arXiv:2305.14135v3 [cs.NI] 4 Oct 2024

Reparo: Loss-Resilient Generative Codec for Video Conferencing

Pantea Karimi Lijie Fan

Tianhong Li Vibhaalakshmi Sivaraman
Mohammad Alizadeh Dina Katabi
MIT CSAIL
Abstract

Packet loss during video conferencing often results in poor
quality and video freezing. Retransmitting lost packets is
often impractical due to the need for real-time playback, and
using Forward Error Correction (FEC) for packet recovery
is challenging due to the unpredictable and bursty nature of
Internet losses. Excessive redundancy leads to inefficiency
and wasted bandwidth, while insufficient redundancy results
in undecodable frames, causing video freezes and quality
degradation in subsequent frames.

We introduce Reparo — a loss-resilient video conferenc-
ing framework based on generative deep learning models to
address these issues. Our approach generates missing infor-
mation when a frame or part of a frame is lost. This generation
is conditioned on the data received thus far, considering the
model’s understanding of how people and objects appear and
interact within the visual realm. Experimental results, using
publicly available video conferencing datasets, demonstrate
that Reparo outperforms state-of-the-art FEC-based video
conferencing solutions in terms of both video quality (mea-
sured through PSNR, SSIM, and LPIPS) and the occurrence
of video freezes.

1 Introduction

Video conferencing applications are a crucial part of modern
life. Despite all the advancements, video conferencing appli-
cations still suffer from packet loss, resulting in diminished
quality and video freezing [7,44,60]. This problem is exac-
erbated by the strong dependence between encoded frames
in traditional video codecs [1,5,38,45,47]. For instance, in
traditional codecs, P-frames (Predicted picture) depend on
previous I-frames (Intra-coded picture); hence, the loss of
an I-frame affects many subsequent frames, causing a jar-
ring experience where the video freezes and subsequently
exhibits poor quality until the codec can recover from these
dependencies.

Existing systems employ two main techniques to combat
this problem: retransmission and forward error correction

(FEC). Since real-time applications such as video conferenc-
ing must recover lost packets within a limited latency to meet
the real-time playback requirement, retransmission is only
suitable for scenarios with short round trip times. In all other
cases, such applications rely on FEC to recover lost pack-
ets within acceptable latency. FEC schemes send redundant
packets, known as “parity”” packets, to recover the lost data
using traditional block codes [37,42] or latency-optimized
streaming codes [44]. However, all FEC approaches face a
challenge in choosing how much redundancy to add since
losses in the Internet are bursty and unpredictable. Too much
redundancy leads to inefficiency and wasted bandwidth, and
too little redundancy leads to undecodable frames, causing
video freezes and quality degradation in subsequent frames.

This paper presents a novel approach to loss recovery in
video conferencing, without using redundant packets or re-
transmission requests. Instead, when a loss occurs, the re-
ceiver leverages the power of "generative" models to recon-
struct the missing information. This approach builds upon
recent advancements in generative deep learning models
[19,31-33,43], which are capable of reconstructing images
(i.e., frames) even when a significant portion of the data is
missing [19,31]. Unlike traditional video codecs, which solely
rely on received data for frame reconstruction, generative
models operate similarly to humans. They utilize a wealth
of knowledge about how people and objects appear, move,
and interact to generate the missing information. For instance,
when presented with one eye of a person, they can generate
the missing eye, or with a partial view of an arm, they can
reconstruct the entire torso. The key insight here is that such
a generative model is ideally suited for a loss-resilient video
codec. However, instead of being guided by textual prompts
as seen in typical image generators like DALL-E 2, it can be
directed by the received pixels in the current frame, as well as
information from past frames, to generate the missing content.
This guidance ensures that the generated pixels remain com-
patible with the correctly received data in the current frame
and previous frames, eliminating the potential for hallucinat-
ing incompatible content, while generating the data in the lost

packets.

We introduce Reparo, a loss-resilient generative codec for
video conferencing. The design of Reparo involves two steps.
In the initial step, it learns to represent the specific video do-
main of interest, namely video conferencing, using a small
codebook of visual tokens, where each token refers to a patch
in a frame. Reparo then operates on these tokens. The trans-
mitter uses a neural network to encode each frame into its
respective set of tokens, packetizes them, and transmits the
data. Some of these packets may get lost in the network. The
Reparo receiver has a neural network that can regenerate the
missing tokens from those it receives and its knowledge of
how tokens relate to each other in the visual world. Finally,
the reconstructed tokens are decoded to produce the original
frame. Fig. | illustrates the components of Reparo.

In addition to its resilience against packet loss, Reparo
offers three notable advantages:

1. Efficient Compression: Reparo efficiently compresses
data by capturing prevalent visual features and dependen-
cies among objects and shapes within its codebook. This
codebook is pre-learned and known to both the transmit-
ter and receiver, allowing Reparo to transmit only token
indices instead of the actual tokens and their underlying
dependencies.

2. Target Bitrate Compliance: Traditional video codecs
exhibit variable bitrates partially due to the significant
size discrepancy between I-frames and other frames.
This inconsistency makes it challenging for these codecs
to meet a precise target bitrate, leading to fluctuations
during transmission, transient congestion, and an ele-
vated risk of packet loss or delay. Reparo, in contrast,
maintains a constant bitrate as all frames are treated
equally, making it easy to adapt to any desired bitrate.

3. One-Way Communication: Video conferencing frame-
works, including those that rely on FEC [3,44], typically
rely on the receiver to send an ACK for every decod-
able frame. The sender waits for the ACK to retransmit,
which could cause even longer freezes when the round-
trip time is long. In contrast, in Reparo, the receiver does
not need to communicate with the transmitter about un-
decodable frames; it will always use the received tokens
to reconstruct the lost ones.

We have conducted an extensive evaluation of Reparo, com-
paring it with FEC schemes integrated with WebRTC [3]
(ULPFEC and flexFEC), and Tambur [44], a state-of-the-art
streaming-code-based FEC approach. The evaluation uses
a large corpus of publicly available video clips spanning 5
hours from 84 individuals, which is significantly larger and
more diverse than the validation set in prior works on video
conferencing [11,44,46]. The results are as follows:

1. Reparo consistently improves the visual quality of dis-

played videos across all loss levels. It achieves 33.4 dB,
32.9 dB, and 31.6 dB for the 10% worst PSNR (Peak
Signal to Noise Ratio) values under low, medium, and

high loss levels, respectively, outperforming state-of-the-
art integration of VP9 (a classical video codec)+Tambur
by 11.5 dB, 16.4 dB, and 14.7 dB. Notably, this loss re-
silience does not come at the expense of efficient coding;
Reparo achieves similar or better PSNR compared to
baselines in the absence of packet loss.

2. Reparo nearly eliminates video freezes and significantly
reduces the number of unrendered frames compared to
the baselines. Under low, medium, and high loss rates,
Reparo fails to render only 0.2%, 0.8%, and 2.0% of
frames, while VP9+Tambur fails to render 8.0%, 13.1%,
and 29.2% of frames, respectively.

3. In rate-limited environments, Reparo optimally utilizes
the full link capacity by consistently transmitting at
a fixed desired bitrate. In contrast, VP9+Tambur must
maintain a lower average bitrate to prevent packet loss
due to the VP9 encoder’s bitrate variability. This results
in a higher PSNR for Reparo compared to VP9+Tambur
(35 dB vs. 33.4 dB).

Our Reparo codec implementation runs in realtime on a
V100 GPU, at the transmitter and the receiver, which is com-
parable to the Apple M2 Max GPU in Macbook Pro laptops.
Computational requirements are expected to improve over
time with the integration of more powerful GPUs into con-
sumer devices.

In summary, video communication has involved a trade-off
between efficiency and resilience traditionally. To maximize
efficiency, codecs encode frames together (as a delta from a
reference frame), whereas to maximize resilience, each frame
should be encoded separately. Reparo stands out as the first
codec to encode each frame independently, with no reliance
on other frames, while maintaining efficiency akin to state-of-
the-art video conferencing codecs that encode frames together.
We believe that Reparo underscores the potential of interdis-
ciplinary design, marrying advances in computer vision with
core principles in coding theory and communication systems.

2 Related Work

Video Codecs. Video applications typically use classical
codecs such as VP8, VP9, H.264, H.265, and AV1 [1,5,38,45,
47]. These codecs compress video frames using block-based
motion prediction, separating them into keyframes (I-frames)
that are compressed independently and predicted frames (P-
/B-frames) that are compressed based on differences between
adjacent frames. While classical codecs are widely supported
and efficient in slow modes, in real-time video conferencing
modes, they are unable to accurately match a desired target
bitrate, which leads to packet loss and frame corruption when
they exceed available capacity [24].

To overcome some of these limitations, several neural
codecs have been proposed in recent years [12,28,36,53,56].
These codecs use a low-quality video that is then enhanced us-
ing a Deep Neural Network (DNN). Reparo differs from such

prior neural codecs in two ways. First, these neural codecs
still rely on temporal dependencies, wherein an undecodable
frame can cause one or more subsequent frames to freeze.
In contrast, Reparo has no dependencies between encoded
frames and hence the impact of a loss in one frame does not
propagate to other frames. Second, none of the neural ap-
proaches use generative neural models that synthesize images
from a few small pre-computed tokens.

Loss-Resilient Video Codecs. Forward Error Correction
(FEC) is a technique used in communication systems to re-
cover lost data packets without retransmission. Instead of re-
transmission, redundant information sent by the sender is used
by the receiver to reconstruct the original data. This is partic-
ularly important in real-time communication systems such as
video conferencing, where retransmission of lost packets can
cause unacceptable delays. Traditional FEC codes such as
parity codes [6], Reed-Solomon (RS) codes [42], and fountain
codes [37] are all block codes that are optimal for random
losses, where packets are lost independently. Recently, re-
searchers have proposed using streaming codes for FEC (e.g.,
Tambur [44]), achieving better loss recovery capabilities than
block codes for bursty losses, where several packets over one
or more consecutive frames are lost.

GRACE [11] proposed a neural video codec that can tol-
erate packet loss. However, there are two key differences
with our approach. First, GRACE does not include an explicit
loss recovery network. It improves the loss-resilience of an
existing neural decoder (DVC [36]) by randomly masking
information (i.e., using dropout) during its training. Unlike
our loss recovery network, GRACE’s decoder cannot leverage
multiple received frames to reconstruct the missing informa-
tion. Second, the DVC code underlying GRACE is based on
Delta coding which creates temporal dependencies between
encoded frames. Therefore, errors in one decoded frame due
to packet loss propagate to subsequent frames even if they
incur no loss. On the other hand, Reparo encodes each frame
independently, and thus does not have error propagation.
Generative Neural Networks. In recent years, there has been
significant progress in the development of generative mod-
els, which can create text, audio, images, and videos indis-
tinguishable from those created by humans [13, 31,33, 43].
These models use knowledge of the target domain to generate
content under certain conditions. For example, a text gener-
ative model can generate a paragraph conditioning on text
prompts [13], and an image generative model can produce an
image using only a partial view [31].

To enhance the use of domain knowledge, many recent
visual generative models have adopted a two-stage design
[10,30,41,51, 57]. First, they learn to represent the target
domain using a visual token codebook. Each visual token
corresponds to a patch in the image and the codebook serves
as a high-level abstraction of the visual world. Generation is
then performed in this token space, similar to text generative
models. These models have shown impressive performance in

Transmitter

Header Data

“-"- Gl 27@ Packetizer m—l—l—l el
i «Il=Ml | . | 77l
.a.. 16|25 [81 65 CBlttratﬁ V=[]
...- 55|67 |12 58 ontroter | 777l |55
Video Frame Token Indices Packets

L5

Receiver

Header Data

8 ok
V/AE = | Recovery| —>
V=1=1=]

lost

3 [34]27]|99

64| 8 | 59

16 | 25 [81 | 65

55|67 |12 |58

i Reconstructed Frame
Received Packets Generated Token Indices

Figure 1: Overview of Reparo. It comprises an encoder-decoder
pair responsible for converting RGB frames into quantized to-
kens and vice versa, as well as new modules for packetization,
bitrate control, and loss recovery that operate in the token space.

image generative tasks, such as text-to-image synthesis [9,43]
and image editing [31].

Given these capabilities, generative models are well-suited
for loss-resilient video conferencing. Our work is the first to
apply such advances to synthesize video conferencing frames
when packet losses occur. By conditioning on (i.e., prompting
with) the received data, our method can generate video frames
identical to the original frames, achieving loss-resilient video
conferencing.

3 Reparo Design

3.1 Overview

Reparo is a generative loss-resilient video codec specifi-
cally designed for video conferencing. As shown in Fig. 1,
Reparo consists of five parts: (1) an encoder that encodes
the RGB video frame into a set of tokens, (2) a packetizer
that organizes the tokens into a sequence of packets, (3) a
bitrate controller that adaptively drops some fraction of the
packetized tokens to achieve a target bitrate, (4) a loss recov-
ery module that recovers the missing tokens in a frame based
on the tokens received by the frame deadline, and (5) a de-
coder that maps the tokens back into an RGB frame. We call
the encoder-decoder combination in Reparo its neural codec,
while the rest of the components help with loss recovery atop
the codec. The encoder, packetizer, and bitrate controller are
situated at the transmitter side, while the loss recovery module
and decoder operate at the receiver side. We describe these
modules in detail below.

Codebook
o123 EE0

Index Selection

“-"- 0 |34]27 |99

III ::J III III 64| 8 |59

.a.. - 16|25 | 81 65 g

.... 55|67 | 12 | 58 |

Video Frame Tokens Indices Reconstructed Frame

Figure 2: Token-based neural codec. The encoder converts
patches from video frames into features and uses a codebook to
quantize the features into tokens by finding the nearest neigh-
bor of each feature in the codebook. The decoder then uses the
tokens to reconstruct the video frame.

3.2 Reparo Components
3.2.1 The Neural Codec: Encoder and Decoder

In contrast to prior work on loss-resilient video conferencing,
which utilizes traditional codecs with FEC-based wrappers,
Reparo employs its own codec based on the concept of a tok-
enizer. Tokenizers are commonly used in generative models to
represent images using a learned codebook of tokens. Instead
of generating images pixel by pixel, images are divided into
patches, and each patch’s features are mapped to a specific
token in the codebook. This reduces the search space of gener-
ative models since the number of tokens in an image is much
smaller than the number of pixels. Each token represents a
vector in feature space. By training a neural network to iden-
tify a small number of feature vectors that can best generate
all images in the training dataset, a set of tokens is selected
for the codebook.

We observe that tokenizers naturally fit the requirements of
a codec since they allow us to compress frames in a video by
expressing them as a set of tokens, which can be transmitted
as indices without the need to transmit the actual tokens. Since
the transmitter and receiver share a codebook, the receiver can
recover the original frames by looking up the token indices
in its codebook and decoding them to the original frames.
Further, since each frame is compressed independently of
other frames based only on its own token indices, losses in
one frame do not affect other frames.

We use a tokenizer called VQGAN [16], which consists
of an encoder, a decoder, and a codebook (see Fig. 2). The
encoder is a convolutional neural network (CNN) that takes
patches in an image and maps each one of them to the nearest
neighbor vector in the codebook, i.e., the nearest token. The
decoder is also a CNN that takes a concatenation of tokens
that represent an image and reproduces the original image.

The compression achieved by VQGAN depends on two
of its parameters: the number of tokens used for each frame,
and the size of the codebook. Since the image is divided into

Transmitter

Header Data Header Data

3 [3a]27] 90 DeterministicyA : IU I 16|81 I:‘ ando VA 2 |1s | 81'
4 (IEIEE Packetizer %E Self-drop /]3]

e B L 6S| A =1=1=]=] D =1=1=]
55|67 | 12 | 58 7
L 7Z/0_mo %G5
oken Indices
Packets Packets After Drop,
Receiver
Header Data Header Data
mnm Decode m.m Deterministic | 3 | 3¢ 99
. Self-drop Depacketizer
11 ——>1~] 7 0 1
’ EE 77E EE o] [

Received Packets Received Packets Received Token Indices

Figure 3: The transmitter first uses a deterministic packetizer to
wrap image tokens into packets. Then a bitrate controller drops
some tokens in each packet to adapt to the target bitrate. The
receiver first decodes which tokens are dropped by the bitrate
controller. It then depacketizes the received packets to extract
the received token indices with the lost tokens identified.

patches, each mapped to a token, the number of tokens dic-
tates the size of each patch within an image. As the number
of tokens is increased, the smaller each patch becomes. More
tokens allow a more fine-grained reconstruction as it is easier
for a token to represent a smaller patch. However, since we
transmit token indices from the sender to the receiver, more
tokens means more bits for transmitting all of their indices,
and reduces the compression factor. Similarly, a larger code-
book enables a more diverse set of features to choose from
for each token, but requires more bits to represent each token
index. Thus, both of these parameters lead to different trade-
offs for the achieved bitrate and visual quality. We show this
in Fig. 12.

3.2.2 The Packetizer

After encoding the original image into tokens, Reparo divides
them into several packets to prepare them for transmission.
The packetization strategy is designed to avoid placing adja-
cent tokens in the same packet since the closest tokens in the
image space are the most helpful for recovery when a token
is lost.

In Fig. 3, the first step in the green box labeled Transmitter
shows our token wrapping strategy for an example with 4 x4
tokens that are split into 4 packets. The packet index of the
token at position (i, j) is 2- (i mod2)+ j mod 2. Tokens in
each packet are ordered first by their row index, then by their
column index in ascending order. This is just one of many
ways to wrap tokens into packets while avoiding placing
adjacent tokens in the same packet. The strategy needs to
be deterministic so that the receiver can place the received

Spatial
P
i
B HeH R
> o - i
2 3 3427|099 L mimn L Rl A
- W et Il
5! MMM o St ee | 8 [50
1 Transformer
16 | M | 81 | 65 \"‘ 16 | 25 81| 65
Temporal T ™ ez M 55|67 |12 58

Received Tokens Indices z,, Reconstructed Token Indices z
Figure 4: Loss recovery module. It uses a neural architecture
based on a spatio-temporal vision transformer to generate any
lost tokens using the learned knowledge of how people and ob-
jects look, along with the received tokens in the current and
recent frames.

tokens in the appropriate position in the frame before trying
to recover the missing tokens. Each packet has a header that
includes its frame index, packet index, and packet size so that
the receiver can identify which frame the tokens belong to
and how many packets that particular frame has.

3.2.3 The Bitrate Controller

Video conferencing applications often need to adjust their
bitrate in response to network congestion. In prior work, this
was achieved by altering the extent of compression to meet the
desired bitrate. In contrast, Reparo can easily adapt its bitrate
by dropping tokens, as it is highly resilient to lost tokens and
degrades gracefully with increasing loss rates. We call this
“self-dropping” since Reparo chooses to drop tokens on its
own even before transmitting them. Remarkably, Reparo can
tolerate up to 50% token loss with only a minimal impact on
video PSNR, as demonstrated in Fig. 5. In practice, Reparo
chooses the tokens it drops deterministically based on the
frame index and packet index (Fig. 3 top row right). This is
to ensure that the receiver can easily identify which token
locations were dropped based simply on the frame and packet
index in the received packet’s header. With this information,
the receiver can decode (Fig. 3 bottom row left) the locations
of the tokens removed by the bitrate controller.

3.2.4 Loss Recovery Module

The key ingredient for Reparo to carry out loss recovery is
a deep generative model that leverages received tokens and
video conferencing domain knowledge to generate lost tokens.
For instance, the generative model can synthesize all tokens
associated with a particular human face based on a subset of
those tokens. Similarly, it can produce the token correspond-
ing to a moving hand conditioned on the tokens from previous
frames. In the following sections, we provide a comprehen-
sive description of the architecture, training procedure, and
inference algorithm of our loss recovery module.

Network Architecture. The loss recovery module is a neural
network. It takes as input the received tokens organized ac-
cording to their positions in the original frame. Lost tokens

are expressed with a special token called the Mask token, [M],
as shown in Fig. 4. It also takes as input the tokens from the
past T frames, which provide the context for the scene.

We use a common neural network architecture called
Vision Transformer (ViT) [14]. Transformers have gained
widespread popularity in computer vision and natural lan-
guage processing for predicting missing image patches or
words [13, 14, 19]. The ViT employs an attention module
in each layer to aggregate information from all tokens in an
image. To predict a missing token, the attention module uses
the received tokens and weighs them by their relevance to the
missing token. The relevance is computed by performing a
softmax over the dot product of each token with every other
token. To extend the standard vision transformer structure to
video clips, we use a spatio-temporal attention module [4]. In
each transformer block, we perform attention over the time
dimension T (across adjacent frames) and then over the space
dimension /& X w within a frame. This enables our loss recov-
ery module to exploit both spatial information from the same
frame and temporal information across consecutive frames.
Specifically, to generate a missing token, the module can
use the nearby tokens in both space and across frames, as
those tokens have a strong correlation with the missing token.
Performing attention over time and space sequentially signif-
icantly reduces the computational cost: attention over both
space and time simultaneously requires O(T?h*w?) of GPU
memory, while attention first over time and then over space
requires only O(Th*w? + T*hw) of GPU memory.

Leveraging temporal information incurs some overhead as
the last few frames need to be held in memory to decode the
next frame. Hence, we limit the temporal dependency to a
maximum of 6 frames. It is worth noting that using tokens
from previous frames for loss recovery does not cause Reparo
to stall like traditional codecs due to undecodable frames.
Specifically, the spatio-temporal ViT utilizes the six previous
frames while decoding the current frame, allowing reuse of
received tokens across frames to achieve a better bitrate and
loss rate. Every frame is generated and decoded regardless of
the previous frame’s generation result and based solely on the
actually received tokens of previous frames. If more tokens
are lost in the previous frames, the quality of the current
frame’s generation may be poorer, but Reparo will never stop
generating or decoding, unlike classical codecs. We provide
detailed information about our spatio-temporal ViT structure
in §A.2.

It is worth highlighting the difference between our loss
resilience and all past work. Traditionally, loss resilience is
achieved by encoding frames together and adding FEC, at the
transmitter. In contrast, our generative approach allows frames
to be encoded independently at the transmitter without FEC.
The receiver however decodes each frame holistically, looking
both at its received tokens and tokens from past frames to
generate the missing tokens.

Training the Network. The goal of the training is to ensure

the resulting neural network can recover from both network
packet losses and tokens self-dropped by the bitrate controller
to achieve a particular target bitrate.

Thus, during training, we simulate both types of losses and
optimize the network weights to recover the original tokens.
Specifically, we simulate the packetization process, and in
each iteration, we randomly sample a self-drop ratio r; from
0 to 0.6. Based on r,4, a certain fraction of tokens are dropped
from each packet. Then, a packet drop rate r;, is randomly
selected from O to 0.8, and packets (and all their tokens) are
dropped based on the selected packet drop rate. At the re-
ceiver, the tokens that have been received are identified based
on frame and packet indices. The missing tokens, whether
dropped due to self-drops or packet loss, are replaced with
a learnable mask token [M] (Fig. 4). This ensures that the
input sequence length to the model is fixed regardless of the
number of dropped tokens, which is a requirement for ViT.
The resulting tokens combined with positional embeddings
that provide spatial and temporal location information for
each token (including the mask tokens) are then provided as
the input of the ViT module. The output of the ViT module is
a complete 7 x w x T grid with generated or original tokens
in their proper positions (where T represents the number of
past frames), but we only use the last frame’s tokens to recon-
struct the original frame using the codec decoder. Below we
describe the loss function used in the training.
Reconstructive Training Loss. Let z = [z jk];iﬁ’§:17k21
denote the latent tokens from the encoder, and M =
[m; jk]ﬁlwfzzl « denotes a corresponding binary mask indi-
cating which tokens are missing in the last T frames. The
objective of the training is to reconstruct the missing tokens
from the available tokens. To accomplish this, we add a cross-
entropy loss between the ground-truth one-hot tokens and the
output of the loss recovery network. Specifically,

Lyeconstructive = _EZ(Z
Vi,j,k,lﬂi_/kil,k:T

log p(zijklam)), (1)

where z)s represents the subset of received tokens in z, and
P(zijk|zm) is the probability distribution over the codebook
for position (i, j) in the k-th frame predicted by the recon-
struction network, conditioned on the input received tokens
zp- As is common practice, we only optimize this loss on
the missing tokens of the last frame. Optimizing the loss on
all tokens reduces reconstruction performance, as previously
observed [19]. Detailed training schemes are included in §A.
Inference Routine As the deadline for displaying each frame
is hit every 33 ms for 30 fps, we aggregate all received packets
for the current frame (as identified by the frame and packet
indices) and regard all unreceived packets as lost. Once we
place the received tokens in their respective positions corre-
sponding to & x w patches in the frame, we can determine
the exact locations of the missing tokens. We use all the to-
kens received from the previous T = 6 frames to perform
spatio-temporal loss recovery.

For each token position (i, j) in the current frame, we use
p(z:j|z™), the probability distribution of the predicted token
given the received tokens, to choose the token with the highest
probability as the reconstructed token. The resulting grid of
reconstructed tokens is fed into the neural decoder to generate
the RGB frame for display.

4 Evaluation

We evaluate Reparo and compare to several baselines. We
describe the baselines and experimental setup in §4.1. We
evaluate baselines and Reparo under network scenarios with
random packet loss in §4.2, and under packet losses induced
by a rate-limited bottleneck link in §4.3. We discuss Reparo’s
parameter choices, latency overheads, and qualitative results
in §4.4.

4.1 Experiment Setup

Baselines. ULPFEC and flexFEC are two solutions included
in WebRTC [3] to recover from audio and video packet loss.
Tambur [44] is a recent streaming-codes based FEC solution
atop the VP9 video codec [38] that has been shown to perform
better than classical block-based FEC techniques. Following
the original paper, Tambur is implemented in the Ringmaster
video conferencing platform [2]. We set Tambur’s latency
deadline T to 3 frames, and the bandwidth overhead of all
baselines to be approximately 50%. The frame rate is set to
30 fps and the video resolution to 512x512, which is typical
for video conferencing.

Datasets. For training the neural codec in Reparo, we use a
combination of three datasets: the FFHQ dataset (70,000 im-
ages) [26], the CelebAHQ dataset (30,000 images) [25], and
part of the TalkingHeads dataset (~25 hours of video) [54].
These datasets comprise high-resolution human face images
and videos, making them ideal for training Reparo, which
is aimed at improving video conferencing quality. We ex-
clusively use the TalkingHeads dataset for training the loss
recovery module, as this module operates on video clips in-
stead of images.

For evaluating Reparo and the baselines in the context of
video conferencing applications, we combine the dataset from
Gemino [46] and part of the TalkingHeads dataset [54], form-
ing a large and diverse video conferencing validation dataset
consisting of 5 hours of data from 412 video clips and 84 dif-
ferent subjects. We make sure that there is no overlap between
the training and the validation set. Notably, our validation set
is much larger and more diverse than prior works on video
conferencing, such as Gemino [46] (25 videos from 5 people,
75 minutes in total), Tambur [44] (20 videos, 200 minutes
in total), and GRACE [11] (60 videos, 745 seconds in total),
demonstrating the generalization ability and effectiveness of
Reparo.

Implementation. We studied two FEC algorithms, ULPFEC
and flexFEC, implemented in Google’s implementation of
WebRTC [3] with VP8 codec. The FEC rate is set to 50% with
packet retransmissions disabled, and the frame wait-time is
set to 150 ms. This wait-time parameter dictates the duration
after which WebRTC stops to decode a frame that has been
partially received. Our experimental setup includes a headless
real-time video application, built on the WebRTC platform,
which processes video input at a rate of 30 fps at the sender’s
end and records the output to a file at the receiver’s end. The
network conditions between the sender and receiver were
simulated using the Mahimahi network emulator [39]. Within
this environment, we constructed a loss shell akin to that used
in Tambur, facilitating controlled network loss scenarios for
our experiments. Tambur is evaluated using the Ringmaster
platform with VP9 codec.

Our neural codec and loss recovery modules were imple-
mented in PyTorch, and they operate in real-time on two V100
GPUgs, processing 30 fps 512x512 videos. One GPU was used
for the transmitter and one GPU for the receiver. A V100 GPU
is similar in performance to an Apple M2 Max GPU, which
is integrated into a standard Macbook Pro laptop. To make
a fair comparison, we use network traces from the WebRTC
evaluation to evaluate the performance of Reparo.

Metrics. We evaluate multiple metrics, including peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [55],
Learned Perceptual Image Patch Similarity (LPIPS) [58], and
percentage of non-rendered frames. PSNR, SSIM, and LPIPS
are computed by comparing the displayed videos at the re-
ceiver to the original videos at the transmitter, using the Py-
Torch Image Quality (PIQ) library [27]. Non-rendered frames
are defined differently for baselines and Reparo. For baselines,
we compute the percentage of frames that are not played by
the receiver due to packet loss on that frame itself or depen-
dency on previously undecodable frames. For Reparo, we
define “non-rendered frames” as those frames with PSNR
less than 30 dB, as our scheme always tries to generate and
render a frame. We have observed that for our dataset, VP8/9’s
PSNR rarely drops below 30 dB unless there’s an undecodable
frame, so treating Reparo’s frames with PSNR below 30 dB
as “non-rendered” would favor baselines in comparisons.
Non-rendered frames correlate well with standard quality-of-
experience (QoE) metrics, as a large number of non-rendered
frames can lead to video freezes and degrade QoE. All metrics
are aggregated over all frames of the videos in our validation
dataset. We compute bitrate by averaging the packet sizes
(without TCP/IP headers) recorded in the network traces over
the course of the entire video.

Network Scenarios. We consider two primary scenarios that
can result in packet loss during transmission: (1) an unreli-
able network (§4.2), and (2) a rate-limited link (§4.3). In the
first scenario, the network is unreliable and randomly drops
packets due to poor conditions. To simulate this scenario, we
use a GE loss channel. This channel transitions between a

“good” state with a low packet loss rate and a “bad” state
with a high packet loss rate, similar to Tambur’s setup [44].
The probability of transitioning from the good state to the
bad state and vice versa is 0.068 and 0.852, respectively. The
probability of loss in the good state is 0.04. These parameters
are set to mimic Tambur’s evaluation, and are computed to
approximate the actual statistics over a large corpus of traces
from Microsoft Teams [44]. We vary the probability of loss in
the bad state to evaluate baselines and Reparo’s performance
under different loss levels. Specifically, we set it to 0.25 to
simulate a low loss level, 0.5 to simulate a medium loss level,
and 0.75 to simulate a high loss level (the default value in
Tambur’s evaluation is 0.5). The statistics of the simulated
bursty loss networks are included in Tab. 1. In the second
scenario, we consider a fixed-rate link that drops packets once
saturated. To simulate this, we use a FIFO queue with a fixed
queue length of 6KB and a drain rate of 320 Kbps.

Table 1: Statistics of bursty lossy networks emulated using GE
loss channel.

‘ Low Loss Level ‘ Medium Loss Level ‘ High Loss Level
25% 50% 75%

Loss rate in bad state
Time in bad state
Avg. loss rate

7.4% 7.4% 7.4%
5.6% 7.4% 9.3%

Reparo Parameters. We use a 512x512 frame size and
compress it into 32x32 tokens. With a codebook size of
1024, each token requires 10 bits to represent its index. The
codebook is trained once across the entire dataset and frozen
during evaluation, eliminating the need to transmit it during
video conferencing. A frame of tokens is split into 4 packets,
with a packet header size of 4 bytes containing a 20-bit frame
index, a 2-bit packet index, and a 10-bit packet size. Therefore,
to send all the tokens of a frame, each packet requires 324
bytes, resulting in a default bitrate of 311.04 Kbps (at 30 fps).
The tokens in each packet can be dropped up to 50% to match
the target bitrate using the “self-drop” mechanism described
in §3.2.3. We can further control the bitrate (and visual quality
trade-off) by using a different codebook and number of tokens
per frame as shown in Fig. 12.

4.2 Performance on Lossy Networks

Visual Quality. We first compare the visual quality of video
displayed using baselines and Reparo by evaluating the PSNR,
SSIM, and LPIPS under different loss levels. We also vary
the target bitrate to evaluate the performance of our method
and baseline under different bitrate constraints. We measure
the average performance over all frames and the worst 10%
frames, representing the overall video conferencing quality
and the quality under poor network conditions. All metrics
are aggregated across all frames in our evaluation corpus.
As shown in Fig. 5, Reparo achieves better performance
with smaller bitrates for all metrics and under all conditions.
The poor performance of baselines is caused by freezes of

High Loss Level High Loss Level High Loss Level
Average PSNR Worst 10% PSNR 1 Average SSIM Worst 10% SSIM 1 Average LPIPS Worst 10% LPIPS
1 1 0. 9
~35 ~35 ! Seedete=K o o= 1 ! '
g W-:*l B ik : .01 T owgt TR 0.91 4ok : mM mDA [e
= e = o8 o8 2 o3 & — =3 o 03
g g P Bor Aor > | o2 el T 0] ety
g2 g : mos mos gr = et 3 : 40.1 40.1
15 15 Qe ¥ 1 o o 1 0' 0'
200 300 400 200 300 400 1 200 300 400 200 300 400 1 : 200 300 400 : 200 300 400
Bitrate (Kbps) Bitrate (Kbps) 1 Bitrate (Kbps) Bitrate (Kbps) 1 Bitrate (Kbps) Bitrate (Kbps)
1 1
Medium Loss Level 1 Medium Loss Level 1 Medium Loss Level
Average PSNR Worst 10% PSNR ! Average SSIM Worst 10% SSIM ! Average LPIPS Worst 10% LPIPS
1 1 1 1 0.! 9 0.!
—~35 e—te=te=K —~35] et o .y I
T30 ke Yoo S s ! Eos i 209 [oo &=y
= =" = | =08 o8 | ao3 =g o 03
25 o 25 n 0 - O el =
= = I ot 0 07 XKoo I 8oz B 02f T rmpepc
&20 &20 s & ! 0.6 0.6 »"&_. ! 0.1 0.1
15 15 g = Ryl 1 |
200 300 400 200 300 400 ! o 200 300 400 o 200 300 400 ! 0. 200 300 400 0. 200 300 400
Bitrate (Kbps) Bitrate (Kbps) ' Bitrate (Kbps) Bitrate (Kbps) ' Bitrate (Kbps) Bitrate (Kbps)
Low Loss Level ' Low Loss Level ' Low Loss Level
Average PSNR Worst 10% PSNR] Average SSIM Worst 10% SSIM 1 Average LPIPS Worst 10% LPIPS
1 o [¢]
1 S 1 :
g” W-:?—s TO| e 109 G e e S E T 1 o4 0.4
o3 == 230 I Sos Sos /)‘-« 1 Pos & Qos & Sr g
25 25 [} @ [e =
> > AN AN X g =—® 802 = 0] 0.2 Mo
g2 g2 < }_34?}_5 : 06 06 =T : - 0.1 - 0.1
15 15
200 300 400 200 300 400 : 05 200 300 400 05 200 300 400 : 0 200 300 400 0 200 300 400
Bitrate (Kbps) Bitrate (Kbps) 1 Bitrate (Kbps) Bitrate (Kbps) 1 Bitrate (Kbps) Bitrate (Kbps)
No Loss | No Loss | No Loss
1 1
Average PSNR Worst 10% PSNR ! Average SSIM Worst 10% SSIM ! Average LPIPS Worst 10% LPIPS
I 1 1 1 0. 9 0.
A e 5 e U ' :
3 zz el s st 3 zz Wf" € : 0.9 0.9 e : 0.4 0.4
Z Z , Zos Sos } Qos Qo3
o 25 o 25 (%) w o o (<8
1 (o7 n o7 1 %o2 s —— 05021 e ﬁir'.,i;,(g
20 20 : 06 06 : o1 Tt e S ¢ € o1
15 15
200 300 400 200 300 400 I 05 200 300 400 05 200 300 400 I 0 200 300 400 0 200 300 400
Bitrate (Kbps) Bitrate (Kbps) ! Bitrate (Kbps) Bitrate (Kbps) ! Bitrate (Kbps) Bitrate (Kbps)
-+e-- VP8+ULPFEC VP8+flexFEC == VP9+Tambur —#+— Reparo

Figure 5: We report the average and worst 10% PSNR, SSIM and LPIPS of baselines and Reparo under different loss levels. PSNR
and SSIM are the higher the better, and LPIPS is the lower the better. We vary the target bitrate of Reparo and baselines to cover
different achieved bitrates. Reparo’s visual quality is significantly better than the baselines under all lossy conditions while achieving

similar performance when there is no loss.

40
7 35
m
o 30
« 5
2
wn 15
o 10

$=%-

I VP8+ULPFEC

gn=-

@ VP8+flexFEC

I VP9+Tambur I Reparo

Low Loss Level

Medium Loss Level

High Loss Level

Figure 6: PSNR distribution across frames with baselines and Reparo under different packet loss rates (for a bitrate of ~320 Kbps).
The box denotes the 25" and 75! percentile PSNR, the line inside the box denotes the median PSNR while the whiskers denote average
PSNR -+ 1.5xstandard deviation. Reparo maintains its PSNR within a narrow band around 35 dB regardless of the loss level while
Tambur’s worst frames drop to less than 20 dB PSNR at higher loss rates.

displayed video: during a freeze, the video is stuck at the
last rendered frame. In contrast, Reparo maintains a high
and stable performance even under high loss levels, thanks
to two key design elements. First, Reparo does not have any
temporal dependency at the neural codec level. Encoding
into and decoding from tokens occur on a frame-by-frame
basis without any dependency on a previous frame. Thus,
even if a frame’s tokens are mostly lost, it could have a lower
performance but will not affect subsequent frames whose
tokens are received. Second, the loss recovery module uses
a deep generative network that leverages domain knowledge
of human faces to generate lost tokens. It will only fail to
generate accurately if a very large portion of tokens is lost
across packets over multiple frames, which is highly unlikely.

We further show the distribution of frame PSNR values
across the frames in our evaluation corpus with Reparo and
baselines at ~320 Kbps under different packet loss rates in the
“bad” state of the GE channel. As shown in Fig. 6, Reparo’s
distribution and averages of PSNR values are more or less
unaffected by the loss level. With Reparo, almost 99% of
frames have PSNR values larger than 30 dB. The variance
of PSNR values across displayed frames is also much lower
with Reparo than the baselines, showing the stability of the
quality of the displayed video across loss levels. Specifically,
Reparo’s frame PSNR values are mostly between 32.5 dB and
37dB (>90%)). In contrast, as the loss level becomes higher,
the baselines are more likely to experience video freezes, re-
sulting in more frames with low PSNR. These results demon-

GE State of Each Frame

Bad
g
S
(%]
w
(O]
Good 4 ; = = = = = = ; = = = = .
0 50 100 150 200 250 300 350 400 450 500 550 600
Non-Rendered Frames
T True
s]] —— VP9+Tambur
2 —— Reparo
[
o
<
§ False 4 T = = = = = = = = = = "
0 50 100 150 200 250 300 350 400 450 500 550 600
PSNR of Each Frame
840- s
< 304 Y\~ W | =T — ~—y
< = VP9+Tambur \‘
¥ 207 —— Reparo
10 T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600

Frame Index

Figure 7: Timeseries comparing Tambur and Reparo on one video and loss pattern. Tambur experiences short freezes every time a set
of frames is lost with a corresponding decrease in PSNR. Reparo continues rendering frames and its visual quality is a lot more stable

throughout the interval.

40

I VP8+ULPFEC 353
3571 Z=Z VP8-+flexFEC
30 B VP9+Tambur

Il Reparo

N
w
L

=
o w
L L

Non-rendered Frames (%)
w S

o
\

Medium High
Loss Level

Figure 8: Comparison of percentage of non-rendered frames
between Reparo and baselines. All baselines experience many
more non-rendered frames than Reparo at all loss levels.

strate that Reparo is more robust and efficient at recovering
from packet losses than current FEC schemes for video con-
ferencing.

Non-Rendered Frames. Another commonly used metric for
evaluating FEC approaches is the frequency of non-rendered
frames, which can cause freezes in the displayed video. One
advantage of Reparo is that it never truly freezes: it always
attempts to generate lost tokens and the frame, regardless of
the packet loss rate. However, in extreme cases, it may still
produce poor generated output. To provide a fair comparison,
we define frames with a PSNR of less than 30dB as “non-
rendered frames” for Reparo, since we observed that VP8/9’s
PSNR rarely drops below 30 dB unless frames are lost and the
video stalls. We note that such a definition favors baselines in
their comparisons with Reparo since we do not penalize them
for low-quality rendered frames.

We evaluated Reparo and baselines at a similar bitrate
(~320 Kbps) under various loss levels. As shown in Fig. 8,
Reparo nearly eliminates non-rendered frames under all loss
levels, whereas all baselines have a noticeable number of non-
rendered frames. This result further demonstrates Reparo’s
effectiveness in displaying consistently high-quality videos
even under severe packet losses, in contrast to current codecs
and FEC schemes that cause extended freezes.

A Detailed Example. To better understand Reparo’s benefits
come from, we present a time series of loss patterns, non-
rendered frames, and PSNR values for Reparo and Tambur
over a 30-second window in Fig. 7 for a particular video
sequence. The loss level is set to medium (packet loss prob-
ability of 0.5 in the bad state). The sequence of lost frames
starting at frame index 71 causes Tambur to experience an ex-
tended freeze between frame 72 and frame 177, even though
many frames in that timeframe were not lost. This is due to
temporal dependencies between video frames, where frames
are compressed based on the differences between them. As a
result, a lost frame can lead to subsequent undecodable frames
(even when they’re received successfully) until the encoder
and decoder are reset using a keyframe. As expected, Tambur
exhibits much lower PSNR (~15 dB) during that timeframe
between frames 72 and 177. Tambur then forces the encoder
to transmit a keyframe to resume the video stream. Subse-
quent frames’ PSNR values go back to what they were prior
to the freeze period. If such a keyframe is also lost (which is
more likely because a keyframe is much larger than normal
frames and contains more packets since it is compressed inde-
pendently of its adjacent frames), it could cause long freezes
that span several seconds.

In contrast, Reparo is much more stable in PSNR and rarely

GE State of Each Frame

Bad

GE State

Good

0 2 4 6 8 10 12
Non-Rendered Frames
g True
b5t = VP9+Tambur
° = Reparo
Q
o
<
2 False = = . = -
0 2 4 6 8 10 12

PSNR of Each Frame

— 40

< = VP9+Tambur

{201 — Reparo

10

0

Ground
Truth

Reparo

VP9+Tambur

Frame Index

Freeze

Figure 9: Qualitative results of Tambur and Reparo during a Tambur’s short freeze of 8 frames. The GE loss channel is in a “bad”
state at frames 4, 5, 6, and 8, causing packet losses for both VP9+Tambur and Reparo. Tambur completely freezes from frames 3 to 10
because of lost packets, leading to very low PSNR. On the other hand, though Reparo experiences the same GE loss state as Tambur, it
generates most of the frames and maintains a high PSNR. Even for the frame under 30 PSNR, it still produces reasonable output and

tracks the hand movement accurately.

experiences non-rendered frames, even during periods of loss.
Reparo may generate one or more frames with low PSNR if
it loses many tokens, as happens at frame 424. However, its
per-frame decoding structure ensures that its visual quality
quickly recovers as tokens for future frames start coming in.

To gain a more comprehensive understanding of the effects
of packet loss events, we examine a short freeze event of
Tambur spanning 8 frames in greater detail and compare it to
Reparo in Fig. 9. This figure shows lost frames, non-rendered
frames, frame PSNR values as well as visuals of the displayed
frames in that time interval. As depicted in the figure, part
of the 3™, 4™ and 5™ frames are initially lost, followed by
the loss of the 8" frame. Tambur does not render any frames
between the 3™ and 10" frames, as is evident from the “non-
rendered” frames line and the unchanged video frames in

10

the visual strip beneath. Additionally, the forced keyframe
(frame 11) and subsequent frame 12 have slightly lower PSNR
due to the larger size of the keyframe, which typically has
a lower quality to meet the target bitrate when compressed
without any temporal dependency. In contrast, Reparo does
not experience such a prolonged freeze, as evidenced by the
“non-rendered frames” row and the visual strip. Although
Reparo produces a lower PSNR frame at the 8" frame, it
rapidly recovers once later frames receive sufficient packets
and tokens for high-quality generation.

4.3 Performance on Rate-Limited Networks

In this section, we consider the packet loss caused by a rate-
limited bottleneck link when it saturates. One advantage of

(o]
o

VP9+Tambur
—— Reparo

A U o N
o ©o o o
. . . .

Frame Size (Kbits)
w
o

N
o
1

=
o
L

o

2000 3000 4000 5000

Frame Index

0 1000

Figure 10: Per frame sizes of VP9+Tambur and Reparo for a 3
minute video. Reparo maintains the same frame size across all
frames while VP9 shows variance both across adjacent frames
and across periodic keyframes that are large.

Reparo is its ability to match and transmit at different target
bitrates easily by simply varying the self-drop rate. This is be-
cause, unlike traditional temporal-dependent codecs, Reparo
does not need to transmit keyframes periodically. Instead, ev-
ery frame is encoded into a set of tokens with the same size
across frames. As shown in Fig. 10, VP9+Tambur needs to
transmit a keyframe periodically, causing spikes in its per-
frame sizes. Even the P-frames in VP9 show quite a bit of
variance in their sizes. In contrast, Reparo can always main-
tain a constant size across frames and consequently, constant
bitrate because its neural codec encodes each frame with the
same number of tokens.

Such a stable bitrate improves Reparo’s performance over
fixed-capacity bottleneck links. To simulate such a link, we
use a FIFO queue with a constant (drain) rate of » Kbps.
The size of the queue is set to 0.15 x r, as such a queue will
introduce a 150 ms delay, which is the upper bound of indus-
try recommendations for interactive video conferencing [50].
Packets are queued first and drained at the desired link rate.
When the FIFO queue becomes full, subsequent packets will
be dropped. In Fig. 11, we set r to 320 Kbps and show the
average PSNR of Reparo and VP9+Tambur with different
target bitrates for each codec. Note that the target bitrate for
VP9+Tambur typically does not match the actual bitrate: it is
the input parameter for the VP9 codec to encode a video. As
a result, the actual bitrate of VP9+Tambur can be much larger
than the target bitrate of VP9 depending on the encoding
speed and quality parameters. Also, Tambur’s parity packets
typically introduce 50% to 60% bandwidth overhead, further
inflating the actual bitrate of VP9+Tambur. For example, the
75 Kbps target bitrate corresponds to an actual average bitrate
of 211 Kbps. As a result, we only vary the target bitrate sup-
plied to VP9+Tambur up to 200 Kbps because beyond that

11

Average PSNR vs. Reparo Target Bitrates
—fe- Reparo

35 */*———_*___*__*——-k 35

30 30 N

Average PSNR vs. VP9 Target Bitrates
> VP9+Tambur

ser=="X

25

PSNR (dB)
PSNR (dB)
&
x

20 20 At

"%
15 15 Fo==x

150 175 200 225
Target Bitrate (Kbps)

250 275 300 80 100 120 140 160 180
Target Bitrate (Kbps)

200

Figure 11: Average PSNR of Reparo and Tambur with different
target bitrates for a fixed link capacity of 320 Kbps. Reparo’s
average PSNR improves as the target bitrate is increased. How-
ever, VP9+Tambur starts experiencing loss in its fixed-size queue
beyond a target bitrate of 120 Kbps due to large keyframes that
do not fit in the queue.

its actual bitrate with FEC overheads overshoots the link rate
and causes a lot of packet drops. On the other hand, Reparo’s
actual bitrate can exactly match the target bitrate.

As shown in Fig. 11, the average PSNR achieved by Reparo
increases as the target bitrate is increased. This is expected
because fewer tokens are “self-dropped”, allowing for better
reconstruction. However, while the PSNR of Tambur initially
increases as the target bitrate is increased, it begins to decrease
when the target bitrate is set to 120 Kbps. This occurs because
even with a small target bitrate, the size of a keyframe across
all its packets with VP9 can be much larger than the total
number of bytes that the queue can hold. Consequently, many
packets of this keyframe may be lost. Additionally, when a
keyframe is lost, Tambur will force another keyframe, caus-
ing the queue to remain full and preventing any frames from
being transmitted, resulting in a frozen video over long dura-
tions. As the target bitrate is increased further and this issue
with keyframes becomes more pronounced, VP9+Tambur’s
average PSNR worsens.

In practice, congestion control protocols like GCC [8] are
used to adapt the encoder’s target bitrate based on network ob-
servations such as latency and loss. However, this experiment
shows that choosing the appropriate target bitrate for Tambur
is much more challenging than for Reparo. For VP9+Tambur,
the adaptation protocol must be conservative and operate in a
lower bitrate range to limit packet drops. In contrast, Reparo
can continue to benefit from larger target bitrates as long as
they are smaller than the link capacity, and the best perfor-
mance is achieved by setting the target bitrate near the link
capacity.

4.4 Other Results

Reparo Ablation Study. To allow Reparo to operate in differ-
ent bitrate regimes, we can adjust its hyper-parameters. For
example, we can compress ¢ adjacent frames into the same
fixed size h x w tokens, which reduces the effective bitrate by
a factor of ¢ at the cost of an additional latency of # — 1 frames.

36 1

34 1

T

, #tokens/frame=32x32, codebook size=16384
, #tokens/frame=32x32, codebook size=1024
, #tokens/frame=32x32, codebook size=1024
, #tokens/frame=16x16, codebook size=1024
, #tokens/frame=16x16, codebook size=1024

32 1

dB)

— 30 1
o

26 1

24 A

&
/=

e
L L L [
N H NP R

22

200 300 400

Bit Rate (Kbps)

100

Figure 12: Variants of Reparo that operate in different bitrate
regimes. Reparo achieves different bitrates by varying the num-
ber of tokens per frame, its codebook size, and the number of
frames jointly encoded.

We can also modify the number of residual blocks used in the
encoder and decoder, which changes the number of tokens to
represent a frame. More tokens per frame correspond to better
PSNR and higher bitrate due to better representational power.
We can also use different codebook sizes; larger codebook
sizes produce higher PSNR at the cost of a larger bitrate. In
Fig. 12, we show the PSNR-bitrate curve of Reparo under
different hyper-parameters with a low loss level, demonstrat-
ing that Reparo can be adapted to a large range of bitrates
by varying the codec and loss recovery module trained under
different hyper-parameters. For example, Reparo can choose
to encode two frames together at the cost of 33 ms higher
latency and achieve almost half bitrate (red curve and orange
curve). Reparo can also use a larger codebook to achieve
higher PSNR at the cost of more bits needed to encode each
token index (red curve and blue curve). By default, we use the
middle red curve (t=1, number of tokens per frame=32x32,
codebook size=1024) for 30 fps 512512 videos in our main
experiments.

Table 2: Latency breakdown for different parts of Reparo. The
encoder and packetization are at the transmitter side, while the
loss recovery and decoder are at the receiver side.

‘ Encoder ‘ Packetization ‘ Loss Recovery ‘ Decoder

Latency (ms) | 14.1+0.1 | 0.5£0.009 | 17.8+1.0 | 13.1+0.3

Latency. In Tab. 2, we present the latency of different mod-
ules in Reparo. The neural codec and loss recovery modules
of Reparo have higher encoding and decoding latencies com-
pared to traditional FEC schemes, since they require heavy
computation. For our implementation, the total inference de-
lay incurred by Reparo is 45.5 ms. With typical network queu-
ing delays of 50 ms, the end-to-end delay of Reparo is less
than 100 ms, which meets the industry recommendation of
150 ms for maximum tolerable latency for interactive video
applications [50].

12

Qualitative Results. We also compare Reparo with Tambur
qualitatively. Please refer to this 1ink for qualitative results.

5 Limitations

Although Reparo offers several key advantages over past work,
it also has some limitations. First, the current implementation
of Reparo is in PyTorch, and uses transformers which are
computationally more intensive than traditional video codecs
and FEC-based methods [4, 14]. It requires GPUs equivalent
to an Apple M2 Max GPU to operate in real time. This lim-
its the range of devices on which Reparo can be deployed,
and the current implementation is not suitable for low-end
devices such as smartphones or tablets. However, machine
learning models can be sped up for edge devices using more
efficient model architectures [15, 22, 40, 49], hardware de-
sign [17,18,59], and techniques such as knowledge distilla-
tion [21]. We leave an investigation of such optimizations
to future work. We also note that over time more powerful
GPUs are integrated in edge devices naturally paving the
way for running complex neural networks on them. Second,
Reparo learns a dictionary of tokens specific to the domain
of interest, which is video conferencing for the purpose of
this paper. While Reparo can potentially be extended beyond
video conferencing to other domains, this will require learn-
ing a dictionary for each new domain. As such it is more
specialized and less general than traditional FEC codecs.

Despite these limitations, Reparo represents a promising
approach to loss-resilient video conferencing. Future research
may focus on addressing these limitations and making Reparo
more accessible to a wider range of devices and different
video-based applications.

6 Conclusion

We present Reparo, a novel loss-resilient generative video
conferencing architecture that uses generative deep learning
models to reconstruct missing information without sending
redundant packets or relying on retransmissions. Instead, the
receiver reconstructs missing information using its knowl-
edge of how visual objects look and relate to each other. Our
approach offers several advantages, including maintaining a
constant bit rate, easy adaptation to any target bitrate, and
one-way communication between the transmitter and receiver.
We evaluate Reparo on a large and diverse corpus of publicly
available video conferencing videos and show that it consis-
tently outperforms multiple FEC baselines including Tambur,
a state-of-the-art loss-resilient video conferencing platform
based on streaming FEC. Reparo significantly improves over
them under different loss levels, while also mostly eliminating
video freezes. Our approach presents a promising solution to
the challenges of real-time video conferencing applications,
and we believe it opens up exciting possibilities for further
research in this area.

https://www.dropbox.com/scl/fi/xzocvdbfyqiv620pvo36y/qualitative.mp4?rlkey=hynicc9kxbc2bs10i9t5svpor&st=mwn8kzp3&dl=0

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

AV1 bitstream & decoding process specification. http:
//aomedia.org/avl/specification/.

Ringmaster. https://github.com/microsoft/
ringmaster.
WebRTC. https://webrtc.googlesource.com/

Src.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lucié, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 6836—

6846, 2021.

Jim Bankoski, Paul Wilkins, and Yaowu Xu. Techni-
cal overview of VP8, an open source video codec for
the web. In 2011 IEEE International Conference on
Multimedia and Expo, pages 1-6. IEEE, 2011.

Ali Begen. Rtp payload format for 1-d interleaved parity
forward error correction (fec). Technical report, 2010.

Jill M Boyce. Packet loss resilient transmission of mpeg
video over the internet. Signal Processing: Image Com-
munication, 15(1-2):7-24, 1999.

Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In Proceedings of the 7th International Con-
ference on Multimedia Systems, pages 1-12, 2016.

Huiwen Chang, Han Zhang, Jarred Barber,
AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Murphy, William T Freeman, Michael
Rubinstein, et al. Muse: Text-to-image generation
via masked generative transformers. arXiv preprint
arXiv:2301.00704, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 11315-11325, 2022.

Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Ara-
pin, Yue Zhang, Qizheng Zhang, Yuhan Liu, Xu Zhang,
Francis Y. Yan, Amrita Mazumdar, Nick Feamster, and
Junchen Jiang. Grace: Loss-resilient real-time video
through neural codecs, 2023.

Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das,
Aruna Balasubramanian, and Dimitris Samaras. Swift:
Adaptive video streaming with layered neural codecs. In
19th USENIX Symposium on Networked Systems Design

13

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

and Implementation (NSDI 22), pages 103—118, Renton,
WA, April 2022. USENIX Association.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at
scale. In Int. Conf. on Learning Representations (ICLR),
2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997-2017, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Tam-
ing transformers for high-resolution image synthesis. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12873—-12883,
2021.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse gpu kernels for deep learning. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1-14.
IEEE, 2020.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. Ese: Efficient speech recognition en-
gine with sparse Istm on fpga. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 75-84, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollar, and Ross Girshick. Masked autoencoders are
scalable vision learners. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
16000-16009, June 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

http://aomedia.org/av1/specification/
http://aomedia.org/av1/specification/
https://github.com/microsoft/ringmaster
https://github.com/microsoft/ringmaster
https://webrtc.googlesource.com/src
https://webrtc.googlesource.com/src

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional ad-
versarial networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages
1125-1134, 2017.

Pantea Karimi, Sadjad Fouladi, Vibhaalakshmi Sivara-
man, and Mohammad Alizadeh. Vidaptive: Efficient and
responsive rate control for real-time video on variable
networks. arXiv preprint arXiv:2309.16869, Sep 2023.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4401—
4410, 2019.

Sergey Kastryulin, Jamil Zakirov, Denis Prokopenko,
and Dmitry V. Dylov. Pytorch image quality: Metrics
for image quality assessment, 2022.

Mehrdad Khani, Vibhaalakshmi Sivaraman, and Mo-
hammad Alizadeh. Efficient video compression via
content-adaptive super-resolution. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 45214530, 2021.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
et al. The open images dataset v4: Unified image classi-
fication, object detection, and visual relationship detec-
tion at scale. International Journal of Computer Vision,
128(7):1956-1981, 2020.

Doyup Lee, Chiheon Kim, Sachoon Kim, Minsu Cho,
and Wook-Shin Han. Autoregressive image genera-
tion using residual quantization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2022.

Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han
Zhang, Dina Katabi, and Dilip Krishnan. Mage: Masked
generative encoder to unify representation learning and
image synthesis. arXiv preprint arXiv:2211.09117,
2022.

Tianhong Li, Dina Katabi, and Kaiming He. Self-
conditioned image generation via generating representa-
tions. arXiv preprint arXiv:2312.03701, 2023.

14

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

(42]

[43]

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo
Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumb-
ley. Audioldm: Text-to-audio generation with latent
diffusion models. arXiv preprint arXiv:2301.12503,
2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. DVC: An end-to-end
deep video compression framework. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 11006-11015, 2019.

David JC MacKay. Fountain codes. IEE Proceedings-
Communications, 152(6):1062-1068, 2005.

Debargha Mukherjee, Jingning Han, Jim Bankoski,
Ronald Bultje, Adrian Grange, John Koleszar, Paul
Wilkins, and Yaowu Xu. A technical overview of VP9,
the latest open-source video codec. SMPTE Motion
Imaging Journal, 124(1):44-54, 2015.

Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: accurate {Record-and-
Replay} for {HTTP}. In 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15), pages 417-429,
2015.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient
vision transformers with dynamic token sparsification.
Advances in neural information processing systems,
34:13937-13949, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals.
Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32,
2019.

Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300-304, 1960.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684—-10695, 2022.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Michael Rudow, Francis Y Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for
videoconferencing via streaming codes. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 953-971, 2023.

Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, 17(9):1103-1120, 2007.

Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha
Venkatapathy, Mehrdad Khani, Sadjad Fouladi, Mo-
hammad Alizadeh, Frédo Durand, and Vivienne Sze.
Gemino: Practical and robust neural compression for
video conferencing. arXiv preprint arXiv:2209.10507,
2022.

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology, 22(12):1649-1668,
2012.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2818-2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105-6114. PMLR, 2019.

International Telecommunication Union. ITU-T G.1010:
End-user multimedia QoS categories. In Series G:
Transmission Systems and Media, Digital Systems and
Networks, 2001.

Adron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
shot free-view neural talking-head synthesis for video
conferencing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10039-10049, 2021.

15

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
shot free-view neural talking-head synthesis for video
conferencing. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages

10039-10049, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error vis-
ibility to structural similarity. IEEE transactions on
image processing, 13(4):600-612, 2004.

Hyunho Yeo, Youngmok Jung, Jachong Kim, Jinwoo
Shin, and Dongsu Han. Neural adaptive content-aware
internet video delivery. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 645-661, 2018.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruom-
ing Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized
image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 586-595, 2018.

Zhekai Zhang, Hanrui Wang, Song Han, and William J
Dally. Sparch: Efficient architecture for sparse matrix
multiplication. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 261-274. IEEE, 2020.

Haitao Zheng and Jill Boyce. An improved udp pro-
tocol for video transmission over internet-to-wireless
networks. IEEE Transactions on Multimedia, 3(3):356—
365, 2001.

A Implementation Details

Because of GPU memory limitation, we adopt a two-
stage training recipe for Reparo similar to many prior ap-
proaches [16,31]. We first train our VQGAN codec which
encodes each video frame into discrete tokens without any
losses. We then fix the VQGAN codec and train the loss re-
covery module on the discrete tokens with self-dropping and
packet loss. In this section, we describe the neural network
structure and training schemes of Reparo’s neural codec and
loss recovery module, as well as the design of the bitrate
controller in detail.

A.1 Neural Codec

~

Transmitter

Codebook Z
I ii
w
] 0[5]27] %0
Encodear b Quantization GEE N
> E " fi 16 |25 a1] 65
C & ss | o7 [12]58]

Image Features Quantized Features /

Tokens Indices

{deo Frame x

Receiver

Codebook Z

| ii
uy |
0[5 [27] o5
BRE Index Selection
- h Decoder
16|25 [8165 G
55| 67 ulE‘ C

Reconstructed Quantized Features
\\ Reconstructed Frame X, /

Figure 13: Token-based neural codec. The transmitter first uses
the encoder to convert patches from video frames into features.
It then uses a codebook to quantize the features into tokens by
finding the nearest neighbor of each feature in the codebook. The
receiver first maps the received and generated tokens to back-
to-image features using the codebook. It then uses a decoder to
reconstruct the video frame.

Reconstructed Tokens Indices

Model Structure. We use a CNN-based VQGAN [16] en-
coder and quantizer to tokenize the 3 x 512 x 512 input frame
to 128 x 32 x 32 quantized features, where 128 is the number
of channels of the quantized features. It then uses a codebook
to quantize the features by finding the nearest neighbor of
each feature in the codebook. The codebook is a 1024 x 128
matrix by default, with 1024 entries, each of which uses a
128-dimensional feature. The decoder operates on the quan-
tized features and reconstructs the 3 x 512 x 512 video frame.
The encoder consists of 5 blocks and each block consists
of 2 residual blocks which follow standard ResNet’s resid-
ual block design [20]. After each block in the encoder, the

16

Table 3: VQGAN codec training setting.

Parameter ‘ Value
Optimizer Adam [35]
Base Learning Rate le-4

Weight Decay 0

Optimizer Momentum B1,B2=0.5,0.9
Batch Size 24

Learning Rate Schedule | Constant [34]
Warmup Epochs 0

Gradient Clip 0

Dropout 0

feature vector is down-sampled by 2 using average pooling.
The quantizer then maps each pixel of the encoder’s output
feature map to the nearest token (based on L, distance) in
the codebook Z with N = 1024 entries, each entry with 128
channels. The decoder consists of another 5 blocks where
each encoder block has 2 residual blocks. After each block in
the decoder, the feature map is up-sampled by 2 using bicubic
interpolation. The tokenizer consists of 23.8M parameters
and the detokenizer consists of 30.5M parameters.

Training schemes. We follow the original VQGAN training
recipe [16] to train the VQGAN. We use a vector-quantize
loss between the image features and quantized tokens that
nudges the image features towards the tokens that they map to,
a reconstruction loss (L) between the input and final recon-
structed frame, a perceptual loss [58] between the input and
reconstructed frame, and a discriminative loss [23] between
the input and reconstructed frame. Detailed descriptions of
the losses can be found in the VQGAN paper [16].

We use the officially released VQGAN encoder and de-
coder pre-trained on OpenImages [29] to initialize our codec
whenever possible. Openlmages is a large-scale image dataset
consisting of ~9M natural images. We observe that such ini-
tialization largely speeds up our training (takes ~ 10 epochs
to converge), but we also note that training from scratch on
our pre-training face datasets can achieve similar performance
with a much longer training time (~200 epochs). We train our
neural codec using a constant learning rate and train it until
there is no substantial change in the training loss. Please refer
to Tab. 3 for the training recipe of our VQGAN codec.

A.2 Loss Recovery Module

Model Structure. The major component of our loss recov-
ery module is a spatio-temporal ViT network. In our de-
fault setting, the input tokens are of shape C x T X h x w,
where C =768, T = 6, h = 32, w = 32. We use two sepa-
rate learnable position embeddings, one for time and one for
space, which we add together to provide each input token
its positional information. We then adopt a standard spatio-
temporal ViT architecture [14], which consists of a stack

Table 4: Loss recovery module training setting.

Parameter ‘ Value

Optimizer Adam [35]
Learning Rate 1.5e-5

Weight Decay 0.05

Optimizer Momentum B1,B2=0.9,0.95
Batch Size 24

Learning Rate Schedule Cosine Decay [34]
Warmup Epochs 10

Training Epochs 200

Gradient Clip 3.0

Label Smoothing [48] 0.1

Dropout 0.1

Min. Self-Drop Rate 0

Max. Self-Drop Rate 0.6

Self-Drop Rate Mode 0.3

Self-Drop Rate Std. Dev. | 0.3

Min. Packet Loss Rate 0

Max. Packet Loss Rate 0.8

of spatio-temporal Transformer blocks [52]. Each spatio-
temporal block consists of a spatial block and a temporal
block. Each of the two blocks independently consists of a
multi-head self-attention block and a multi-layer perceptron
(MLP) block. In total, we use 20 spatio-temporal Transformer
blocks. The number of heads in each multi-head self-attention
layer is 12, and the MLP ratio is 4. The embedding dimension
throughout the Transformer is 768. Our spatio-temporal ViT
consists of 172M parameters. We note that more Transformer
blocks, more heads in the self-attention layer, and a larger em-
bedding dimension can further improve the performance of
Reparo , but they also introduce more computation overheads.
Training schemes. Tab. 4 provides the training recipe for
our spatio-temporal ViT for loss recovery. The self-drop rate
is sampled from a truncated Gaussian distribution from 0 to
0.6 and centered at 0.3, with a standard deviation of 0.3. The
packet loss rate is uniformly sampled from O to 0.8.

A.3 Bitrate Controller

Reparo employs self-dropping to drop a fixed fraction of
tokens across all packets of a frame to achieve the target
bitrate. For example, if the target bitrate is 200 Kbps and the
bitrate when transmitting all tokens is 300 Kbps, the bitrate
controller will sample one-third of the tokens in each packet
to drop.

To minimize the impact of self-dropping on the loss re-
covery module, we drop tokens randomly in each packet, so
that the dropped tokens are distributed uniformly in space
and time. However, randomly dropping tokens in each packet
requires telling the receiver which tokens are dropped, leading
to bandwidth overheads. Otherwise, the receiver will be con-
fused about the position of each received token in the 7 x w

17

token map.

To address this issue, we deterministically sample the to-
kens to be self-dropped in each packet based on the frame
index and packet index. We achieve this by setting the random
seed for pseudo-random self-dropping sampling in a packet
to 4 x frame index + packet index. Consequently, the receiver
compares the received packet size to the expected packet size
to identify how many tokens were lost. The receiver then
decodes the locations of the lost tokens by simulating the self-
drop procedure on its end by repeating the pseudo-random
sampling procedure with the same seed and drop rate as the
transmitter.

At the start of a video conference, the transmitter selects the
variant of the codec and loss recovery module to use based on
the target bitrate and synchronizes this information with the
receiver. It also communicates the expected number of tokens
per packet and frame during this process. Once the variant is
established, it can adapt to bitrate changes of up to 50% with
self-dropping. If the target bitrate changes significantly, the
transmitter selects a new variant and notifies the receiver.

	Introduction
	Related Work
	Reparo Design
	Overview
	Reparo Components
	The Neural Codec: Encoder and Decoder
	The Packetizer
	The Bitrate Controller
	Loss Recovery Module

	Evaluation
	Experiment Setup
	Performance on Lossy Networks
	Performance on Rate-Limited Networks
	Other Results

	Limitations
	Conclusion
	Implementation Details
	Neural Codec
	Loss Recovery Module
	Bitrate Controller

