
Robust Heuristic Algorithm Design with LLMs
Pantea Karimi

MIT
Dany Rouhana

Microsoft
Pooria Namyar

University of Southern California

Siva Kesava Reddy Kakarla
Microsoft Research

Venkat Arun
The University of Texas at Austin

Behnaz Arzani
Microsoft Research

Abstract — We posit that we can generate more robust and
performant heuristics if we augment approaches using LLMs
for heuristic design with tools that explain why heuristics
underperform and suggestions about how to fix them. We
find even simple ideas that (1) expose the LLM to instances
where the heuristic underperforms; (2) explain why they
occur; and (3) specialize design to regions in the input space,
can produce more robust algorithms compared to existing
techniques — the heuristics we produce have a ∼ 28× better
worst-case performance compared to FunSearch, improve
average performance, and maintain the runtime.

1 INTRODUCTION

This paper asks whether LLMs can help design robust heuris-
tic (approximate) algorithms and whether “old-school” mod-
eling techniques, like heuristic analysis and combinatorial
reasoning, can help them do so more effectively1.
We need to “robustify” heuristics. Deployed heuristics

can fail in certain important edge-cases, which can cause
catastrophic impact [9], but operators often deploy them
anyway [8, 21, 30, 43, 44, 49, 50, 57, 61, 66] because they are
faster or more efficient than the optimal. Prior work has
found instances of such deployed heuristics that have severe
performance problems under practical workloads [9, 11, 49].
It is hard to design robust heuristics. Researchers have

tried to improve certain heuristics [1, 4, 5, 13, 15, 21, 23, 30,
34, 43, 44, 50, 51, 57, 65]. But the heuristic’s performance is
tightly coupled with the workloads and hardware — oper-
ators have to often re-design or change heuristics as those
parameters change. We need to reason across the problem
structure, the workload, the hardware, and the behavior of
other systems that interact with the heuristic to robustify it.

Our goal is to automate this process so that operators can
easily create robust heuristics for any hardware or workload.
This allows us to lower the risk of deploying these heuristics.

Recent works use LLMs to improve heuristics [25, 41, 60],
and companies have deployed the “synthetic” algorithms
they produce [25]. These solutions use LLMs in a search
process (e.g., genetic search) where the LLM produces new
heuristics based on feedback on the performance of those
it produced so far (§2). These tools “evaluate” the code the

1We discuss why LLM-based approaches are the right technique in §5

LLM produces on random samples from the input space (or
samples from their production workloads) — their goal is
to improve the average performance of the heuristic and
they often ignore important corner cases. We find these solu-
tions only scratch the surface of what’s possible: even simple
ideas that strategically select inputs (to evaluate the code on)
improve the worst-case performance of the heuristics they
generate in each step by ≥ 20% (Fig. 4)2
It is too much to ask LLMs to design robust heuristics:

we show heuristics they generate sometimes underperform
(Fig. 3). No matter how cleverly we prompt them, LLMs have
a limited circuit size and heuristic design is not a polynomial
time problem [2, 24, 58]. LLMs, on their own, often cannot
infer why and when a heuristic may underperform. This
limits their ability to improve the heuristic (§3).
We need heuristics that are resilient to edge-cases, ad-

versarial traffic, and diverse workloads. Workloads change
over time [56], and the performance of the heuristic on sam-
ples from past instances gives little insight about why the
heuristic underperformed and often none about how it may
perform on new workloads. This makes it hard to produce
robust designs. Past research in networking [5, 50, 57, 65] is
a good indicator that knowing why the heuristics underper-
form is the key that enables us (humans) to make progress
(§3.3) and it stands to reason the same may hold for LLMs.

We think traditional techniques can help, but we need
to enable the LLM to both use them and to interpret their
outputs. This is hard.

It would help to provide the LLM with information about
why the heuristic underperformed in each case. We need to
convert these “explanations” into a form that benefits the
LLM-based search: we find it is better to first use the LLM to
distill these insights into “suggestions” on how to improve
the heuristic (see Fig. 4).
Many heuristics are approximate solutions to NP-hard

problems. So, no matter how cleverly we prompt the LLM, a
general polynomial-time heuristic that would perform well
in the corner cases may not exist. We hypothesize it may be
easier to produce an ensemble of heuristics, each specialized
to regions of the input space, instead of a generalist that
would perform well across the entire space. We tried this
2We find the heuristics we generate (surprisingly) do not harm the runtime
and even improve the average performance of the heuristic (Tab. 1).

ar
X

iv
:2

51
0.

08
75

5v
1

 [
cs

.A
I]

 9
 O

ct
 2

02
5

https://arxiv.org/abs/2510.08755v1

Karimi et al.

Heuristic Analyzer and Explainer

R1

R0
R2
H0: Base Heuristic

(a) Adversarial () and normal () samples
with region (green boundaries) descriptions

1 2 3

4 5

100 100

50

50
50

Heuristic Optimal

Demand

src-dest value
1-3 50
1-2 100
2-3 100

(b) Explanation (e.g., Decision Differences:
heuristic and optimal route 1–3 differently).

Suggester LLM

Using R𝑖 (a) samples
and (b) explanations give
suggestions to improveH0

Heuristic Generator

(LLM-Based)

List of suggestions
(idea and reasoning)

New heuristic
H𝑖 for region R𝑖

Example LLM Suggestions:

1. "Select a small subset of heavy
demands that cross minimal cuts
for an exact multi-commodity flow
solver over the full graph; fix their
routes, then route all other demands
on the residual capacities greedily or
via the K-best multi-path approach."
2. "If a demand’s shortest path in-
cludes links whose utilization ex-
ceeds a set threshold (e.g., 70%),
trigger a capacity-aware multi-path
split: instead of dropping overflow
at the bottleneck, inflate saturated
link costs to find additional shortest
paths and split the flow across them."

Figure 1: Robusta uses heuristic analyzers in a loop with the LLM. The heuristic analyzer finds: (a) regions of the

input space where the heuristic underperforms (R1, R2); (b) explanations to guide the search. For each region, our

solution uses the LLM to suggest how to improve the heuristic for that region and then implements it based on

those suggestions. We can run (H1,H2) for inputs that come from their corresponding region.

idea: we found “good” subregions of the input space and used
the LLM to design specialized strategies for each one — the
heuristics the LLM produced were more robust (see §3.2)
compared to the unmodified process. It is hard to produce
good regions in general because it depends on the problem
structure and impacts the quality of the result.
Some of these problems are easier to tackle in the net-

working domain: (1) we have well-defined protocols that
standardize the network’s behavior — we can leverage the
predictability this brings to “simplify” the problem; (2) we
have a network topology in which we see “repeated” be-
haviors which we may be able to use to scale our solutions.
This intuition is the same that has enabled us to scalably ap-
ply techniques from programming languages to networking
problems in network verification (e.g., [8, 10, 16, 37]). We
expand on these opportunities as we discuss open questions.
Summary.We introduce Robusta (Fig. 1), a new solution
to LLM-based heuristic design; novel mechanisms that allow
us to address some of the challenges we discussed above;
and propose research directions that help address the others.
The design starts with a base-heuristic and uses heuristic
analyzers alongside calls to an LLM to partition the space
into regions; “explain” why the heuristic underperforms; and
derive “suggestions” on how to improve it. It then modifies
the search to (1) create a specialized heuristic for each region;
and (2) use the suggestions to find better heuristics. Our
initial results show the mechanisms we introduce are viable.

Our contributions are as follows:
• Wepropose a novel architecture for LLM-based heuris-

tic design through explanation-guided genetic search.
• We use a case study of a traffic engineering problem
to show these mechanisms are viable. We introduce

certain design principles and discuss techniques that
we found ineffective. We show Robusta finds heuris-
tics that are 28× better than the baselines.
• We discuss open questions and the opportunity to

solve them. We also describe how we may solve these
challenges and why they may be more tractable prob-
lems to solve in the networking space.

For our initial prototype, we use existing heuristic ana-
lyzers and algorithms that explain heuristic performance,
such as MetaOpt [49] and XPlain [31], but our architecture
is general and can support any similar tool.

2 BACKGROUND

Researchers and practitioners have used LLMs for program
synthesis. Many copilots provide an interactive framework
to help write programs [7, 20, 27, 35, 53], sometimes with
human guidance [12]. Others generate tests to enable LLMs
to critique their own outputs [40, 54, 59]. Researchers have
used formal methods to guide LLM-based synthesis across
domains such as program generation [22, 47], loop-invariant
inference [63], and network configuration management [46].
Recent work on LLM-based heuristic design presents a

new breakthrough [3, 25, 29, 41, 60, 64]. We discuss Fun-
Search [60] as an example. FunSearch uses genetic search al-
gorithms where the LLM does cross-over (combines different
heuristics to create stronger ones) and mutation (introduces
random changes to the heuristic to explore the space).

FunSearch’s algorithm starts with a set of base heuristics.
These heuristics are the initial seed to “clusters” which the
algorithm evolves over time. Users provide an “evaluation
function” that scores the heuristics based on the heuristic’s
performance on random samples from the input space.

Robust Heuristic Algorithm Design with LLMs

FunSearch iterates as follows: (1) it evolves the heuristics
within each cluster for a pre-specified amount of time; (2) it
then evaluates the heuristics in each cluster and assigns a
score to the cluster based on the best performing heuristic in
it; (3) the algorithm then removes half of the lowest scoring
clusters and spawns new ones to replace them. To seed the
new clusters, the algorithm uses the best heuristic from the
clusters that survived the previous round. The algorithm
terminates after a pre-set timeout.

3 THE PROMISE AND OPEN QUESTIONS

LLM-based program synthesis differs from FunSearch—and
from our focus—in an important way: synthesized programs
are typically judged as either correct or incorrect. Heuristics,
by contrast, lack such a binary criterion. Their evaluation
is based on performance, which is not only quantitative but
often nuanced.Which parts of the input spacematter? Should
we judge the heuristic based on its average performance?
on the tail performance? or the worst case? What input
distributions should we use to evaluate the heuristic? should
we focus on specific input instances or on the entire space?

If we measure its average performance, then we may po-
tentially mask the heuristic’s poor performance on rare (but
critical) inputs because of its strong performance elsewhere.
This is especially true when we evaluate the heuristic on
arbitrary or random samples from the input space.
A single counter-example rarely captures the full extent

of a heuristic’s weaknesses. A heuristic’s performance often
suffers under many different “types” of inputs, which makes
it harder to diagnose and improve. Many of these heuristics
try to find polynomial-time approximations for NP-hard
problems or faster heuristics for polynomial-time problems
(e.g., in traffic engineering). Often, no single fast heuristic
can performwell across the entire input space —we are more
likely to succeed with specialized heuristics that combine
multiple complementary strategies.
We next discuss these concepts in depth, show how they

help generate better heuristics through a concrete example,
and discuss open problems our community needs to solve in
order to apply these techniques in practical settings.

3.1 Adversarial samples or random ones?

FunSearch and similar algorithms evaluate heuristics they
generate on random samples over the input space and use
the result as feedback to guide the search. But such random
samples — especially those that come from a uniform (or
other ad-hoc) distributions — can miss important regions
of the input space. A heuristic may perform well on most
of these inputs, yet underperform on important practical
instances. Such instances occasionally do happen in real
workloads and cause severe consequences [9, 11, 49].

0 5 10 15 20 25
10−13
10−8
10−7

0.1
1
10
100

Better

Step

Lo
w
es
ts
ub

op
tim

al
ity

ye
t

(%
of

ba
se

su
bo

pt
im

al
ity

)

& FunSearch [60]
& Adversarial Samples (§3.1)

& Adversarial Samples
and Suggestions (§3.3)

Figure 2: We compare FunSearch with solutions where

we (1) focus on adversarial samples in each step (§3.1);

and (2) also incorporate “suggestions” in each step

(§3.3); on a traffic engineering problem. Dashed lines

report the lowest (best) suboptimality achieved for a

heuristic on training samples so far, and the solid lines

measure it for a held-out set of adversarial samples.

The suboptimality is the worst-case performance of a

heuristic compared to the optimal across all samples.

Promise. If we evaluate the average case performance of a
heuristic, we can mask the scenarios in which the heuristic
underperforms, especially if these occur in small pockets of
the input space. It is not easy for a user to modify the sam-
pling distribution to fix this issue (to increase the probability
that the evaluator draws samples from regions where the
heuristic may underperform) because they may not be able
to identify when, where, and how they should do so. But
we hypothesize if we bridge this gap we can then guide the
synthesis process towards more robust solutions.
Our preliminary results support this hypothesis. In ex-

periments where we targeted Microsoft’s traffic engineering
heuristic [33, 48]—which “pins” small demands to their short-
est paths and optimally routes the rest—we expose the LLM
to adversarial inputs (input instances that cause the largest
performance problems for the heuristic) and their individual
performance suboptimalities (the performance gap between
the heuristic and the optimal solution)3. We found that even
this simple signal allowed FunSearch to create heuristics that
outperformed (they had a lower suboptimality) what it found
before (Fig. 2). We describe the experiment details in §4.
Open questions. Ideally, we would revise the adversarial in-
puts at each iteration of the search process, since they evolve
alongside the heuristic. But most tools that produce adver-
sarial inputs require a mathematical model of the heuris-
tic [2, 8, 49]. We found LLMs, out of the box, could not pro-
vide suchmodels. Thus, in our experiments, we generated the
adversarial instances only for the base heuristic and reused

3We define the (overall) suboptimality as the worst-case suboptimalities
across all input instances

Karimi et al.

0 5 10 15 20

1

10

100

13.3× Better

Step

Lo
w
es
ts
ub

op
tim

al
ity

ye
t

(%
of

ba
se

su
bo

pt
im

al
ity

) & Joint Regions
& Separate Regions

Figure 3: we create an approach which uses FunSearch

to create specialized heuristics for each region (sepa-

rate regions) with one that generates a single heuristic

to operate over the entire space. We find specialized

heuristics outperform monolithic ones. The dashed

and solid lines show overall suboptimality so far on

training and held-out samples, respectively.

them to evaluate all subsequent heuristics during the search.
Even this limited signal was valuable.

Prior work has used LLMs to produce mathematical mod-
els for certain problems [36, 38] — we have reason to be
optimistic. Several domain-specific languages (DSLs) already
exist to make such modeling accessible—for example, MiniZ-
inc [45] and AMPL [26]. XPlain [31] introduces a DSL that
helps model heuristics as optimization problems. These DSLs
may enable LLMs to model heuristics automatically.

Another challenge is scalability. SMT-based [2, 8, 10] and
optimization-based heuristic analyzers [31, 49] are slow. This
is acceptable for offline analysis of a single heuristic, but it
becomes a bottleneck in search-driven synthesis frameworks
that need to quickly iterate over many heuristics. We can
mitigate this problem with domain-specific strategies. For
example, we can use partitioning techniques inspired by
NCFlow [1] and POP [51] to scale heuristic analysis for wide-
area networks [49]; or graph isomorphism for those that
target data centers [6, 14, 62]; or use specialized encodings
to analyze queues or schedulers [8, 49]. But we need more
research to automatically find and apply the appropriate
scaling strategy (and maybe even more than one).

3.2 Ensemble of heuristics or just one?

Inputs in different regions of the input space often exhibit
shared structural properties which a specialized heuristic can
exploit. An ensemble of specialists is likely to outperform
generalists that FunSearch-like techniques produce.
Promise.Weuse XPlain [31] to partition the input space into
regions where the base heuristic underperforms. We then
compare the performance of two approaches: one where
FunSearch generates a single general-purpose heuristic, and
another where it synthesizes a separate heuristic for each
region, which we then combine into an ensemble (Fig. 3).

In our experiments, one region of the input space con-
sisted of scenarios with a few large demands that shared
bottlenecks with many smaller flows. The base heuristic,
which “pins” small demands to their shortest paths, per-
formed poorly here: it pre-committed small flows to a route
and left insufficient capacity for larger demands. The special-
ized heuristic reversed this order: it sorted demands by size
and allocated capacity to larger flows before smaller ones.
While the heuristic above may not always perform well

(it is slower since it does not remove as many demands from
the optimization as the base and since it prioritizes large
demands its mistakes are more costly) but it improves per-
formance in this region. Microsoft deployed the “pinning”
heuristic because such skewed demands are less common.
But recent work has shown when such demands happen in
practice they can degrade performance by 30% [49]. Through
this specialized heuristic, we can have the best of both worlds
and switch to the specialized heuristic when we see demands
that fit this pattern.

Operators can either inspect the demand in each iteration
to select an appropriate heuristic, or run multiple heuristics
in parallel and pick the best.
Open questions. We used regions that trigger a similar
behavior in the base heuristic [31]. But there are other vi-
able approaches. For example, symbolic execution tools such
as Klee [18] allow us to find equivalence classes of inputs
that trigger the same code-paths in an algorithm — we can
view each such code path in the optimal algorithm, the base
heuristic, or the Cartesian product of both as a new region.

There is an opportunity to define these regions in a domain-
specific way and based on practical insights. For example,
graph-partitioning algorithms [17, 52] generate good equiv-
alence classes for traffic engineering heuristics. We need to
develop techniques to select the best approach automatically.
Our approach is expensive at larger scales. We hypoth-

esize that the principle of bounded model checking may
help. It may be possible to (1) derive the regions for lower-
dimensional inputs and then project them into regions in the
higher-dimensional space; and/or (2) find “concepts” that
describe how to improve the heuristics based on inputs
in lower-dimensions and then apply those concepts in the
higher-dimensional space (this is somewhat similar to [55]);
and/or (3) express partitions in a “scale-invariant” DSL. The
LLM itself may help enable such solutions.

We have some evidence that this may work. We used our
approach and a medium sized (see §4) topology to generate
more robust heuristics and then evaluated the heuristics
we generated on a large one (one with 196 nodes and 486
edges). The worst suboptimality (as determined by running
a heuristic analyzer on the larger topology) was 46% on the
larger topology whenwe ran the base heuristic. The heuristic

Robust Heuristic Algorithm Design with LLMs

Vanilla Samples Samples
& Explanations

Suggestions
20

50

100

200

500
Better

Su
bo

pt
im

al
ity

(%
of

ba
se

su
bo

pt
im

al
ity

)

Figure 4: Explanations benefit the search. We consider

one step of the search process and see that we can find

better heuristics if we first “explain” why a heuristic

underperforms. We can improve the approach further

if we convert these explanations into suggestions on

how to improve the heuristic. We evaluate all of the

approaches on a held-out set of adversarial samples.

we created based on the smaller topology, without further
modification, reduced this to 27%.
We defined regions statically (we define them once and

we analyze the base heuristic to do so). The base heuristic
we start with may not be a good one — this heuristic just
seeds the process and is only meant as a starting point for the
search. It may be unwise to define the regions based on this
heuristic. We can solve this problem if we instead define the
regions based on the optimal algorithm instead (but this can
be too slow in most cases) or if we re-evaluate the regions as
we find better heuristics during the search. How and when
to apply each approach is an open problem.

3.3 Do explanations help?

Researchers have worked to improve networking heuristics
for decades. SWAN [30] designed an algorithm that out-
performed the traffic engineering solution Danna et al. [21]
had proposed and Soroush [50] then design an algorithm
that improved it further. Cassini [57] improves Themis [43].
TACCL [61] improves MSCCL [19] which is itself outper-
formed by [66]. PACKs [5] designs a new packet scheduling
algorithm that improves upon SP-PIFO [4] and AIFO [65].
Most of these works identify why a heuristic underper-

forms and address that root cause directly. For example, to
improve max-min fair resource allocation algorithms, re-
searchers found the core difference between the heuristics
and the optimal was in the heuristics’ ability to approxi-
mately sort demands based on how much capacity the al-
gorithm assigned to them [21, 30, 50]. Each new solution
targeted this root cause and achieved better and better ap-
proximations more quickly. We find a similar methodology
in the novel heuristics designed by the MetaOpt authors [49]
for the demand-pinning heuristic in traffic engineering and
for the SP-PIFO packet scheduling algorithms. The CCAC

authors [2] also did the same for congestion control. We thus
think explanations are the key to better heuristic design.
Promise. Fig. 4 confirms this. We evaluate whether explana-
tions improve the quality of the heuristic the LLM produces
in each step of the search (we can think of this as a single-
shot experiment where we only run one step of the search).
We show the result of the full (where we approximate the
explanations in each step) search in Fig. 5.
The vanilla approach prompts the LLM to improve the

base heuristic. The “samples” approach changes the prompt
to include samples that cause the heuristic to underperform
(this captures the idea that “adversarial samples” can help
design better heuristics). The “samples and explanations”
approach feeds the LLM decision differences (similar to that
in prior work [31, 64]) that characterizes where the heuristic
and the optimal took different actions for the same inputs
in the sample-set. The suggestions approach first converts
the samples and explanations into “suggestions” (through
calls to the LLM) for how to improve the heuristic; feeds
the suggestions into the LLM one at a time to create new
heuristics; and returns the best one. Each approach prompts
the LLM ten times to create a new heuristic and reports the
best performance across these ten heuristics.
Suggestions are the most effective. This is because, if we

directly include the samples and explanations, we increase
the length of the prompt which degrades the LLM’s perfor-
mance (it is well-known that LLM’s performance degrades
on longer contexts [28, 39, 42]). Suggestions summarize the
relevant information in these inputs and shorten the context.
Higher dimensional samples obscure the root cause for

LLMs and humans alike and degrade performance further.
Our results show the baseline improves on lower-dimensional
samples. But we need large enough instances so that we can
trigger the mechanisms that cause the heuristic to underper-
form (some problems may only manifest at large enough di-
mensions). Suggestions may help summarize such instances.
Open questions. The above points to an interesting prop-
erty. If the principles of bounded model checking apply then
it is better to first find the smallest instance where we can
observe the heuristic’s performance problems and try to im-
prove it with samples and explanations we find in that scale.
This is hard as the right scale can depend on the heuristic
itself and other aspects of the problem.

How can we explain why a heuristic underperforms? Prior
works show initial steps towards such explanations [8–10,
31], but none can analyze the code the LLM generates.

While we show suggestions help FunSearch, it remains an
open question (once we find a way to automatically gener-
ate suggestions to improve new heuristics) how to use these
suggestions throughout the search and whether updated sug-
gestions can result in further gains (in our evaluations in

Karimi et al.

0 5 10 15 20 25 30 35 40 45 50

1

10

100

28× Better

Step

Lo
w
es
ts
ub

op
tim

al
ity

ye
t

(%
of

ba
se

su
bo

pt
im

al
ity

) & FunSearch
& Robusta

Figure 5: We evaluate our ideas end-to-end. We create

specialized heuristics on 5 regions and use approxi-

mate suggestions. Robusta finds heuristics with better

worst-case performance.

§4 we generate approximate explanations but exact expla-
nations can help improve the results even more). The LLM
often suggests multiple mechanisms for howwe can improve
the heuristic, we currently use each one to start the search
but it remains open how to use them during the search to
either create new clusters (§2) or update existing ones.

4 EVALUATION

We propose Robusta, that incorporates these ideas (Fig. 1).
In each step, Robusta evaluates the new heuristics the LLM
produced, finds new adversarial samples (and maybe new
regions), and suggests how to improve the heuristic. We then
use the LLM to implement the suggestions and improve the
heuristics in each step. The rest is similar to FunSearch (§2).

We evaluate a simple execution of this design end-to-end.
To mimic explanations throughout the process we “approxi-
mate” them: we use the adversarial inputs we found for the
base heuristic as inputs to the heuristics the LLM produces
in each step of the search and then map the output to the
edges in the XPlain DSL (these edges capture the “actions”
the heuristic takes — we ignore the node behaviors in the
DSL which enforce the heuristic behavior as we have already
concretized those actions). This approach is approximate be-
cause the initial adversarial regions may not contain samples
that make the new heuristic underperform.
As the search progresses the heuristic improves and we

have less and less samples where the heuristic underper-
forms. This continues until we no longer have enough infor-
mation to generate meaningful suggestions — we no longer
create suggestions after this point.
We experiment with a traffic engineering heuristic [49]

which “pins” small demands to their shortest path and op-
timally routes others. We use a 20-node, 30-link sub-graph
of the CogentCo topology from the Topology Zoo [32]. We
impose a runtime limit of 120 second across all heuristics,

Method

Max suboptimality

(% of base suboptimality)
Mean suboptimality

(% of base suboptimality)
Runtime

(× the base)
Robusta 0.5% 0.01 ± 0.002% 1.00×
FunSearch 14 % 2.07 ± 0.097 % 0.96×

Table 1: Robusta outperforms FunSearch.

matching the runtime of the base heuristic on this topology.
This implicitly gives feedback to the LLM about the runtime.

We use MetaOpt [49] to find adversarial samples where
the base heuristic underperforms. MetaOpt [49] is a heuristic
analyzer that takes a model of the optimal solution to a prob-
lem and the heuristic and finds input instances that cause
that heuristic to underperform. To find multiple adversarial
inputs we implement the idea in XPlain [31] which extends
MetaOpt to find adversarial subspaces (regions of the input
space where the heuristic underperforms).
We use Open-AI’s o4-mini and repeat each experiment

20 times to account for the randomness in the results. To
evaluate each approach we use 1500 held-out samples (we
use the same set to evaluate each approach) which we do
not expose the LLM to when we create the heuristics.
We evaluate the performance of each algorithm across

50 “step” where a step is one where each island produces a
new heuristic. We report “normalized suboptimality” values
where the suboptimality is the maximum difference between
the performance of the heuristic and that of the optimal al-
gorithm, and we normalize by the suboptimality of the base
seed heuristic. Our results (Tab. 1 and Fig. 5) show Robusta
produces heuristics that have 28× better worst-case perfor-
mance, and ∼ 200× better performance on average compared
those FunSearch creates. The runtime of the heuristics the
two approaches create is similar.

5 THE PATH FORWARD

We described how we can help LLMs design better heuristics
and open questions in this space (§3). We did not discuss a
number of other aspects of this problem:
Are LLMs the right method to use? We posed a spe-
cific question: can explanations help LLM-based search al-
gorithms create better heuristics? But it is unclear whether
LLMs are the right tool to use. We think they might be: they
are flexible and provide a convenient user interface. We need
more research to evaluate what the potential downsides of
such solutions are and their potential impact.
Applications in other areas in networking. Recent work
has applied heuristic analyzers to failure analysis problems [11]
where they find the set of probable failures that cause the net-
work to experience the worst-case performance compared to
its healthy state. There may be an opportunity to extend the
approaches we discuss here and use Robusta to help with
capacity planning under failures.

Robust Heuristic Algorithm Design with LLMs

The impact on average performance and runtime.We
spent most of this paper on how to make heuristics more
robust. We control the runtime of the heuristics we generate
through explicit timeouts which is why all of our improved
heuristics have the same runtime as the base one. Our evalu-
ation showed the new heuristics also improved average case
performance. This may not always be the case and we need
more research to balance between these two objectives.

REFERENCES

[1] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei
Zaharia, and Peter Bailis. 2021. Contracting wide-area network topolo-
gies to solve flow problems quickly. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). 175–200.

[2] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srini-
vasan Seshan. 2024. Towards provably performant congestion control.
In 21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24). 951–978.

[3] Pranjal Aggarwal, Bryan Parno, and Sean Welleck. 2024. Al-
phaVerus: Bootstrapping formally verified code generation through
self-improving translation and treefinement. arXiv preprint
arXiv:2412.06176 (2024).

[4] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever. 2020.
{SP-PIFO}: Approximating {Push-In}{First-Out} behaviors using
{Strict-Priority} queues. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 59–76.

[5] Albert Gran Alcoz, Balázs Vass, Pooria Namyar, Behnaz Arzani, Gábor
Rétvári, and Laurent Vanbever. 2025. Everything matters in pro-
grammable packet scheduling. In 22nd USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 25). 1467–1485.

[6] Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin
Vahdat, and Minlan Yu. 2019. Risk based planning of network changes
in evolving data centers. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 414–429.

[7] Anysphere. [n. d.]. Curser. https://cursor.com/en
[8] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit Agarwal. 2023.

Formal methods for network performance analysis. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23).

[9] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. 2022.
Starvation in end-to-end congestion control. In Proceedings of the
ACM SIGCOMM 2022 Conference. 177–192.

[10] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Toward Formally Verifying
Congestion Control Behavior. In Proceedings of the 2021 ACM SIG-
COMM 2021 Conference (SIGCOMM ’21).

[11] Behnaz Arzani, Sina Taheri, Pooria Namyar, Ryan Beckett, Siva
Kakarla, and Elnaz Jallilipour. 2025. Raha: A General Tool to An-
alyze WAN Degradation. In Proceedings of the ACM SIGCOMM 2025
conference.

[12] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. 2021. Program synthesis with large language models.
arXiv preprint arXiv:2108.07732 (2021).

[13] Hugo Barbalho, Patricia Kovaleski, Beibin Li, Luke Marshall, Marco
Molinaro, Abhisek Pan, Eli Cortez, Matheus Leao, Harsh Patwari, Zuzu
Tang, et al. 2023. Virtual machine allocation with lifetime predictions.
Proceedings of Machine Learning and Systems 5 (2023), 232–253.

[14] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2017. Network configuration synthesis with abstract

topologies. In Proceedings of the 38th ACM SIGPLAN conference on
programming language design and implementation. 437–451.

[15] Julia A Bennell, Lai Soon Lee, and Chris N Potts. 2013. A genetic algo-
rithm for two-dimensional bin packing with due dates. International
Journal of Production Economics 145, 2 (2013), 547–560.

[16] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Maha-
jan, and ToddMillstein. 2023. Lessons from the evolution of the Batfish
configuration analysis tool. In Proceedings of the ACM SIGCOMM 2023
Conference. 122–135.

[17] Peter Brucker. 1978. On the complexity of clustering problems. In
Optimization and Operations Research: Proceedings of a Workshop Held
at the University of Bonn, October 2–8, 1977. Springer, 45–54.

[18] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee:
unassisted and automatic generation of high-coverage tests for com-
plex systems programs.. In OSDI, Vol. 8. 209–224.

[19] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd
Mytkowicz, Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing opti-
mal collective algorithms. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 62–75.

[20] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021).

[21] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A prac-
tical algorithm for balancing the max-min fairness and throughput
objectives in traffic engineering. In 2012 Proceedings IEEE INFOCOM.
IEEE.

[22] Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc
Cary, Lore Anaya Pozo, Luke Hewitt, Armando Solar-Lezama, and
Joshua B Tenenbaum. 2023. DreamCoder: growing generalizable,
interpretable knowledge with wake–sleep Bayesian program learn-
ing. Philosophical Transactions of the Royal Society A 381, 2251 (2023),
20220050.

[23] Emanuel Falkenauer, Alain Delchambre, et al. 1992. A genetic algo-
rithm for bin packing and line balancing.. In ICRA. Citeseer.

[24] Azadeh Farzan and Zachary Kincaid. 2016. Linear Arithmetic Satisfia-
bility via Strategy Improvement.. In IJCAI, Vol. 16. 735–743.

[25] Hao Gao and Qingke Zhang. 2024. Alpha evolution: An efficient
evolutionary algorithm with evolution path adaptation and matrix
generation. Engineering Applications of Artificial Intelligence 137 (2024),
109202.

[26] David M Gay. 2015. The AMPL modeling language: An aid to formu-
lating and solving optimization problems. In Numerical Analysis and
Optimization: NAO-III, Muscat, Oman, January 2014. Springer, 95–116.

[27] Google. [n. d.]. Jules. https://jules.google/
[28] Lavanya Gupta, Saket Sharma, and Yiyun Zhao. 2024. Systematic Eval-

uation of Long-Context LLMs on Financial Concepts. arXiv preprint
arXiv:2412.15386 (2024).

[29] Zhiyuan He, Aashish Gottipati, Lili Qiu, Xufang Luo, Kenuo Xu,
Yuqing Yang, and Francis Y Yan. 2024. Designing Network Algo-
rithms via Large Language Models. In Proceedings of the 23rd ACM
Workshop on Hot Topics in Networks. 205–212.

[30] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving high
utilization with software-driven WAN. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. 15–26.

[31] Pantea Karimi, Solal Pirelli, Siva Kesava Reddy Kakarla, Ryan Beckett,
Santiago Segarra, Beibin Li, Pooria Namyar, and Behnaz Arzani. 2024.
Towards Safer Heuristics With XPlain. In Proceedings of the 23rd ACM
Workshop on Hot Topics in Networks. 68–76.

[32] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. 2011. The internet topology zoo. IEEE Journal on

https://cursor.com/en
https://jules.google/

Karimi et al.

Selected Areas in Communications 29, 9 (2011), 1765–1775.
[33] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bis-

sonnette, Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar
Reddy, John Abeln, Srikanth Kandula, et al. 2023. {OneWAN} is bet-
ter than two: Unifying a split {WAN} architecture. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 515–529.

[34] Berthold Kröger. 1995. Guillotineable bin packing: A genetic approach.
European Journal of Operational Research 84, 3 (1995), 645–661.

[35] Aman Kumar and Priyanka Sharma. 2023. Open AI Codex: An In-
evitable Future? International Journal for Research in Applied Science
and Engineering Technology 11 (2023), 539–543.

[36] Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai
Menache. 2023. Large language models for supply chain optimization.
arXiv preprint arXiv:2307.03875 (2023).

[37] Ruihan Li, Yifei Yuan, Fangdan Ye, Mengqi Liu, Ruizhen Yang, Yang
Yu, Tianchen Guo, Qing Ma, Xianlong Zeng, Chenren Xu, et al. 2024.
A General and Efficient Approach to Verifying Traffic Load Properties
under Arbitrary k Failures. In Proceedings of the ACM SIGCOMM 2024
Conference. 228–243.

[38] Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li.
2024. Towards foundation models for mixed integer linear program-
ming. arXiv preprint arXiv:2410.08288 (2024).

[39] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen.
2024. Long-context llms struggle with long in-context learning. arXiv
preprint arXiv:2404.02060 (2024).

[40] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-level code generation
with alphacode. Science 378, 6624 (2022), 1092–1097.

[41] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun
Wang, Zhichao Lu, and Qingfu Zhang. 2024. Evolution of heuristics:
towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine
Learning. 32201–32223.

[42] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele
Bevilacqua, Fabio Petroni, and Percy Liang. 2023. Lost in the
middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172 (2023).

[43] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
2020. Themis: Fair and efficient {GPU} cluster scheduling. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). 289–304.

[44] Nick McKeown. 2002. The iSLIP scheduling algorithm for input-
queued switches. IEEE/ACM transactions on networking (2002).

[45] Minizic. [n. d.]. Minizic. https://www.minizinc.org/
[46] Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George

Varghese. 2023. What do LLMs need to synthesize correct router
configurations?. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks. 189–195.

[47] Prasita Mukherjee and Benjamin Delaware. 2024. Towards Auto-
mated Verification of LLM-Synthesized C Programs. arXiv preprint
arXiv:2410.14835 (2024).

[48] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Hi-
manshu Raj, and Srikanth Kandula. 2022. Minding the gap between
fast heuristics and their optimal counterparts. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks (HotNets ’22). Association
for Computing Machinery.

[49] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Hi-
manshu Raj, Umesh Krishnaswamy, Ramesh Govindan, and Srikanth

Kandula. 2024. Finding adversarial inputs for heuristics using multi-
level optimization. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 927–949.

[50] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra,
Daniel Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, and
Himanshu Raj. 2024. Solving {Max-Min} Fair Resource Allocations
Quickly on Large Graphs. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24).

[51] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft,
Akshay Agrawal, Srikanth Kandula, Stephen Boyd, and Matei Zaharia.
2021. Solving large-scale granular resource allocation problems effi-
ciently with pop. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 521–537.

[52] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirho-
seini. 2019. Gap: Generalizable approximate graph partitioning frame-
work. arXiv preprint arXiv:1903.00614 (2019).

[53] GitHub & OpenAI. 2021. GitHub Copilot: Your AI Pair Programmer.
GitHub product announcement.

[54] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
2007. Feedback-directed random test generation. In 29th International
Conference on Software Engineering (ICSE’07). IEEE, 75–84.

[55] Sagar Patel, Dongsu Han, Nina Narodystka, and Sangeetha Abdu
Jyothi. 2024. Toward Trustworthy Learning-Enabled Systems with
Concept-Based Explanations. In Proceedings of the 23rd ACMWorkshop
on Hot Topics in Networks. 60–67.

[56] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula,
Ishai Menache, Michael Schapira, and Aviv Tamar. 2023. {DOTE}:
Rethinking (Predictive){WAN} Traffic Engineering. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 1557–1581.

[57] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024.
{CASSINI}:{Network-Aware} Job Scheduling in Machine Learning
Clusters. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 1403–1420.

[58] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, RichardMMurray,
and Sanjit A Seshia. 2015. Reactive synthesis from signal temporal
logic specifications. In Proceedings of the 18th international conference
on hybrid systems: Computation and control. 239–248.

[59] Matthew Renze and Erhan Guven. 2024. Self-reflection in llm
agents: Effects on problem-solving performance. arXiv preprint
arXiv:2405.06682 (2024).

[60] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander
Novikov, Matej Balog, M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. 2024.
Mathematical discoveries from program search with large language
models. Nature 625, 7995 (2024), 468–475.

[61] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and
Rachee Singh. 2023. {TACCL}: Guiding collective algorithm synthe-
sis using communication sketches. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). 593–612.

[62] Sucha Supittayapornpong, Pooria Namyar, Mingyang Zhang, Min-
lan Yu, and Ramesh Govindan. 2022. Optimal Oblivious Routing for
Structured Networks. In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications.

[63] Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen,
and Xiaoxing Ma. 2024. LLM Meets Bounded Model Checking: Neuro-
symbolic Loop Invariant Inference. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. 406–417.

[64] Xianliang Yang, Ling Zhang, Haolong Qian, Lei Song, and Jiang Bian.
2025. HeurAgenix: Leveraging LLMs for Solving Complex Combi-
natorial Optimization Challenges. arXiv preprint arXiv:2506.15196

https://www.minizinc.org/

Robust Heuristic Algorithm Design with LLMs

(2025).
[65] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braver-

man, Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Pro-
grammable packet scheduling with a single queue. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 179–193.

[66] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Jason
Fantl, Prithwish Basu, Joud Khoury, and Arvind Krishnamurthy. 2025.
Efficient {Direct-Connect} Topologies for Collective Communica-
tions. In 22nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 25). 705–737.

Karimi et al.

A APPENDIX

In this section, we provide an in-depth examination of the
various components of our design.

A.1 Suggester LLM

Robusta uses a per-region Suggester LLM (Fig. 1) to provide
suggestions for writing heuristics.
For each region R𝑖 , constructed by the Heuristic Ana-

lyzer (Sec. 3.2), we run a two–stage Suggester LLM pipeline
(Fig. A.1): (1) a Pattern Analysis model that abstracts the fail-
ure patterns of the current heuristic within R𝑖 (denoted by
H 𝑡

𝑖), and (2) a Suggest Improvement that provides suggestions
to improve heuristic, that the Heuirstic Writer subsequently
uses.
Pattern Analysis LLM. It takes as input a balanced batch of
adversarial and normal samples inR𝑖 (Fig. A.1), and processes
them based on the prompt given in Fig. A.2. The prompt
includes a Problem Description that is problem-dependent
and is provided by the operators.
Suggest Improvement LLM. It takes as inputs the following
and processes them based on the prompt in Fig. A.3:
(1) Pattern analysis result from the pattern analysis LLM.
(2) Short, human-readable explanations automatically pro-

duced by the Analyzer (§3.3) (e.g., “the heuristic routes
1→3 via 1→2→3, but the optimal uses 1→4→5→3
to bypass a congested hub cut”).

(3) The code of the current heuristicH 𝑡
𝑖 that has generated

the adversarial samples.
Why two LLMs? The decomposition mirrors what we ob-
served empirically in Fig. 4: a single prompt to both (i) distill
adversarial patterns and (ii) give suggestions to improve the
heuristic is too much to ask the LLM. Separating the failure
patterns from the code suggestion yields ideas that are (a)
more focused, (b) targeted at the root cause of underperfor-
mance, and (c) less entangled with superficial features.

A.2 Heuristic Writer

Robusta’s Heuristic Writer is a FunSearch-style loop that
repeatedly asks an LLM to produce a new heuristic from
𝑘 parents. In each step, it evaluates the new heuristic on
a training batch (randomly selected from samples of the
region), and keeps the new heuristic only if it improves the
current worst-case gap on the batch or is diverse from the
rest. We pass some of the worst adversarial samples from
the parents and the suggestions to the LLM (Fig. A.4). If the
new heuristic fails, we attempt to fix it for a small number
of times (e.g., 3 times) using a fix prompt call to an LLM
(Fig. A.5).

Algorithm 1 Robusta’s Heuristic Writer
Require: 𝐼 (Num islands), 𝑇 (max iterations)
Require: H0 (base heuristic to seed all islands)
Require: Dtrain (training batch), Dheld (held-out set)
Require: 𝑚 (worst-𝑚 samples to show the LLM)
Require: Πmut (mutation prompt template (Fig. A.4))
Require: Πfix (fix prompt template (Fig. A.5))
Require: S (Suggestions generated by Suggester LLM)
Require: Compile, Sim (compiler and simulator/evaluator)
Require: 𝑅fix (max automatic fix rounds)
Require: 𝐴 (archive size/pruning budget)
Require: 𝑝 (patience/early-stop window)
Require: Diverse(·) (diversity predicate of new code)
Ensure: Best heuristic (H ∗) and its held-out performance.
1: Initialize 𝐼 islands with the base heuristicH0
2: for 𝑡 ← 1 to 𝑇 do

3: for all islands 𝑗 ∈ {1, . . . , 𝐼 } do ⊲ run in parallel
4: Select best parents in island 𝑗 by tournament on worst-

case gap.
5: Build mutation prompt (parent code, worst-𝑚 samples,
S) using Πmut.

6: Query LLM to get candidate code; compile and simulate
on Dtrain.

7: if candidate fails to compile/simulate then
8: Attempt up to 𝑅fix automatic fix rounds.
9: if candidate improves worst-case gap (or ties but is

Diverse) then
10: Add it to the island 𝑗 .
11: Prune archives to size 𝐴, re-initiate islands, and checkpoint
12: if no improvement for 𝑝 iterations or worst-case gap == 0

then

13: break

14: return best heuristic overall; report held-out performance on
Dheld.

Runtime choice. Keeping 𝑘=1 (one parent→ one child) and a
small number of islands keeps the search simple, cheap, and
interpretable.
Fig.A.6 shows an improved heuristic for region 1 that

reduces the train and held-out gap to zero.

A.3 Robusta’s Ensemble Heuristic

Instead of using to a single global heuristic, Robusta uses a
regional ensemble heuristic E, where

E = {(R𝑖 ,H★
𝑖)}𝑁𝑖=1,

where each region R𝑖 is a region of input space discovered
by the Heuristic Analyzer (§3.2/§A.1), and H★

𝑖 is the best
heuristic specialized to that region, obtained by evolving the
common baseH0 with the Suggester + Writer loop (§1). For
each input, Robusta runs the corresponding heuristic for
the region to which the input belongs.

Robust Heuristic Algorithm Design with LLMs

R1

Region R1 with
adversarial () and
normal () samples

Pattern Analysis LLM

Pattern Analysis Result

1. Elephant-and-Mice Mix:

A single “mice” demand 1→3
exists while there are "elephant"
demands like 1→2.
2. Hub-Cut Congestion" Mul-
tiple demands all pass through
one “hub” node, overloading its
capacity. The greedy method fills
each cut edge in turn and then
rejects further demand, while
the optimum reroutes portions
around less congested links.

1 2 3

4 5

100 100

50

50
50

Heuristic Optimal

Region R1 explanation:

In adversarial samples,
Heuristic takes 1-2-3 path for
demand 1→ 3, but Optimal

takes 1-4-5-3 path.

Suggest Improvement LLM

H 𝑡
1 : Current Heuristic operating on R1

Suggestions

Figure A.1: Suggester LLMPipeline. For each regionR𝑖 , we run a two-stage pipeline: (1) Pattern Analysis LLM, which,

given a balanced batch of adversarial and normal samples, abstracts the failure patterns of the current heuristic;

and (2) Suggest Improvement LLM, which, using the pattern-analysis result, Analyzer-provided explanations (§3.3),

and the code of heuristic, proposes concrete suggestions.

FromH0 toH★
𝑖 . Starting from the shared base heuristic

H0, we run, for each region R𝑖 , the two–stage Suggester
(pattern analysis→ suggestions) followed by the Heuristic
Writer (§A.2). The Writer produces a sequenceH0→H 1

𝑖 →
. . .→H★

𝑖 that monotonically reduces the worst-case gap
inside R𝑖 on training batch.

Karimi et al.

Pattern Analysis Prompt

Problem Description:
You are an expert in analyzing heuristic performance difference between the optimal solution and the heuristic solution
in the Traffic Engineering problem. In this problem, we have a topology with nodes and directed edges with limited
capacity. The inputs are the demands between the nodes. The goal is to route the maximum amount of traffic between
the nodes in the network. Your final goal is to help design a better heuristic. Be concise and to the point.

Instructions:
Please analyze these samples and identify patterns causing performance gaps between the heuristic and the optimal
solution:

Tasks:
1. Compare the adversarial and non-adversarial sample sets (top num_samples each) and list patterns that correlate with
a large heuristic-optimal gap.
2. For each pattern, provide a concise natural-language description.
3. Combine the findings with region description (green boundary).

Examples of adversarial () samples: . . .
Examples of normal () samples: . . .

Figure A.2: Pattern Analysis Prompt

Robust Heuristic Algorithm Design with LLMs

Suggest Improvement Prompt

Problem Description:
You are an expert in analyzing heuristic performance difference between the optimal solution and the heuristic
solution in the Traffic Engineering problem. In this problem, we have a topology with nodes and directed edges
with limited capacity. The inputs are the demands between the nodes. The goal is to route the maximum amount
of traffic between the nodes in the network. Your final goal is to help design a better heuristic. Be concise and to
the point.
We have analyzed the performance of a heuristic and the optimal solution on a set of samples.
Pattern Analysis:

Heuristic code:

Explanations:

We also found out that the following decisions are the most likely to cause the gap:

Task:

Please suggest ideas for improvements to the heuristic:
1. What modifications could prevent these gaps?
2. What additional network metrics should be considered?
3. What alternative routing strategies might work better?
4. How can we better handle congestion and load balancing?
5. Is there a way to run optimal on a subset of the problem? For example, a subset of demands or graph?
6. Propose ideas for improvements.

Your task is to list up to {n} concrete, different idea that would reduce the gap.
In order to do your task:
1. Examine the adversarial patterns and the decision differences.
2. From those patterns, extract up to one improvement idea likely to improve the heuristic.
3. For each idea, provide a detailed (at least 100 words), code-agnostic explanation and reasoning.

– Requirements –
• Do not write code, only suggest ideas.
• Do not suggest ML approaches requiring lots of training data.
• Provide a thorough explanation of each idea.
• Explain so the reader can implement it themselves.

– Output Format –

[
{
"idea": "...",
"reasoning": "..."
},
{
"idea": "...",
"reasoning": "..."
}

]

H0: Base Heuristic

Pattern Analysis Result

Decision differences from Heuristic Analyzer

Figure A.3: Suggest Improvement Prompt

Karimi et al.

Robusta’s Heuristic Writer Prompt

Problem Description:
You are an expert in analyzing heuristic performance difference between the optimal solution and the heuristic
solution in the Traffic Engineering problem. In this problem, we have a topology with nodes and directed edges
with limited capacity. The inputs are the demands between the nodes. The goal is to route the maximum amount
of traffic between the nodes in the network. Your final goal is to help design a better heuristic. Be concise and to
the point.

Task:

Your task is to design a new heuristic different than the Parent heuristics.

Parent Heuristic (1):

Here is a parent heuristic:
```python
{code}
```

– Worst Performing Samples for the Parent Heuristic (1) –
The *Parent* heuristic performed poorly on the following samples compared to the optimal solution:
Examples of adversarial () samples for the parent (1): . . .

– Suggestions to improve the Parent Heuristic (1) –
You can use the following observations/suggestions to improve the parent heuristic:

... Add (k) Parents

– Requirements –
Based on the parent heuristics above, first analyze the pros and cons of each, and then design a new heuristic that
performs better. You can use the suggestions to improve the parent heuristics if you want.

– Output Format –

[
{
"code": "def run_heuristic(...):\n # Your implementation here\n",
"reasoning": "..."
}

]

Suggestions

Figure A.4: Robusta’s Heuristic Writer Mutation Prompt

Robust Heuristic Algorithm Design with LLMs

Fix Prompt

System Instruction:
You are an expert Python developer. You are given a code that is not working as expected.
You are given an error message. You need to fix the code.

Code to fix:
```python
{self.helper_code}
{code}
```

Error:
```
{error}
```

Task:
Fix the code and return ONLY the complete fixed code (no fences).

Figure A.5: Fix prompt given to the LLM when a mutated heuristic fails to compile or simulate.

Karimi et al.

Figure A.6: Robusta’s improved heuristic for region 1 (H1)

from typing import Dict, Any, List

from collections import defaultdict

def run_heuristic(graph: Graph) -> Dict[str, Any]:

Phase 1: Greedy routing on top-K shortest paths.

demands = [d for d in graph.demands if d.demand > 0]

for d in sorted(demands, key=lambda x: x.demand, reverse=True):

remaining = d.demand

try:
paths = graph.get_shortest_paths_between_pair(d.source.name, d.target.name, k=3)

except Exception:

paths = graph.find_all_paths_between_pair(d.source.name, d.target.name)

for p in paths:

cap = p.min_remaining_capacity

if cap <= 1e-9:

continue
flow = min(cap, remaining)

if flow <= 1e-9:

continue
graph.add_flow_to_path(p, flow)

remaining -= flow

if remaining <= 1e-6:

break

Phase 2: Local re-optimization around high-utilization edges.

utilization = graph.get_edge_utilization() # {edge: utilization}

hotspots = sorted([e for e, u in utilization.items() if u > 0.8],

key=lambda e: utilization[e], reverse=True)[:3]

for edge in hotspots:

Build region around the hot edge

region = {edge.source, edge.target}

for e in graph.edges:

if e.source in region or e.target in region:

region.add(e.source)

region.add(e.target)

region_edges = [e for e in graph.edges if e.source in region and e.target in region]

region_demands = [d for d in graph.demands if d.source in region and d.target in region]

if not region_demands:

continue

Robust Heuristic Algorithm Design with LLMs

Figure A.7: Robusta’s improved heuristic for region 1 (H1) (cont.)

Construct subgraph

name_map = {n.name: Node(n.name) for n in region}

sub_edges = [

Edge(name_map[e.source.name], name_map[e.target.name], e.capacity)

for e in region_edges

]

sub_demands = [

Demand(name_map[d.source.name], name_map[d.target.name], d.demand)

for d in region_demands

]

subg = Graph(list(name_map.values()), sub_edges, sub_demands)

Reset flows in region

for e in region_edges:

e.flow = 0.0

graph.active_paths = {

p: f for p, f in graph.active_paths.items()

if all(ed not in region_edges for ed in p.edges)

}

Solve exact multi-commodity flow on the subgraph

try:
result = find_optimal_flows(subg)

opt_graph = result.get("graph", subg)

for path_sub, flow in opt_graph.active_paths.items():

if flow <= 1e-9:

continue
real_edges = []

for e_sub in path_sub.edges:

real = graph.get_edge(e_sub.source.name, e_sub.target.name)

if real is None:

real_edges = []

break
real_edges.append(real)

if real_edges:

graph.add_flow_to_path(Path(real_edges), flow)

except Exception:

continue

Compute and return metrics

total_met = sum(graph.active_paths.values())
total_unmet = sum(d.demand for d in graph.demands) - total_met

return {

"total_met_demand": total_met,

"total_unmet_demand": total_unmet,

"graph": graph

}

	1 Introduction
	2 Background
	3 The promise and open questions
	3.1 Adversarial samples or random ones?
	3.2 Ensemble of heuristics or just one?
	3.3 Do explanations help?

	4 Evaluation
	5 The path forward
	References
	A Appendix
	A.1 Suggester LLM
	A.2 Heuristic Writer
	A.3 Robusta's Ensemble Heuristic

