi-Serve. In OSDI, 2024.

[3] Jayvant Anantpur, Nagendra Gulur Dwarakanath,
Shivaram Kalyanakrishnan, Shalabh Bhatnagar,
and R. Govindarajan. RLWS: A Reinforcement
Learning based GPU Warp Scheduler. arXiv preprint
arXiv:1712.04303, 2017.

[4] Martin Andrews and Sam Witteveen. Gpu kernel sci-
entist: An llm-driven framework for iterative kernel
optimization. arXiv preprint arXiv:2506.20807, 2025.

[5] Eser Aygün, Anastasiya Belyaeva, Gheorghe
Comanici, Marc Coram, Hao Cui, Jake Garrison,
Renee Johnston Anton Kast, Cory Y McLean, Peter
Norgaard, Zahra Shamsi, et al. An ai system to help
scientists write expert-level empirical software. arXiv
preprint arXiv:2509.06503, 2025.

[6] Michelle Brachman, Amina El-Ashry, Casey Dugan,
and Werner Geyer. Current and future use of large
language models for knowledge work, 2025.

[7] Jie Chen, Kang G. Shin, Jiaqi Zheng, Xin Jin, Xia
Zhou, Ben Y. Zhao, and Haitao Zheng. Auto: Scaling
deep reinforcement learning for datacenter-scale
traffic optimization. In ACM SIGCOMM Workshop
on APNet, 2018.

[8] Audrey Cheng, Shu Liu, Melissa Pan, Zhifei Li,
Bowen Wang, Alex Krentsel, Tian Xia, Mert Cemri,
Jongseok Park, Shuo Yang, Jeff Chen, Lakshya
Agrawal, Aditya Desai, Jiarong Xing, Koushik Sen,
Matei Zaharia, and Ion Stoica. Barbarians at the gate:
How ai is upending systems research, 2025.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

14

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[10] Jaber Daneshamooz, Jessica Nguyen, William Chen,
Sanjay Chandrasekaran, Satyandra Guthula, Ankit
Gupta, Arpit Gupta, and Walter Willinger. Addressing
the ml domain adaptation problem for networking:
Realistic and controllable training data generation
with netreplica, 2025.

[11] DeepMind. Advanced version of gemini with
deepthink officially achieves gold-medal standard
at the international mathematical olympiad. https:
//deepmind.google/discover/blog/advanced
-version-of-gemini-with-deep-think-offic
ially-achieves-gold-medal-standard-at-the
-international-mathematical-olympiad/, 2024.
Accessed: 2025-10-17.

[12] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
PCC vivace: Online-Learning congestion control. In
15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 343–356,
Renton, WA, April 2018. USENIX Association.

[13] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, P. Brighten Godfrey, and Michael
Schapira. PCC Vivace: Online-Learning Congestion
Control. In NSDI, pages 343–356, 2018.

[14] Rohit Dwivedula, Divyanshu Saxena, Aditya Akella,
Swarat Chaudhuri, and Daehyeok Kim. Man-made
heuristics are dead. long live code generators! arXiv
preprint arXiv:2510.08803, 2025.

[15] Ryan Ehrlich, Bradley Brown, Jordan Juravsky,
Ronald Clark, Christopher Ré, and Azalia Mirhoseini.
Codemonkeys: Scaling test-time compute for
software engineering, 2025.

[16] Juraj Gottweis, Wei-Hung Weng, Alexander Daryin,
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong,
Ryutaro Tanno, et al. Towards an ai co-scientist.
arXiv preprint arXiv:2502.18864, 2025.

[17] Harvard Extension School. Principles of good design.
https://cscie2x.dce.harvard.edu/hw/ch01s
06.html. Accessed: 2025-10-17.

[18] Zhiyuan He, Aashish Gottipati, Lili Qiu, Xufang
Luo, Kenuo Xu, Yuqing Yang, and Francis Y. Yan.
Designing Network Algorithms via Large Language
Models. In HotNets, page 205–212, New York, NY,
USA, 2024. Association for Computing Machinery.

[19] Zhiyuan He, Aashish Gottipati, Lili Qiu, Yuqing
Yang, and Francis Y. Yan. Congestion control system
optimization with large language models, 2025.

[20] Ziyao Huang, Weiwei Wu, Kui Wu, Jianping Wang,
and Wei-Bin Lee. Calm: Co-evolution of algorithms
and language model for automatic heuristic design.
arXiv preprint arXiv:2505.12285, 2025.

[21] Nathan Jay, Noga H. Rotman, P. Brighten Godfrey,
Michael Schapira, and Aviv Tamar. Internet conges-
tion control via deep reinforcement learning, 2019.

[22] Nathan Jay, Yair Rotman, P. Brighten Godfrey,
and Michael Schapira. An End-to-End Deep
Reinforcement Learning Framework for Internet
Congestion Control. In ICML, 2019.

[23] Pantea Karimi, Solal Pirelli, Siva Kesava Reddy
Kakarla, Ryan Beckett, Santiago Segarra, Beibin Li,
Pooria Namyar, and Behnaz Arzani. Towards safer
heuristics with xplain. In Proceedings of the 23rd
ACM Workshop on Hot Topics in Networks, pages
68–76, 2024.

[24] Pantea Karimi, Dany Rouhana, Pooria Namyar, Siva
Kesava Reddy Kakarla, Venkat Arun, and Behnaz
Arzani. Robust heuristic algorithm design with llms,
2025.

[25] Mehrdad Khani, Mohammad Alizadeh, Jakob Hoydis,
and Phil Fleming. Adaptive neural signal detection
for massive mimo. IEEE Transactions on Wireless
Communications, 19(8):5635–5648, 2020.

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient
Memory Management for Large Language Model
Serving with PagedAttention. In SOSP, SOSP
’23, page 611–626, New York, NY, USA, 2023.
Association for Computing Machinery.

[27] Robert Tjarko Lange, Yuki Imajuku, and Edoardo
Cetin. Shinkaevolve: Towards open-ended and

15

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://cscie2x.dce.harvard.edu/hw/ch01s06.html
https://cscie2x.dce.harvard.edu/hw/ch01s06.html

sample-efficient program evolution. arXiv preprint
arXiv:2509.19349, 2025.

[28] Nikolay Lazic, Craig Boutilier, Thomas Lu, Eric
Wong, Binz Roy, Marcin Minka, Ben J. Heller, David
Schuurmans, Geoffrey J. Gordon, Olivier Duchesnay,
Marc L. Bellemare, Albin Cassirer, et al. Data center
cooling using model-predictive control. In Advances
in Neural Information Processing Systems (NeurIPS)
Workshop, 2018. Describes learning-assisted control
for DC cooling.

[29] Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh
Tiwari. Llm inference serving: Survey of recent
advances and opportunities, 2024.

[30] Tianhong Li, Vibhaalakshmi Sivaraman, Pantea
Karimi, Lijie Fan, Mohammad Alizadeh, and
Dina Katabi. Reparo: Loss-resilient generative
codec for video conferencing. arXiv preprint
arXiv:2305.14135, 2023.

[31] Yujia Li, David Choi, Junyoung Chung, Nate
Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin
Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, December 2022.

[32] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neu-
rocuts: Neural decision trees for packet classification.
In SIGCOMM, pages 1–15, 2019.

[33] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin,
Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient
automatic algorithm design using large language
model. In ICML, ICML’24. JMLR.org, 2024.

[34] Fei Liu, Qingfu Zhang, Jialong Shi, Xialiang Tong,
Kun Mao, and Mingxuan Yuan. Fitness landscape of
large language model-assisted automated algorithm
search. arXiv preprint arXiv:2504.19636, 2025.

[35] Fei Liu, Rui Zhang, Xi Lin, Zhichao Lu, and
Qingfu Zhang. Fine-tuning large language model

for automated algorithm design. arXiv preprint
arXiv:2507.10614, 2025.

[36] Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun,
Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Llm4ad: A platform for algorithm
design with large language model. arXiv preprint
arXiv:2412.17287, 2024.

[37] Gang Liu, Yihan Zhu, Jie Chen, and Meng Jiang.
Scientific algorithm discovery by augmenting
alphaevolve with deep research. arXiv preprint
arXiv:2510.06056, 2025.

[38] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use
long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024.

[39] Yixiu Liu, Yang Nan, Weixian Xu, Xiangkun Hu,
Lyumanshan Ye, Zhen Qin, and Pengfei Liu. Alphago
moment for model architecture discovery. arXiv
preprint arXiv:2507.18074, 2025.

[40] llm-d Community. GitHub - llm-d/llm-d: llm-d en-
ables high-performance distributed LLM inference on
Kubernetes. https://github.com/llm-d/llm-d,
2025. [Accessed 10-10-2025].

[41] Ruiying Ma, Chieh-Jan Mike Liang, Yanjie Gao, and
Francis Y Yan. Algorithm generation via creative
ideation. arXiv preprint arXiv:2510.03851, 2025.

[42] Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In HotNets, pages
50–56, 2016.

[43] Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In HotNets, 2016.

[44] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun
Singh, Drew Blaisdell, Yuandong Tian, Mohammad
Alizadeh, and Eytan Bakshy. Real-world video
adaptation with reinforcement learning, 2020.

[45] Hongzi Mao, Ravi Netravali, and Mohammad
Alizadeh. Neural adaptive video streaming with
pensieve. In SIGCOMM, pages 197–210, 2017.

16

https://github.com/llm-d/llm-d

[46] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Al-
izadeh. Learning scheduling algorithms for data pro-
cessing clusters. In SIGCOMM, pages 270–288. 2019.

[47] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Al-
izadeh. Learning scheduling algorithms for data pro-
cessing clusters. In SIGCOMM, pages 270–288, 2019.

[48] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. In
SIGMOD, pages 1275–1288, 2021.

[49] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi
Zhang, Mohammad Alizadeh, Tim Kraska, Olga
Papaemmanouil, and Nesime Tatbul. Neo: A
learned query optimizer. Proc. VLDB Endow.,
12(11):1705–1718, July 2019.

[50] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings
of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page
154–171, New York, NY, USA, 2020. Association
for Computing Machinery.

[51] MIT News Office. Study finds chatgpt boosts worker
productivity in writing tasks. MIT News, 2023.
Accessed: 2025-10-17.

[52] Ansh Nagda, Prabhakar Raghavan, and Abhradeep
Thakurta. Reinforced generation of combinatorial
structures: Applications to complexity theory. arXiv
preprint arXiv:2509.18057, 2025.

[53] Alexander Novikov, Ngân Vũ, Marvin Eisenberger,
Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner,
Sergey Shirobokov, Borislav Kozlovskii, Francisco JR
Ruiz, Abbas Mehrabian, et al. Alphaevolve: A coding
agent for scientific and algorithmic discovery. arXiv
preprint arXiv:2506.13131, 2025.

[54] Alexander Novikov, Ngân Vu, Marvin Eisenberger,
Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner,
Sergey Shirobokov, Borislav Kozlovskii, Francisco JR
Ruiz, Abbas Mehrabian, et al. Alphaevolve: A coding

agent for scientific and algorithmic discovery, 2025.
URL: https://arxiv. org/abs/2506.13131, 2025.

[55] NVIDIA. GitHub - ai-dynamo/dynamo: A Datacenter
Scale Distributed Inference Serving Framework.
https://github.com/ai-dynamo/dynamo, 2025.
[Accessed 10-10-2025].

[56] OpenAI. OpenAI o3 and o4-mini System Card.
Technical report, OpenAI, April 2025.

[57] Pratyush Patel, Esha Choukse, Chaojie Zhang,
Aashaka Shah, Íñigo Goiri, Saeed Maleki, and
Ricardo Bianchini. Splitwise: Efficient generative llm
inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer
Architecture (ISCA), pages 118–132, 2024.

[58] Ori Press, Brandon Amos, Haoyu Zhao, Yikai Wu,
Samuel K Ainsworth, Dominik Krupke, Patrick
Kidger, Touqir Sajed, Bartolomeo Stellato, Jisun
Park, et al. Algotune: Can language models speed up
general-purpose numerical programs? arXiv preprint
arXiv:2507.15887, 2025.

[59] Prithvi Rajasekaran, Ethan Dixon, Carly Ryan, and
Jeremy Hadfield. Effective context engineering for
ai agents, September 2025. With contributions from
Rafi Ayub, Hannah Moran, Cal Rueb, and Connor
Jennings. Published online September 29, 2025.

[60] Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. Mathematical discoveries from
program search with large language models. Nature,
625(7995):468–475, 2024.

[61] Fabian Ruffy, Michael Przystupa, and Ivan Beschast-
nikh. Iroko: A framework to prototype reinforcement
learning for data center traffic control. arXiv preprint
arXiv:1812.09975, 2018.

[62] Saim Salman, Christopher Streiffer, Huan Chen,
Theophilus Benson, and Asim Kadav. Deepconf:
Automating data center network topologies and
routing with deep reinforcement learning. arXiv
preprint arXiv:1712.03890, 2018.

17

https://github.com/ai-dynamo/dynamo

[63] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan Ports, and
Peter Richtarik. Scaling distributed machine learning
with In-Network aggregation. In 18th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 785–808. USENIX
Association, April 2021.

[64] ShareGPT Datasets at Hugging Face.
https://huggingface.co/datasets/anon
8231489123/ShareGPT_Vicuna_unfiltered,
2025. [Accessed 10-10-2025].

[65] Asankhaya Sharma. OpenEvolve: an open-source
evolutionary coding agent, 2025.

[66] Alexander Shypula, Aman Madaan, Yimeng Zeng,
Uri Alon, Jacob Gardner, Milad Hashemi, Graham
Neubig, Parthasarathy Ranganathan, Osbert Bastani,
and Amir Yazdanbakhsh. Automated high-level
code optimization for warehouse performance. IEEE
Micro, 2025.

[67] Abraham Silberschatz, Peter B. Galvin, and Greg
Gagne. Operating System Concepts. Wiley
Publishing, 10th edition, 2018.

[68] Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha
Venkatapathy, Mehrdad Khani, Sadjad Fouladi,
Mohammad Alizadeh, Frédo Durand, and Vivienne
Sze. Gemino: Practical and robust neural compression
for video conferencing. In NSDI, 2024.

[69] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral
Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314, 2024.

[70] Yiwen Sun, Furong Ye, Zhihan Chen, Ke Wei, and
Shaowei Cai. Automatically discovering heuristics
in a complex sat solver with large language models.
arXiv preprint arXiv:2507.22876, 2025.

[71] Yiheng Tao, Yihe Zhang, Matthew T. Dearing, Xin
Wang, Yuping Fan, and Zhiling Lan. Prompt-aware
scheduling for low-latency llm serving, 2025.

[72] The AIBrix Team, Jiaxin Shan, Varun Gupta,
Le Xu, Haiyang Shi, Jingyuan Zhang, Ning Wang,
Linhui Xu, Rong Kang, Tongping Liu, Yifei Zhang,

Yiqing Zhu, Shuowei Jin, Gangmuk Lim, Binbin
Chen, Zuzhi Chen, Xiao Liu, Xin Chen, Kante
Yin, Chak-Pong Chung, Chenyu Jiang, Yicheng Lu,
Jianjun Chen, Caixue Lin, Wu Xiang, Rui Shi, and
Liguang Xie. Aibrix: Towards scalable, cost-effective
large language model inference infrastructure, 2025.

[73] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache
replacement with ml-based lecar. In USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2018.

[74] vllm-project. vllm production stack: reference stack
for production vllm deployment. https://github
.com/vllm-project/production-stack, 2025.

[75] Anjiang Wei, Allen Nie, Thiago SFX Teixeira,
Rohan Yadav, Wonchan Lee, Ke Wang, and Alex
Aiken. Improving parallel program performance with
llm optimizers via agent-system interfaces. arXiv
preprint arXiv:2410.15625, 2024.

[76] Anjiang Wei, Tianran Sun, Yogesh Seenichamy, Hang
Song, Anne Ouyang, Azalia Mirhoseini, Ke Wang,
and Alex Aiken. Astra: A multi-agent system for
gpu kernel performance optimization. arXiv preprint
arXiv:2509.07506, 2025.

[77] David Wheeler. Problems in the design of systems.
https://www.doc.ic.ac.uk/~dcw/PSD/article
13/. Accessed: 2025-10-17.

[78] Wikiquote contributors. Edsger w. dijkstra – wik-
iquote. https://en.wikiquote.org/wiki/Edsg
er_W._Dijkstra#:~:text=native%20tongue%2
0is%20the%20most,asset%20of%20a%20compet
ent%20programmer, 2025. Accessed: 2025-10-17.

[79] Keith Winstein and Hari Balakrishnan. TCP ex
Machina: Computer-Generated Congestion Control.
In SIGCOMM, pages 123–134, 2013.

[80] Shijie Xia, Yuhan Sun, and Pengfei Liu. Sr-scientist:
Scientific equation discovery with agentic ai. arXiv
preprint arXiv:2510.11661, 2025.

[81] Qiujie Xie, Yixuan Weng, Minjun Zhu, Fuchen
Shen, Shulin Huang, Zhen Lin, Jiahui Zhou, Zilan
Mao, Zijie Yang, Linyi Yang, et al. How far are ai

18

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/vllm-project/production-stack
https://github.com/vllm-project/production-stack
https://www.doc.ic.ac.uk/~dcw/PSD/article13/
https://www.doc.ic.ac.uk/~dcw/PSD/article13/
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#:~:text=native%20tongue%20is%20the%20most,asset%20of%20a%20competent%20programmer
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#:~:text=native%20tongue%20is%20the%20most,asset%20of%20a%20competent%20programmer
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#:~:text=native%20tongue%20is%20the%20most,asset%20of%20a%20competent%20programmer
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra#:~:text=native%20tongue%20is%20the%20most,asset%20of%20a%20competent%20programmer

scientists from changing the world? arXiv preprint
arXiv:2507.23276, 2025.

[82] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis,
and Keith Winstein. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 495–511, Santa
Clara, CA, February 2020. USENIX Association.

[83] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: A randomized
experiment in video streaming. In NSDI, pages
495–511, 2020.

[84] Yuqing Yang, Yuedong Xu, and Lei Jiao. A queueing
theoretic perspective on low-latency llm inference
with variable token length, 2024.

[85] Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun
Wang, and Qingfu Zhang. Multi-objective evolution
of heuristic using large language model. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
pages 27144–27152, 2025.

[86] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim,
Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-Based
generative models. In OSDI, pages 521–538,
Carlsbad, CA, July 2022. USENIX Association.

[87] Yi Zhai, Zhiqiang Wei, Ruohan Li, Keyu Pan, Shuo
Liu, Lu Zhang, Jianmin Ji, Wuyang Zhang, Yu Zhang,
and Yanyong Zhang. \(x\)-evolve: Solution space
evolution powered by large language models. arXiv
preprint arXiv:2508.07932, 2025.

[88] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao,
Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng
Cheng, Li Liu, Minwei Ran, and Zekang Li. An
end-to-end automatic cloud database tuning system
using deep reinforcement learning. In Proceedings
of the 2019 ACM SIGMOD International Conference
on Management of Data, pages 415–432, 2019.

[89] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie,
Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez,

Clark Barrett, and Ying Sheng. Sglang: Efficient exe-
cution of structured language model programs, 2024.

[90] Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and
Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in llm-based automatic heuristic
design. arXiv preprint arXiv:2501.08603, 2025.

[91] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja,
Yuandong Tian, Ying Zhang, and Xin Jin. Network
planning with deep reinforcement learning. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, SIGCOMM ’21, page 258–271, New York, NY,
USA, 2021. Association for Computing Machinery.

19

Figure 9: Pyhthon code for the Head-Room Allocator (HRA) request routing algorithm discovered by Glia.

"""Head-Room Admission (HRA) global scheduler.

This scheduler mitigates vLLM pre-emptions by keeping a small KV-cache
head-room on every replica *at admission time*. For each incoming request we
pessimistically reserve additional blocks to account for the (unknown) decode
phase and admit the request only if the target replica would still retain the
configured safety margin.

Empirical defaults (good for the ShareGPT-style workload used in Vidur's
benchmarks):

DECODE_TO_PREFILL_RATIO = 0.6 # avg decode/prompt tokens
SAFETY_FRACTION = 0.03 # keep last 3 % blocks free

These values reduce average end-to-end latency by ~40 % compared to LLQ while
maintaining >95 % GPU utilisation.
"""

from math import ceil
from typing import List, Tuple

from vidur.entities import Request
from vidur.scheduler.global_scheduler.base_global_scheduler import BaseGlobalScheduler

Tunable constants (change if workload characteristics differ significantly)

DECODE_TO_PREFILL_RATIO: float = 0.6 # pessimistic decode growth factor
SAFETY_FRACTION: float = 0.03 # minimum fraction of blocks kept free

class AIGlobalScheduler(BaseGlobalScheduler):
"""Memory-aware global scheduler with fixed head-room admission control."""

pylint: disable=protected-access

def schedule(self) -> List[Tuple[int, Request]]:
Always serve the *shortest* prompt next (SJF) to minimise mean latency.
self._request_queue.sort(key=lambda r: (r.num_prefill_tokens, r.arrived_at))

if not self._request_queue:
return []

Cluster-wide, all replicas share the same memory configuration.
any_scheduler = next(iter(self._replica_schedulers.values()))
block_size = any_scheduler._config.block_size
max_blocks = any_scheduler._config.num_blocks
min_free_blocks = int(max_blocks *SAFETY_FRACTION)

Snapshot per-replica state and keep optimistic updates locally so that
multiple placements within one call are consistent.
allocated_blocks = {

rid: rs.num_allocated_blocks for rid, rs in self._replica_schedulers.items()
}
pending_reserved_blocks = {

rid: ceil(
sum(r.num_prefill_tokens *(1 + DECODE_TO_PREFILL_RATIO) for r in rs._request_queue)
/ block_size

)
for rid, rs in self._replica_schedulers.items()

}
queue_lengths = {

rid: rs.num_pending_requests + rs.num_active_requests for rid, rs in self._replica_schedulers.items()

20

}

request_mapping: List[Tuple[int, Request]] = []

idx = 0
Traverse requests in order; if the head request cannot be admitted we
stop to preserve FIFO fairness (new arrivals behind it must wait).
while idx < len(self._request_queue):

req = self._request_queue[idx]

req_blocks = ceil(
req.num_prefill_tokens *(1 + DECODE_TO_PREFILL_RATIO) / block_size

)

admissible = []
for rid in self._replica_schedulers.keys():

projected_usage = allocated_blocks[rid] + pending_reserved_blocks[rid] + req_blocks
free_after = max_blocks - projected_usage
if free_after >= min_free_blocks:

admissible.append(rid)

if not admissible:
break # cannot place the oldest waiting request right now

Choose replica with lowest projected usage; tie-break by queue length.
target_rid = min(

admissible,
key=lambda rid: (allocated_blocks[rid] + pending_reserved_blocks[rid], queue_lengths[rid]),

)

Commit placement and optimistically update state for subsequent decisions.
request_mapping.append((target_rid, req))
self._request_queue.pop(idx) # do *not* increment idx

pending_reserved_blocks[target_rid] += req_blocks
queue_lengths[target_rid] += 1

return request_mapping

Figure 10: Code generated by FunSearch.

class CustomGlobalScheduler(BaseGlobalScheduler): # type: ignore[name-defined]
"""Latency-oriented, eviction-aware global scheduler.

Key features

1. Decode length prediction per *prefill* bucket (small / mid / large)

with an online exponential moving average; gives markedly better
memory-footprint forecasts than a single global estimate.

2. Looks ahead and keeps a projection of every replica's future state
(memory blocks, remaining pre-fill backlog, queue length). The
projection is updated greedily after each assignment so later
decisions use a consistent view.

3. Request priority is *rescue-first SJF*: previously evicted jobs first
(to avoid starvation / wasted work), then smaller **total** expected
tokens, finally FIFO.

4. Replica selection minimises a composite cost of projected memory
utilisation (quadratic), outstanding pre-fill backlog, queue length
and the *instant* block deficit for the pre-fill of the candidate
request. Jobs with restarts receive a multiplicative cost discount.

5. Admission control: a new request is dispatched only if the projected
utilisation stays below a configurable soft limit. The limit is
relaxed slightly for restarted jobs so they can finish.

21

"""

------------- tunables -------------
_BUCKET_BOUNDS = (128, 512) # <128 small, 128-512 mid, >512 large
_EMA_ALPHA = 0.10 # smoothing for bucketed averages
_INIT_DECODE_EST = 96.0 # bootstrap decode len (tokens)
_MIN_DECODE = 32.0
_MAX_DECODE = 1024.0

_SOFT_UTIL_CAP = 1.03 # ordinary requests must stay under this
_SOFT_UTIL_CAP_RESTART = 1.10 # restarted jobs may exceed slightly

cost weights (should sum ~1)
_W_UTIL = 0.55 # projected utilisation^2
_W_BACKLOG = 0.25 # remaining pre-fill backlog fraction
_W_QUEUE = 0.10 # queue length fairness
_W_DEFICIT = 0.10 # instantaneous block deficit

_OVER_CAP_PEN = 12.0 # extra when util>1
_RESTART_DISCOUNT = 0.6 # multiplicative cost discount per restart

def __init__(self, *args: Any, **kwargs: Any): # type: ignore[override]
super().__init__(*args, **kwargs)

bucketed decode length EWMA statistics
structure: (count , avg)
self._bucket_avg: List[float] = [self._INIT_DECODE_EST] *3
self._bucket_cnt: List[int] = [0, 0, 0]

global fallback EWMA
self._global_avg: float = self._INIT_DECODE_EST

snapshot of visible requests from previous tick (id -> (pf, processed))
self._prev_snapshot: Dict[int, Tuple[int, int]] = {}

--------------------- helper: bucket index ---------------------
@classmethod
def _bucket_idx(cls, prefill: int) -> int:

if prefill < cls._BUCKET_BOUNDS[0]:
return 0

if prefill < cls._BUCKET_BOUNDS[1]:
return 1

return 2

--------------------- statistics maintenance ------------------
def _update_decode_statistics(self) -> None:

"""Detect completed requests and update bucket/global decode EWMAs."""
current: Dict[int, Tuple[int, int]] = {}

helper to insert into current snapshot quickly
def _collect(req):

current[id(req)] = (req.num_prefill_tokens, req.num_processed_tokens)

for req in self._request_queue:
_collect(req)

for rep in self._replica_schedulers.values():
for rq in rep.pending_queue:

_collect(rq)
for rq in rep.active_queue:

_collect(rq)

detect finished requests
finished_ids = set(self._prev_snapshot.keys()) - set(current.keys())
for rid in finished_ids:

pf_tokens, processed = self._prev_snapshot[rid]
decode_tokens = max(0, processed - pf_tokens)

22

if decode_tokens <= 0:
continue

update bucket stats
bidx = self._bucket_idx(pf_tokens)
old_avg = self._bucket_avg[bidx]
new_avg = (1.0 - self._EMA_ALPHA) *old_avg + self._EMA_ALPHA *decode_tokens
self._bucket_avg[bidx] = min(max(new_avg, self._MIN_DECODE), self._MAX_DECODE)
if self._bucket_cnt[bidx] < 1e9: # avoid overflow

self._bucket_cnt[bidx] += 1

update global average
g_new = (1.0 - self._EMA_ALPHA) *self._global_avg + self._EMA_ALPHA *decode_tokens
self._global_avg = min(max(g_new, self._MIN_DECODE), self._MAX_DECODE)

self._prev_snapshot = current

-------------------- decode prediction ------------------------
def _predict_decode(self, prefill_tokens: int) -> float:

bidx = self._bucket_idx(prefill_tokens)
if self._bucket_cnt[bidx] >= 10: # need some data for bucket-specific

return self._bucket_avg[bidx]
return self._global_avg

-------------------- utility functions ------------------------
@staticmethod
def _ceil_div(a: float, b: int) -> int:

return int(math.ceil(a / b))

---------------------------- main ------------------------------
def schedule(self) -> List[Tuple[int, 'Request']]: # type: ignore[name-defined]

housekeeping
self._update_decode_statistics()
if not self._request_queue:

return []

replicas: Dict[int, 'ReplicaScheduler'] = self._replica_schedulers # type: ignore[name-defined]
num_repls: int = max(1, self._num_replicas)

---------- priority sort for global queue ----------
def _priority(req: 'Request') -> Tuple[int, float, float]: # type: ignore[name-defined]

predicted_total = req.num_prefill_tokens + self._predict_decode(req.num_prefill_tokens)
return (-req.num_restarts, predicted_total, req.arrived_at)

self._request_queue.sort(key=_priority)

---------- projected replica states (without unrouted) ----------
proj_blocks: Dict[int, int] = {}
proj_backlog_tokens: Dict[int, int] = {}
proj_queue_len: Dict[int, int] = {}
blk_size: Dict[int, int] = {}
token_capacity: Dict[int, int] = {}

for rid, rep in replicas.items():
bs = rep.block_size
blk_size[rid] = bs
token_capacity[rid] = rep.num_blocks *bs

blocks = rep.num_allocated_blocks # currently allocated blocks
backlog_tokens = 0
qlen = len(rep.active_queue) + len(rep.pending_queue)

active requests
for rq in rep.active_queue:

remaining future blocks for this request
total_tokens_goal = rq.num_prefill_tokens + self._predict_decode(rq.num_prefill_tokens)
future_blocks = self._ceil_div(total_tokens_goal, bs)
already_blocks = self._ceil_div(rq.num_processed_tokens, bs)

23

blocks += max(0, future_blocks - already_blocks)

backlog tokens (remaining prefill)
if rq.num_processed_tokens < rq.num_prefill_tokens:

backlog_tokens += rq.num_prefill_tokens - rq.num_processed_tokens

pending requests
for rq in rep.pending_queue:

total_tokens_goal = rq.num_prefill_tokens + self._predict_decode(rq.num_prefill_tokens)
blocks += self._ceil_div(total_tokens_goal, bs)
backlog_tokens += rq.num_prefill_tokens

proj_blocks[rid] = blocks
proj_backlog_tokens[rid] = backlog_tokens
proj_queue_len[rid] = qlen

avg_queue_len = (sum(proj_queue_len.values()) / num_repls) + 1e-6

---------- greedy assignment loop ----------
mapping: List[Tuple[int, 'Request']] = [] # type: ignore[name-defined]
remaining: List['Request'] = [] # requests we skip this tick

while self._request_queue:
req = self._request_queue.pop(0)
pred_decode = self._predict_decode(req.num_prefill_tokens)
total_tokens_req = req.num_prefill_tokens + pred_decode

best_rid: int | None = None
best_cost: float = float('inf')
best_util_after: float = 0.0

for rid, rep in replicas.items():
bs = blk_size[rid]
req_blocks = self._ceil_div(total_tokens_req, bs)
pf_blocks = self._ceil_div(req.num_prefill_tokens, bs)

free_now_blocks = rep.num_blocks - rep.num_allocated_blocks
deficit_blocks = max(0, pf_blocks - free_now_blocks)

util_after = (proj_blocks[rid] + req_blocks) / rep.num_blocks
backlog_after = proj_backlog_tokens[rid] + req.num_prefill_tokens
queue_after = proj_queue_len[rid] + 1

cost = (
self._W_UTIL *(util_after **2) +
self._W_BACKLOG *(backlog_after / (token_capacity[rid] + 1e-6)) +
self._W_QUEUE *(queue_after / avg_queue_len) +
self._W_DEFICIT *(deficit_blocks / (rep.num_blocks + 1e-6))

)

if util_after > 1.0:
cost += self._OVER_CAP_PEN *(util_after - 1.0) **2

discount for restarts
if req.num_restarts:

cost *= (1.0 - self._RESTART_DISCOUNT) **req.num_restarts

if cost < best_cost - 1e-12:
best_cost = cost
best_rid = rid
best_util_after = util_after

if best_rid is None:
remaining.append(req)
continue

------ admission control ------
cap = self._SOFT_UTIL_CAP_RESTART if req.num_restarts else self._SOFT_UTIL_CAP

24

if best_util_after > cap:
keep for next tick
remaining.append(req)
continue

commit placement
sel = best_rid
mapping.append((sel, req))

bs_sel = blk_size[sel]
req_blocks_sel = self._ceil_div(total_tokens_req, bs_sel)
proj_blocks[sel] += req_blocks_sel
proj_backlog_tokens[sel] += req.num_prefill_tokens
proj_queue_len[sel] += 1
avg_queue_len = (sum(proj_queue_len.values()) / num_repls) + 1e-6

push remaining requests back to queue (maintain order)
self._request_queue = remaining + self._request_queue

return mapping

25

Prompt for Using LLM as is

System Instruction: You are an AI expert in designing system algorithms and optimization techniques. Your task is to create efficient algorithms for various
system optimization problems.
Objective: Please implement a scheduler for a LLM inference. Design a solution that minimizes the average request response time across all requests.
System Model: Here is how the load balance works:

1. The load balancer manages a number (e.g., 16) of LLM serving node called `replica_scheduler`s.
The load balancer routes requests to any of these replicas, and must eventually route all requests.

2. The load balancer makes routing decisions per each request. The load balancer knows these three key properties per request:
`_arrived_at`: When the request was received at the load balancer. `_num_prefill_tokens`: number of tokens to prefill.
`num_processed_tokens`: number of tokens that have been processed so far. A request has some number of decode tokens but this is
not known until the request is completed.

3. Each replica maintains two queues: `pending_queue` and `active_queue`. `pending_queue` contains requests where the prefill has not
started. `num_processed_tokens` is 0 and there is no memory allocated in the GPU for these requests. `active_queue` contains requests
that are currently being processed. `num_processed_tokens > 0` and some memory is allocated in the GPU for these requests.
If `num_processed_tokens < num_prefill_tokens`, the request is still in the prefill phase. Otherwise, the request is in the decode phase.
A request cannot be in both queues at the same time.

4. Each replica has to allocate memories for requests currently being processed, in the `active_queue`, in blocks (16 tokens at a time).
In case there is no memery left at a replica for continuing decoding of active requests, replicas will evict newer requests to free memory
for earlier requests.
This removes the request from the 'active_queue', frees its allocated memory, resets its state, and adds it to the 'pending_queue'.
If the evicted request was in the decode phase, the 'num_prefill_tokens' is updated to 'num_processed_tokens'.

5. The load balancer can observe the state of all replicas, meaning all requests in `pending_queue` and `active_queue` of each replica.

Implementation: Please implement the following according to the specifications:

Your task is to implement a custom load balancer by inheriting from BaseGlobalScheduler. To achieve this, you will implement the `schedule`
function of this class. This function is called every time 1) a new request has arrived, or 2) a replica has finished a request.
To return the routing decisions, this function should return a list of tuples.
Each tuple consists of 1) the id number of the replica to route to and 2) the request to be routed `(replica_id, request)`.
Note that routed requests should be popped from `self._request_queue`. Do not change the properties of requests or replicas.

Here is how you can access some helpful metrics to guide the decision-making process.

1. The CustomGlobalScheduler you will implement can see the following elements from a parent class (BaseGlobalScheduler):
<Some elements>
2. Each replica in `_replica_schedulers` is a `ReplicaScheduler` object, and has the following READ-ONLY properties:
<Some properties>
3. Each request has the following READ-ONLY properties:
<Some properties>

Now, implement the load balancer, i.e., CustomGlobalScheduler. Only output the full code for the CustomGlobalScheduler class.

Guidelines:
To design the algorithm, first consider the requirements and system model carefully to develop an overall strategy. Then, implement your solution.

Figure 11: Prompt for using an LLM as-is for the request-routing problem.

26

Basic Prompt for FunSearch

System Instruction: You are an AI expert in designing system algorithms and optimization techniques. Your task is to create efficient algorithms for various
system optimization problems.
Objective: Please implement a scheduler for a LLM inference. Design a solution that minimizes the average request response time across all requests.
System Model: Here is how the load balance works:

1. The load balancer manages a number (e.g., 16) of LLM serving node called `replica_scheduler`s.
The load balancer routes requests to any of these replicas, and must eventually route all requests.

2. The load balancer makes routing decisions per each request. The load balancer knows these three key properties per request:
`_arrived_at`: When the request was received at the load balancer. `_num_prefill_tokens`: number of tokens to prefill.
`num_processed_tokens`: number of tokens that have been processed so far. A request has some number of decode tokens but this is
not known until the request is completed.

3. Each replica maintains two queues: `pending_queue` and `active_queue`. `pending_queue` contains requests where the prefill has not
started. `num_processed_tokens` is 0 and there is no memory allocated in the GPU for these requests. `active_queue` contains requests
that are currently being processed. `num_processed_tokens > 0` and some memory is allocated in the GPU for these requests.
If `num_processed_tokens < num_prefill_tokens`, the request is still in the prefill phase. Otherwise, the request is in the decode phase.
A request cannot be in both queues at the same time.

4. Each replica has to allocate memories for requests currently being processed, in the `active_queue`, in blocks (16 tokens at a time).
In case there is no memery left at a replica for continuing decoding of active requests, replicas will evict newer requests to free memory
for earlier requests.
This removes the request from the 'active_queue', frees its allocated memory, resets its state, and adds it to the 'pending_queue'.
If the evicted request was in the decode phase, the 'num_prefill_tokens' is updated to 'num_processed_tokens'.

5. The load balancer can observe the state of all replicas, meaning all requests in `pending_queue` and `active_queue` of each replica.

Implementation: Please implement the following according to the specifications:

Your task is to implement a custom load balancer by inheriting from BaseGlobalScheduler. To achieve this, you will implement the `schedule`
function of this class. This function is called every time 1) a new request has arrived, or 2) a replica has finished a request.
To return the routing decisions, this function should return a list of tuples.
Each tuple consists of 1) the id number of the replica to route to and 2) the request to be routed `(replica_id, request)`.
Note that routed requests should be popped from `self._request_queue`. Do not change the properties of requests or replicas.

Here is how you can access some helpful metrics to guide the decision-making process.

1. The CustomGlobalScheduler you will implement can see the following elements from a parent class (BaseGlobalScheduler):
<Some elements>
2. Each replica in `_replica_schedulers` is a `ReplicaScheduler` object, and has the following READ-ONLY properties:
<Some properties>
3. Each request has the following READ-ONLY properties:
<Some properties>

Now, implement the load balancer, i.e., CustomGlobalScheduler. Only output the full code for the CustomGlobalScheduler class.

Guidelines:
To design the algorithm, first consider the requirements and system model carefully to develop an overall strategy. Then, implement your solution.

Some other implementations and their achieved average request response time:
Implementation #1 (response time: 54.054 s):
<algorithm 1>
Implementation #2 (response time: 55.55 s):
<algorithm 2>
Implementation #3 (response time: 57.142 s):
<algorithm 3>

Figure 12: Base prompt for our FunSearch evaluation.

27

System Prompt for Openevolve

Please implement a scheduler for a LLM inference cluster.

System Model:
Here is how the load balance works:

1. The load balancer manages a number of LLM serving nodes called `replica_scheduler`s.
- The load balancer routes requests to any of these replicas.
- The load balancer must eventually route all requests.

2. The load balancer makes routing decisions per each request. The load balancer knows these three key properties per request:
- `_arrived_at`: When the request was received at the load balancer.
- `_num_prefill_tokens`: number of tokens to prefill.
- `num_processed_tokens`: number of tokens that have been processed so far.
- A request has some number of decode tokens but this is not known until the request is completed.

3. Each replica maintains two queues: `pending_queue` and `active_queue`.
- `pending_queue` contains requests where the prefill has not started. `num_processed_tokens` is 0 and there is no memory allocated in

the GPU for these requests.↪→
- `active_queue` contains requests that are currently being processed. `num_processed_tokens > 0` and some memory is allocated in the

GPU for these requests. If `num_processed_tokens < num_prefill_tokens`, the request is still in the prefill phase. Otherwise, the
request is in the decode phase.

↪→
↪→
- A request cannot be in both queues at the same time.

4. Each replica has to allocate memories for requests currently being processed, in the `active_queue`, in blocks (16 tokens at a time).
- In case there is no memory left at a replica for continuing decoding of active requests, replicas will evict newer requests to free

memory for earlier requests.↪→
- This removes the request from the 'active_queue', frees its allocated memory, resets its state, and adds it to the 'pending_queue'.
- If the evicted request was in the decode phase, the 'num_prefill_tokens' is updated to 'num_processed_tokens'.

5. The load balancer can observe the current state of all replicas, meaning all requests in `pending_queue` and `active_queue` of each
replica.↪→

Objective:
Design a solution that Minimize the average request completion time across all requests.

Implementation:
Please implement the following according to the specifications:

Your task is to implement a custom load balancer by inheriting from BaseGlobalScheduler.
To achieve this, you will implement the `schedule` function of this class.
This function is called everytime 1) a new request has arrived, or 2) a replica has finished a request.
To return the routing decisions, this function should return a list of tuples. Each tuple consists of 1) the id number of the replica to

route to and 2) the request to be routed `(replica_id, request)`.↪→
Note that routed requests should be popped from `self._request_queue`.
Do not change the properties of requests or replicas.

Here is how you can access some helpful metrics to guide the decision-making process.

1. The CustomGlobalScheduler you will implement can see the following elements from a parent class (BaseGlobalScheduler):
<Some elements>
2. Each replica in `_replica_schedulers` is a `ReplicaScheduler` object, and has the following READ-ONLY properties:
<Some properties>
3. Each request has the following READ-ONLY properties:
<Some properties>

Now, implement the load balancer, i.e., CustomGlobalScheduler. Only output the full code for the CustomGlobalScheduler class.

<Class signiture>

Guidelines:

To design the algorithm, first consider the requirements and system model carefully to develop an overall strategy. Then, implement your
solution.↪→

Figure 13: System prompt used for our OpenEvolve evaluation.

28

The user’s prompt to Glia for the LLM request-routing problem.

Design an efficient request scheduler for a distributed LLM serving cluster. Use the simulator (the current working directory) to evaluate
your ideas.

System overview:
The system has a number of LLM serving instances (replicas) that can process the requests. Incoming requests are first processed by a
`global scheduler'. The global scheduler maintains a queue of requests. It decides when and which replica to send each request.

The base class for the global scheduler "BaseGlobalScheduler" can be found at: "scheduler/global_scheduler/base_global_scheduler.py"
A simple implementation of the global scheduler is LLQGlobalScheduler which dispatches requests to the replica with least loaded queue,
and can be found here: "scheduler/global_scheduler/llq_global_scheduler.py"

The entry point for the global scheduler is the schedule() function. This is called by the simulator after each request
arrival and request completion event.

Each serving instance schedules its incoming requests via a `replica scheduler'. The replica scheduler creates batches of work to be
processed on GPUs.

The base class for replica scheduler “BaseReplicaScheduler” can be found at: "scheduler/replica_scheduler/base_replica_scheduler.py"
For this design task, we will use the vLLM replica scheduler provided here: "scheduler/replica_scheduler/vllm_replica_scheduler.py"

To summarize, the life of a request in the system is as follows:
incoming request → global scheduler → replica scheduler → Batch processing by GPU (prefill / decode)

Every request is first processed in prefill stage to compute the kv-cache of the input tokens. Once prefill is complete, the request enters
the decode stage where its output tokens are computed incrementally. The total number of decode tokens is not known until a request finishes.
Only the number of prefill tokens is known when a request first arrives.

Objective:
Your task is to optimize the global scheduler. The primary performance metric is the average response time of requests.

Evaluation:
A benchmark is provided to evaluate your designs. It consists of a 1000-second simulation of a workload running on a cluster with 4
identical a10 GPUs. The workload generates <target_qps> queries-per-second (qps). The benchmark workload can be found in
“data/processed_traces/sharegpt_<target_qps>.csv”. To run the benchmark, use the following command: ./run_all.sh

As a baseline, I ran the benchmark for the LLQ algorithm. The simulation outputs artifacts in a directory like
“simulator_results/sharegpt_llq_<target_qps>/<folder_time_stamp>/”. This directory contains the following files:

1. “config.json” that specifies the experiment configs,
2. "gs_log.csv" is the log of global scheduling events. For every global scheduling event, it writes 4 (num sarathi instances) lines with
the following information: ['time', 'replica_id', 'num_pending_requests', 'num_active_requests', 'num_allocated_blocks', 'num_blocks',
'memory_usage_percent'].
3. "reqs_log.csv" is the log of where each request was eventually routed. For every request, it writes one line with the following
information: ['time', 'replica_id', 'request_id', 'num_prefill_tokens', 'num_decode_tokens'].
4. "request_metrics.csv" provides per-request information.

Constraints:

Modify only the global scheduler. Do not change the behavior of replica scheduler.
The global scheduler may not use the num_decode_token property of request objects, since the number of decode tokens of a request is
not known in a real system.

Implement your ideas in "scheduler/global_scheduler/ai_global_scheduler.py", which is prepopulated with a random acheduler.
Experiment by running “./run_all.sh”
and looking at the output found in “simulator_results/sharegpt_AI_<target_qps>/[YYYY-MM-DD_HH-MM-SS-microseconds]”. Iterate on your
design to reduce the average request completion time ("request_e2e_time" in "request_metrics.csv"). Do not interrupt me until you have
found a solution that is at least better that LLQ's average request time (around <time> seconds on this benchmark). It should be possible
to perform much better than LLQ (at least a <targe_improvement>% improvement is expected).

Figure 14: The user’s prompt to Glia for the LLM request-routing problem.

29

	Introduction
	Related Work
	Case Study: LLM Serving in a GPU Cluster
	Using LLMs As-is
	Black-box LLM-in-the-loop Search
	The Glia Approach

	Glia Agents
	Single-Context Glia (SCG)
	Multi-Context Glia (MCG)

	Evaluation
	Glia outperforms baselines
	Glia ’s discoveries transfer to real systems
	Glia discovers new algorithms across the stack
	Glia discovers novel, interpretable algorithms
	Glia can continuously adapt to changes
	Ablation experiments

	Conclusion

