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Abstract
Many problems that cloud operators solve are computation-
ally expensive, and operators often use heuristic algorithms
(that are faster and scale better than optimal) to solve them
more efficiently. Heuristic analyzers enable operators to find
when and by how much their heuristics underperform. How-
ever, these tools do not provide enough detail for operators to
mitigate the heuristic’s impact in practice: they only discover
a single input instance that causes the heuristic to underper-
form (and not the full set) and they do not explain why.

We propose XPlain, a tool that extends these analyzers
and helps operators understand when and why their heuristics
underperform. We present promising initial results that show
such an extension is viable.
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1 Introduction
Operators use heuristics (approximate algorithms that are
faster or scale better than their optimal counterparts) in pro-
duction systems to solve computationally difficult or expen-
sive problems. These heuristics perform well across many
typical instances, but they can break in unexpected ways
when network conditions change [5, 6, 16, 35]. Our commu-
nity has developed tools that enable operators to identify such
situations [1, 2, 6, 16, 35]. These tools find the “performance
gap” of one heuristic algorithm compared to another heuristic
or the optimal — they identify an example instance of an
input which causes a given heuristic to underperform.

For example, MetaOpt [35] describes a heuristic deployed
in Microsoft’s wide area traffic engineering solution and
shows it could underperform by 30% (see §2). This means the
company would either have to overprovision their networks
to support 30% more traffic, drop that traffic, or delay it.

The potential benefit of heuristic analyzers is clear: they
allow operators to quantify the risk of heuristics they want
to deploy. Although these heuristic analyzers have already
shed light on the performance gap of many deployed heuris-
tics, they are still in their nascent stage and have limited use
for operators who do not have sufficient expertise in formal
methods and/or optimization theory. There are crucial fea-
tures missing: operators have to (1) model the heuristics they
want to analyze in terms of mathematical constructs these
tools can support and (2) manually analyze the outputs from
these tools to understand how to fix their heuristics or their
scenarios — the tool only provides a performance gap and
an example input that caused it. They do not produce the full
space of inputs that can cause large gaps nor describe why
the heuristic underperformed in these instances.

The latter problem limits the operator’s ability to use the
output of these tools to fix the problem and to either improve
the heuristic, create an alternative solution for when it under-
performs, or cache the optimal solution for those instances. In
our earlier examples, the operator has to look at the tool’s ex-
ample demand matrix to understand why the heuristic routes
30% less traffic than the optimal.

The state of these heuristic analyzers today is reminiscent
of the early days of our community’s exploration of network
verifiers and their potential to help network operators config-
ure and manage their networks. In the same way that network
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verifiers enabled operators to identify bugs in their configu-
rations [10, 14, 15, 19, 22, 24, 27, 28, 30, 32, 39, 47, 49], a
heuristic analyzer can help them find the performance gap of
the algorithms they deploy. Tools that allow operators to lever-
age heuristic analyzers more easily, identify why the heuris-
tics underperform, and devise solutions to remediate the issue
serve a similar purpose to the tools our community crafted that
explained the impact of configuration bugs [23, 25, 39, 40]
(by producing all sets of packets that the bug impacted and
the configuration lines that caused the impact).

We propose XPlain — our vision for a “generalizer” that
can augment existing heuristic analyzers and help operators
either improve their heuristics (by helping them find why the
heuristics underperform) or use them more safely (by finding
all regions where they underperform).

We propose a domain-specific language (§5.1), which al-
lows us to concretely describe the heuristic’s behavior and
that of a benchmark we want to compare it to for automated
analysis. It is rooted in network flow abstraction, which allows
us to model the behavior of many heuristics that operators
use in today’s networks, including all those from [16, 35].
Our compiler converts inputs in this language into an exist-
ing heuristic analyzer. Our efficient iterative algorithm uses
the analyzer, extrapolates from the adversarial inputs it finds,
and finds all adversarial subspaces where the heuristic un-
derperforms. We then use our language again and visualize
why (i.e., the different decisions the heuristic made compared
to the optimal that caused it to underperform) the heuristic
underperforms in these cases.

We also discuss open questions and a possible approach
built on the solutions we propose in this work to uncover
what properties in the input or the problem instance cause the
heuristic to underperform (§5.4). Our proof-of-concept imple-
mentation of this idea uses MetaOpt [35] as the underlying
heuristic analyzer because it is open source. But our proposal
applies to other heuristic analyzers such as [1, 2, 16] as well.

2 What is heuristic analysis?
Heuristic analyzers [1, 16, 35] take a heuristic model and a
benchmark model (e.g., the optimal) as input. Their goal is to
characterize the performance gap of the heuristic compared to
the benchmark. Recent tools [16, 35] use optimization theory
or first-order logic to solve this problem and return a single
input instance that causes the heuristic to underperform.
Example heuristics from these work include:
Demand Pinning (DP) was deployed in Microsoft’s wide area
network. DP is a heuristic for the traffic engineering prob-
lem. The optimal algorithm assigns traffic (demands) to paths
and maximizes the total flow it routes without exceeding the
network capacity. Operators use DP to reduce the size of
the optimization problem they solve. DP first filters all de-
mands below a pre-defined threshold and routes them through

(pins them to) their shortest path. It then routes the remaining
demands optimally using the available capacity (see Fig. 1).

MetaOpt authors modeled DP as an optimization prob-
lem and provided helper functions to simplify operator use
(Fig. 1b). MetaOpt solves a bi-level optimization that iden-
tifies the performance gap and the demand causing it (the
flow in Fig. 1a). However, it is left to the operator to examine
the output and determine why DP underperformed. While
DP allows for manual analysis (see [35]), not all heuristics
do. It is also difficult for operators to extrapolate from this
adversarial input to find other regions where DP may fail.
These limitations are exacerbated as we move to larger prob-
lems with more demands, where it is harder to pinpoint how
a heuristic’s decision to route a particular demand interferes
with its ability to route others.

Vector bin packing (VBP) places multi-dimensional balls
into multi-dimensional bins and minimizes the number of
bins in use. Operators use VBP in many production systems,
such as to place VMs onto servers [9]. The VBP problem is
APX-hard [45]. One heuristic solving VBP is first-fit (FF),
which greedily places an incoming ball in the first bin it fits
in. Fig. 1c shows how one encodes it in MetaOpt.

MetaOpt produces the adversarial ball sizes 1%, 49%, 51%,
51% (as a percentage of the bin size) for an example with
4 balls and 3 equal-sized bins (we use single-dimensional
balls) — the optimal uses 2 bins while FF uses 3 (we show a
more complex version in Fig. 2). Once again, operators have
to reason through this example to identify why FF underper-
forms and what other inputs cause the same problem. This
is harder in FF and other VBP heuristics, such as best fit or
first fit decreasing, as evidenced by the years of research by
theoreticians in this space [36].

In this paper, we use the DP and VBP as running examples.
These examples are representative of the heuristics prior work
has studied [16, 35] (the scheduling examples Virley studies
are conceptually similar to VBP, and we think our discussions
directly translate to those use-cases).

Prior work [5] shows that, using a single adversarial in-
stance, it is difficult to understand why a heuristic underper-
formed. It is even harder to generalize from why an adver-
sarial input causes the heuristic to underperform on a single
problem instance (or a few instances) to what properties in
the input and the problem instance cause it to underperform.

3 The case for comprehensive analysis
Prior work [2, 5, 35] show explaining adversarial inputs can
have benefits: we can improve DP’s performance gap by an or-
der of magnitude and produce congestion control algorithms
that meet pre-specified requirements [2]. But these results re-
quire manual analysis [35] or problem-specific models [2, 5].

We see an opportunity for a new tool that enables opera-
tors to identify the full risk surface of the heuristic (the set
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Demand DP (thresh = 50) OPT
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1⇝3 50 1-2-3 50 1-4-5-3 50
1⇝2 100 1-2 50 1-2 100
2⇝3 100 2-3 50 2-3 100

Total DP 150 Total OPT 250

(a) DP from [35]. (left) Topology. (right) A set of de-
mands and their flow allocations using the DP heuris-
tic and the optimal (OPT) solution.

OuterVar: 𝑑𝑘 requested rate of demand 𝑘

Input: 𝑃𝑘 paths for demand 𝑘

Input: 𝑝𝑘 shortest path
Input: 𝑇𝑑 demand pinning threshold
for all demand 𝑘 ∈ D do

ForceToZeroIfLeq(𝑑𝑘 − 𝑓
𝑝𝑘
𝑘

, 𝑑𝑘 ,𝑇𝑑 )
end for
MaxFlow()

(b) DP in MetaOpt.

OuterVar: Y(size of balls)
Input: C(capacity of bins)
for all ball 𝑖 and bin 𝑗 do

r𝑖 𝑗 = C𝑗 − Yi −
∑︁

ball 𝑢<𝑖

x𝑑𝑢 𝑗

𝑓𝑖 𝑗 = AllLeq( [−rdij]d, 0)

𝛾𝑖 𝑗 = AllEq( [xdik]d,k<j, 0)
𝛼𝑖 𝑗 = AND(𝑓𝑖 𝑗 , 𝛾𝑖 𝑗 )
IfThenElse(𝛼ij, [(x𝑖 𝑗 ,Y𝑖 )], [(x𝑖 𝑗 , 0)])

end for

(c) Heuristic for VBP in MetaOpt.

Figure 1: Example heuristics and their encoding in MetaOpt (sub-figures (b) and (c)). Heuristic in sub-figure (b) forces
the demands less than a threshold to be pinned and then solves a flow maximization problem, heuristic in sub-figure (c)
assigns the first bin that can fit the ball.
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Figure 2: Example adversarial instance for FF with equal-
sized bins with size of 1; the optimal uses 8 bins and the
heuristic 9.

of inputs where the heuristic underperforms) and to identify
why the heuristic underperforms automatically. It can produce
(1) a description of the entire area(s) where a heuristic has a
high performance gap; or (2) a description of what choices
the heuristic makes that cause it to underperform (the dif-
ference in the actions of the heuristic and the optimal can
point us to why the heuristic underperforms). Through these
outputs, these tools can make it safer for operators to use
heuristics in practice as they can mitigate the cases where
they underperform and maybe even design safer heuristics.

There are three levels of information we can provide: (1)
for a given problem instance, the sets of inputs that cause the
heuristic to underperform; (2) for a given problem instance,
a reason as to why the heuristic underperforms in each con-
tiguous region of the adversarial input space; and (3) for the
general case, the characteristics of the inputs and problem
instances that cause the heuristic to underperform.

Take DP as an example. The ideal tool would produce:
Type 1. For a given topology, the adversarial input sets are
of the form ∪𝐷𝑖 where each 𝐷𝑖 ∈ R𝑛

+ represents a contiguous
subspace of the n-dimensional (8-dimensional in Fig. 1a for
8 demands) space.

For a given 𝐷𝑖 : (a) an entry 𝑑𝑖 𝑗 = 𝑇 − 𝜖 (here 𝑇 is the
demand pinning threshold and 𝜖 is a small positive value) if
there are multiple paths between the nodes 𝑖 and 𝑗 (we call
a demand 𝑑 : 𝑑 ≤ 𝑇 a pinnable demand); (b) for all other
𝑢𝑣 where a portion of the path between the nodes 𝑢 and 𝑣

intersects with the shortest path of a pinnable demand we have
𝑑𝑢𝑣 ≥ min(C𝑢𝑣−𝑇 ). Here, the set C𝑢𝑣 contains the capacity of

all links on the path between 𝑢 and 𝑣 . The adversarial instance
in our example in Fig. 1a fits this behavior.
Type 2. For a given topology, DP routes pinned demands on
their shortest paths, but the optimal routes them through alter-
nate paths. We expect the pinned demands in each contiguous
subspace would all have a common pattern where they have
the same shortest path, and DP does shortest-path routing for
these demands, whereas the optimal does not.
Type 3. The heuristic’s performance is worse when the length
of the shortest path of the pinned demands is longer or the
capacity of the links along these paths is lower — pinned
demands limit the heuristic’s ability to route other demands.

4 Challenges
It is hard to arrive at low-level models of a heuristic in order to
use existing analyzers [2, 16, 35], and operators need to have
expertise in either formal methods [2, 16] or optimization
theory [12, 35] to do so. We see an analogy with writing
imperative programs in assembly code: we can write any
program in assembly but it takes time, has a high risk of being
buggy, and makes code reviews (i.e., explanations) difficult.

Low-level models operate over variables and constructs
that are often hard to connect to the original problem (“Greek
letters” and “auxiliary variables” instead of “human-readable”
text). To model the first fit behavior, MetaOpt uses an auxil-
iary, binary variable 𝛼𝑖 𝑗 that captures whether bin 𝑗 is the first
bin where ball 𝑖 fits in, and sets its value through:

𝛼𝑖 𝑗 ≤
𝑓𝑖 𝑗 +

∑
{𝑘∈BINS |𝑘< 𝑗 } (1 − 𝑓𝑖𝑘 )

𝑗
∀𝑖 ∈ BALLS, ∀𝑗 ∈ BINS∑︁

𝑗∈BINS

𝛼𝑖 𝑗 = 1 ∀𝑖 ∈ BALLS.

It is hard to derive an explanation from such a model and
harder still to connect it to how the heuristic works to explain
its behavior. We need a better and more descriptive language
to encode the behavior of the heuristic. We also need to:
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Find adversarial subspaces and validate them. These are
subspaces of the input space where the inputs that fall in those
subspaces cause the heuristic to underperform. To find them,
we need a search algorithm that iterates and extrapolates from
the adversarial inputs existing analyzers find (similar to the
all-SAT problem [17, 34, 48], the input space is large, and we
cannot blindly search it to find adversarial inputs [35]). Once
we find a potential "adversarial subspace," we should validate
it: we need to check whether the heuristic’s performance gap
is higher for inputs that belong to the adversarial subspace
compared to those that do not with statistical significance.
Find why the inputs in each subspace cause bad perfor-
mance. It is reasonable to assume the inputs in the same
contiguous adversarial subspace trigger the same “bad behav-
ior” in the heuristic. To find and explain these behaviors, we
need to automatically reason through the heuristic’s actions
and compare them to those of the benchmark: we need to
concretely encode the heuristic and benchmark’s choices as
part of the language we design for our solution. The challenge
is to ensure this language applies to a broad range of problems
and is amenable to the types of automation we desire.
Generalize beyond a single instance. Perhaps the hardest
challenge is to generalize from the instance-based explana-
tions to one that applies to the heuristic’s behavior in the
general case: we have to find a valid extrapolation from these
instance-based examples and discover patterns that apply to
the heuristic’s behavior across different problem instances.

5 The XPlain proposal
We propose XPlain (Fig. 3). Users describe the heuristic and
benchmark through its domain specific language (§5.1). The
main purpose of this domain-specific language (DSL) is to
concretely define the behavior of the heuristic and benchmark,
which allows automated systems to analyze, compare, and
explain their behavior. The compiler translates the DSL into
low-level optimization constructs.

The adversarial subspace generator(§5.2) generates a
set of contiguous subspaces where the inputs in each sub-
space cause the heuristic to underperform and the signifi-
cance checker filters the outputs and ensures the subspaces
are statistically significant — it checks that the inputs that fall
into these subspaces produce higher gaps compared to those
that do not with statistical significance.

The explainer (§5.3) describes how the heuristic’s actions
differ from the benchmark in each contiguous subspace for
a given problem instance. The generalizer (Fig. 5.2) extrap-
olates from these instance-based observations to produce
the properties of the inputs and the instance that cause the
heuristic to underperform. It uses instance-based explana-
tions across many instances to do so — we use the instance
generator to create such instances.

5.1 The domain-specific language
To auto-generate the information we described in §3 we need
a DSL to concretely encode the heuristic and benchmark
algorithms. We need a DSL that: (1) can represent diverse
heuristics; (2) we can use to automatically compile into op-
timizations that we can efficiently solve (those that existing
solvers support and that do not introduce too many additional
constraints and variables compared to hand-written models);
and (3) is easy and intuitive to use.

We design an abstraction based on network flow prob-
lems [11]. Network flow problems are optimizations that,
given a set of sources and destinations, optimize how to route
traffic to respect capacity constraints, maximize link utiliza-
tion, etc. Network flow problems impose two key constraints:
the total flow on each link should be below the link capacity,
and what comes into a node should go out (flow conservation).

There are advantages to using network flow problems: they
have an intuitive graph representation [11] — operators know
how to reason about the flow of traffic through such graphs;
we can easily translate them into convex optimization or fea-
sibility problems [11]; and they have many variants which we
can use and build upon.

We can use the network flow model and extend it through
a set of new “node behaviors” to ensure we can apply it to
a broad class of heuristics. Node behaviors are a set of con-
straints that operate on the flows coming in and going out
of each node: “split nodes” (enforce flow conservation con-
straints); “pick nodes” (enforce flow conservation constraints
but only allow flow on a single outgoing edge); “copy nodes”
(copy the flow that comes in onto all of their outgoing edges);
“source” and “sink” nodes (produce or consume traffic); etc.
A node can enforce multiple behaviors simultaneously. We
include node behaviors that do not enforce flow conservation
constraints (such as the “copy nodes") or capacity constraints
by default so that we can model a broad set of heuristics.
Users can also add metadata to each node or edge, which we
can use later to improve the explanations we produce.

Users encode the problem, the heuristic, and the benchmark
in the DSL in abstract terms. For example, to model VBP they
specify that the problem operates over (abstract) sequences of
different node types that correspond to the balls and bins in the
VBP problem. Users also encode the actions the heuristic and
the optimal can make in terms of the relationship between the
different sequences of nodes and the edges that connect them
and rules that govern how flow can traverse from one node to
the next. To analyze a specific instance of the VBP problem,
users input the number of balls and bins and then XPlain
concretizes the encoding (we show a concretized example
with 4 one-dimensional balls and 3 bins in Fig. 4b).

Our DSL allows us to model the examples from prior work.
We can model DP with split, source, and sink nodes (Fig. 4a),
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Figure 3: XPlain: the system architecture we propose to extend existing heuristic analyzers.

Unmet Demand

1⇝2 1⇝3 1⇝4 1⇝5 2⇝3 4⇝3 4⇝5 5⇝3

DEMANDS

1-2 1-2-3 1-4-5-3 1-4 1-4-5 2-3 4-5-3 4-5 5-3

PATHS

1 → 2 1 → 4 2 → 3 4 → 5 5 → 3 EDGES

Met Demand

(a) How we model our DP example (Fig. 1a) in the DSL.

𝐵0 𝐵1 𝐵2 𝐵3 BALLS

𝐵𝑖𝑛0 𝐵𝑖𝑛1 𝐵𝑖𝑛2 BINS

Occupancy

(b) How we model FF in the DSL.

Figure 4: Encoding heuristics in our DSL. We show sink nodes in ; source nodes enforcing behavior of split nodes
in and source nodes enforcing behavior of pick nodes in ; copy nodes in ; and split nodes with limited outgoing
capacity in . The edge colors show type 2 explanations: more intense red (blue) edges show there are more samples in
the subspace that only the heuristic (optimal) uses. In (a), DP uses the shortest path for the demand between 1⇝3 and
the optimal does not. In (b), we see FF places a large ball (𝐵0) in the first bin, causing it to have to place the last ball
differently, too. We used 3000 samples for each explanation. XPlain took 20 minutes to produce each figure.

and we use “pick nodes” with limited capacity that only allow
a ball to be assigned to a single bin (Fig. 4b) to model FF.

We prove that we can represent any linear or mixed in-
teger problem through a small set of node behaviors (our
abstraction is sufficient) in App. A.

We can easily compile node behaviors into efficient op-
timizations. Our encoding allows us to solve the optimiza-
tion faster compared to the hand-coded optimization: our
DSL allows us to find redundant constraints and variables.
This, in turn, reduces the number of variables and constraints
MetaOpt adds in its re-writes1. We have implemented a com-
plete DSL in a LINQ [41]-style language: compared to the
original MetaOpt implementation, the compiled DSL ana-
lyzes our DP example 4.3× faster. MetaOpt does not re-write
FF, and we do not provide any run-time gains in that case.
Open questions. We can describe any heuristic that MetaOpt
can analyze in our DSL. To support other analyzers (e.g., [16])
we may need to change our compiler and add other node

1Gurobi’s pre-solve can also do this, but it changes the variable names, making
it hard to connect them back to the original problem.

behaviors. We also need to understand what metadata the user
can (or should) provide to enable XPlain. This may require a
co-design with XPlain’s other components.

Although we have proved that any linear problem can be
mapped to our DSL (App. A), that does not mean such a
mapping is the most efficient representation of the heuristic
in the DSL. We need further research to formalize and guide
users in how to do so and optimize their representations.

5.2 The adversarial subspace generator
Random search cannot find adversarial subspaces (it may not
even find an adversarial point [35]). We propose an algorithm
where we extrapolate from the heuristic analyzer’s output and:
(1) use the analyzer to find an adversarial example; (2) find
the adversarial subspace around that example; (3) exclude that
subspace and repeat until we can no longer find an adversarial
example (where the heuristic significantly underperforms)
outside all of the subspaces we have found so far.

To find each adversarial subspace, we first find a rough
candidate region: we sample in a cubic area around the initial
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adversarial point given by a heuristic analyzer and expand
our sampling area based on the density of adversarial (bad)
samples we find in each direction. We define these “directions”
based on where the sub-cube (slice) lies with respect to the
initial adversarial point that MetaOpt found. We stop when
the density of bad samples drops in all possible expansion
directions (Fig. 5a).

We go “slice by slice" when we investigate the cubic region
around the initial bad sample because the adversarial subspace
may not be uniformly spread around the initial point. We
extend our sampling regions only around the slices where
the density of bad samples is high. We pick the number of
samples we use based on the DKW inequality [33].

These subspace boundaries we have so far are not exact:
how big we pick our slices and how much we expand them in
each iteration influence how many false positives fall into the
subspace. We refine the subspace based on an idea from prior
work in diagnosis [13]. We train a regression tree that predicts
the performance gap on samples in our rough subspace. The
predicates that form the path that starts at the root of this tree
and reaches the leaf that contains the initial bad sample more
accurately describe the subspace (Fig. 5b).
The significance checker ensures the subspaces we find are
statistically significant: the points in a subspace cause a higher
performance gap compared to those immediately outside it.
We only report those subspaces with a low-p-value (less than
0.05) as adversarial.

We use the Wilcoxon signed-rank test [44], which allows
for dependant samples — the subspace fully describes what
points are inside and what points are not (the samples in the
two pools are dependent). We find subspaces for DP and VBP
with p-values 2 × 10−60 and 8 × 10−11, respectively.

Our approach allows us to find all statistically significant
subspaces that meet our exploration granularity. If we do not
include an adversarial input in a subspace (if it is outside of
the region we explored), the analyzer will find it in the next
iteration. Users can control XPlain’s ability to find all adver-
sarial scenarios: they can use smaller cube-sizes to explore
the space in more detail but it comes at the cost of a slower
runtime. They can also elect to include those parts of the ini-
tial subspaces XPlain finds (before we apply the decision tree)
as part of MetaOpt’s decision space (if they do so they need
to include the number of times they are willing to re-examine
an area to avoid an infinite cycle — there may be regions that
are not statistically significant and XPlain would revisit them
if they contain a input instance that produces a high gap).
Open questions. The decision tree helps us identify predi-
cates (of the form 𝑓 ≥ 𝑡 where 𝑓 is a feature and 𝑡 a threshold)
that describe a subspace. What features we train the tree on
influence what predicates we can get. On small instances we
can use raw inputs but on larger instances this would require
a deep decision tree to fully describe the space — the output

becomes computationally more difficult to use in the next step
(step (3) above). We need to define functions F (I) of the
input I that allow us to describe these subspaces efficiently
and which we can use in the analyzers to execute step (3) (i.e.,
where we exclude a subspace and re-run the analyzer).

It may be better if we apply the adversarial subspace gen-
erator (steps (1)-(3) above) directly to the “projected” input
space: where each function F (I) describes one dimension
of the𝑚-dimensional space (note,𝑚 need not be the same as
the dimensions of the input space I). If the space defined by
the adversarial subspaces is sparse this approach may allow
us to find these adversarial subspaces more efficiently.

We may need additional mechanisms to help scale XPlain —
it may take a long time to find adversarial subspaces if we
analyze a large problem instance or if there are many disjoint
subspaces.

5.3 The explainer
We hypothesize that the inputs in a contiguous subspace share
the same root cause for why they cause the heuristic to under-
perform. This is where a network-flow-based DSL explicitly
encoding the decisions of the heuristic and the benchmark
algorithm proves useful. We run samples from within each
contiguous subspace through the DSL and score edges based
on if: (1) both the benchmark and the heuristic send flow
on that edge (score = 0); (2) only the benchmark sends flow
(score = 1); or (3) only the heuristic sends flow (score = -1).

Such a “heatmap” of the differences between the bench-
mark and the heuristic shows how inputs in the subspace
interfere with the heuristic. In Fig. 4a, in a given subspace
with 3000 samples, all pinnable demands share the same short-
est path (red arrows in 1-2-3 path), and the optimal routes
them through alternative paths (blue arrows in 1-4-5-3 path).
Open questions. As the instance size (the scale of the prob-
lem we want to analyze) grows, the above heatmap may be-
come harder to interpret. We need mechanisms that allow us
to summarize the information in this heatmap in a way that
the user can interpret and use to improve their heuristic.

The heuristic and benchmark also differ in how much flow
they route on each edge. We need to define the appropriate
data structure to represent this information to a user so that
they are interpretable and actionable.

5.4 The generalizer and instance generator
We can enable operators to improve their heuristics or know
when to apply mitigations if we can extrapolate from the type
1 and 2 explanations to form type 3: what properties in the ad-
versarial inputs cause the heuristic to underperform and what
aspects of the problem instance exacerbate it? We need to find
trends across instance-based information and find instance-
agnostic explanations for why the heuristic underperformed.
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(a) Identifying dense adversarial slices.

∑3
𝑛=0 𝐵𝑛 ≤ 1.5

𝐺𝑎𝑝 = 1% 𝐵1 <= 0.5

𝐺𝑎𝑝 = 25% 𝐺𝑎𝑝 = 3%

(b) Refinement by regression tree.

Adversarial subspaces: ∪𝑖𝐷𝑖

𝐷𝑖 = ∪𝑗

{
X ∈ R+4

��� [ A
T𝑖

]
X ≤

[
C𝑖

𝑗

V𝑖

]}
A =

[
I4×4
−I4×4

]
, X = [𝐵0 𝐵1 𝐵2 𝐵3 ]𝑇

𝐷0 : C0
0 = [0.01 0.51 0.51 0.51 0 − 0.49 − 0.49 − 0.49]𝑇

T0 =

[
−1 −1 −1 −1
0 1 0 0

]
, V0 = [−1.5 0.5]𝑇

(c) The adversarial subspaces for FF.

Figure 5: The adversarial subspace generator: (a) finds a rough subspace and separates bad samples ( ) from good ones
( ); (b) it trains a regression tree on these samples and uses it to refine the subspace and produces (c). We show the first
subspace (𝐷0) for our FF example in (c). Here,𝐶𝑖

𝑗 encodes the rough subspace and𝑇𝑖 and𝑉𝑖 the path in the regression tree.

To discover patterns, we need to consider a diverse set of
instances and identify trends in the outputs of the subspace
generator and the explainer. We build an instance generator
that uses the problem description in the DSL to create such
instances and feeds them into the pipeline.

We imagine the generalizer would contain a “grammar”
that uses the metadata the user provides through the DSL
along with the network flow structure to describe trends in the
instance-based explanations. For example, one may consider
this predicate from a hypothetical grammar:

increasing(P) : ∀𝑎, 𝑏 | 𝑎, 𝑏 ∈ P & |𝑎 | ≥ |𝑏 | → 𝑔𝑎𝑝 (𝑎) ≥ 𝑔𝑎𝑝 (𝑏)

With such a grammar, a generalizer can go through the
observations on the samples the instance generator produced
and check if the predicates in the grammar are statistically
significant. For example, if P describes the set of shortest
paths of pinnable demands in DP, the generalizer might pro-
duce increasing(P) for why DP underperforms — this
predicate suggests that the gap is larger when the shortest
path of the pinnable demands is longer.
Open questions. One may envision a solution similar to enu-
merative synthesis [3, 18, 20], which searches through the
grammar, finds all predicates that hold for a particular heuris-
tic, and forms clauses that explain the heuristic’s behavior.
We need more work to define the generalizer’s grammar and
how to build valid clauses from them.

6 Related work
To our knowledge, this is the first work that focuses on a gen-
eral framework to provide more insights into the outputs of
heuristic analysis tools [16, 35] and provides an explainability
feature for these tools. We build on prior work:

Domain customized performance analyzers. The work we
do in XPlain also applies to custom performance analyzers,
which only apply to specific heuristics [5–7].
Explainable AI. XPlain resembles prior work in explainable
AI, which provided more context around what different ML
models predict [31, 38, 42]. Parts of our solution (including
the three types) are inspired by these works [4, 8, 37].
Enumerative Synthesis. This field generates programs that
meet a specification through systematic enumeration of pos-
sible program candidates [3, 18, 20]. We believe these ideas
can help us to design the generalizer.
Large Language Models (LLMs). we may be able to use
LLMs [46] for various parts of our designs these include: to
generate the DSL, to summarize Type 2 explanations, and to
generate the grammer we need to produce Type 3 explanations.
But LLMs are prone to hallucination [21, 29] and also require
additional step-by-step mechanisms to guide them [26, 43].
We may be able to build a natural language interface that can
help us automatically generate the DSL. Such an interface
will enable non-experts to more easily use XPlain. This, too,
is an interesting topic for future work.
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Figure 6: Different node types in XPlain’s DSL.

A Formalizing XPlain’s DSL
We prove that we can model any linear optimization in XPlain.

A.1 XPlain’s node description
PRELIMINARIES. Our network-flow-based DSL is a directed
graph where we denote the set of nodes with N and the set
of directed edges as E. We treat each edge (𝑖, 𝑗) ∈ E as
a variable with a non-negative flow value 𝑓(𝑖, 𝑗 ) ≥ 0. We
impose constraints on these flow variables as needed. We
define incoming edges to node 𝑛 ∈ N as those edges which
are directed towards 𝑛 (i.e., (𝑖, 𝑛) ∈ E). Outgoing edges are
those exiting 𝑛. The incoming (outgoing) traffic to a node
is the sum of all flow that arrives at that node from all the
incoming (outgoing) edges.
We have the following node behaviors:

SPLIT NODES (N𝑠𝑝𝑙𝑖𝑡 ) split the incoming traffic between the
outgoing edges (Fig. 6a). They enforce the traditional flow
conservation constraints:

∑︁
{𝑖∈N,(𝑖,𝑛) ∈E}

𝑓(𝑖,𝑛) =
∑︁

{𝑖∈N,(𝑛,𝑖 ) ∈E}
𝑓(𝑛,𝑖 ) ∀𝑛 ∈ N𝑠𝑝𝑙𝑖𝑡

They can also optionally enforce (1) an upper bound on the
traffic on an outgoing edge (capacity constraint) and (2) the
traffic on an incoming edge to be constant.

𝑓(𝑛,𝑖 ) ≤ 𝐶 (𝑛,𝑖 ) 𝐶 (𝑛,𝑖 ) ∈ R+,∀𝑖 ∈ {𝑖 ∈ N , (𝑛, 𝑖) ∈ E} ∀𝑛 ∈ N𝑠𝑝𝑙𝑖𝑡

𝑓(𝑖,𝑛) = 𝑑 (𝑖,𝑛) 𝑑 (𝑖,𝑛) ∈ R≥0,∀𝑖 ∈ {𝑖 ∈ N , (𝑖, 𝑛) ∈ E} ∀𝑛 ∈ N𝑠𝑝𝑙𝑖𝑡

PICK NODES (N𝑝𝑖𝑐𝑘 ) satisfy flow conservation but only allow
one of the outgoing edges to carry traffic (Fig. 6b):∑︁

{𝑖∈N,(𝑖,𝑛) ∈E}
𝑓(𝑖,𝑛) =

∑︁
{𝑖∈N,(𝑛,𝑖 ) ∈E}

𝑓(𝑛,𝑖 ) ∀𝑛 ∈ N𝑝𝑖𝑐𝑘∑︁
{𝑖∈N,(𝑛,𝑖 ) ∈E}

1[𝑓(𝑛,𝑖 ) > 0] = 1 ∀𝑛 ∈ N𝑝𝑖𝑐𝑘

where 1[𝑥 > 0] is an indicator function (=1 if 𝑥 > 0, other-
wise = 0).

MULTIPLY NODES (N𝑚𝑢𝑙𝑡 ) only have one incoming and one
outgoing link. They multiply the incoming traffic by a con-
stant𝐶 ∈ R+ before sending it out (Fig. 6c). They only satisfy
flow conservation when 𝐶 = 1.

𝑓(𝑛,𝑖 ) = 𝐶𝑓( 𝑗,𝑛) ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ N , (𝑛, 𝑖), ( 𝑗, 𝑛) ∈ E} ∀𝑛 ∈ N𝑚𝑢𝑙𝑡

ALL EQUAL NODES (N𝑎𝑙𝑙𝐸𝑞) require all the incoming and
outgoing edges to carry the same amount of traffic (Fig. 6d):

𝑓(𝑛,𝑖 ) = 𝑓( 𝑗,𝑛) ∀(𝑖, 𝑗) ∈ {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ N , (𝑛, 𝑖), ( 𝑗, 𝑛) ∈ E} ∀𝑛 ∈ N𝑎𝑙𝑙𝐸𝑞

To make it simpler to encode a heuristic in the DSL, we
also add the following node types to our DSL:

COPY NODES (N𝑐𝑜𝑝𝑦) copy the total incoming flow into each
outgoing edge (Fig. 6e):

𝑓(𝑛,𝑗 ) =
∑︁

{𝑖∈N,(𝑖,𝑛) ∈E}
𝑓(𝑖,𝑛) ∀𝑗 ∈ { 𝑗 | 𝑗 ∈ N , (𝑛, 𝑗) ∈ E} ∀𝑛 ∈ N𝑐𝑜𝑝𝑦
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We can recreate this node’s behavior if we combine split
nodes and equal nodes (Fig. 7). However, using a copy node
directly is more intuitive and straightforward for users, and
we include it in our DSL for that reason.

Split

AllEq

𝑓(𝑖0,𝑛) 𝑓(𝑖1,𝑛)

𝑓(𝑛,𝑗0 ) 𝑓(𝑛,𝑗2 )
𝑓(𝑛,𝑗1 )

𝑓(𝑛,∗) = 𝑓(𝑖0,𝑛) + 𝑓(𝑖1,𝑛)

Figure 7: Recreating COPY NODE with SPLIT NODE and
ALL EQUAL NODE

We use source and sink nodes to define the objective:

SOURCE NODES (N𝑠𝑜𝑢𝑟𝑐𝑒 ) are special cases of split or pick
nodes that represent the inputs to the problem. For example,
Fig. 4a illustrates the input traffic demand modeled as source
nodes that enforce split node behavior ( ). Also, Fig. 4b
shows the input ball sizes as source nodes with pick node
behavior ( , each ball can only be placed in one bin).

SINK NODE (N𝑠𝑖𝑛𝑘 ) is a specific node that (1) only has incom-
ing edges and (2) measures the performance of the problem as
the total incoming traffic through these edges (Fig. 6f). When
the DSL represents an optimization problem, the sink node
is designated as the objective, and the compiler translates the
value of the sink node into the optimization objective.

A.2 XPlain can model any linear optimization
THEOREM A.1. We can model any linear optimization

(linear programming or mixed integer linear programming)
as a flow network using the six node behaviors (N𝑠𝑝𝑙𝑖𝑡 , N𝑝𝑖𝑐𝑘 ,
N𝑚𝑢𝑙𝑡 , N𝑎𝑙𝑙𝐸𝑞 , and N𝑠𝑖𝑛𝑘 )

PROOF. An optimization problem maximizes (or mini-
mizes) an objective subject to inputs that fall within a feasible
space that the optimization constraints characterize. We can
express a linear optimization problem as (linear programming
or mixed integer linear programming):

max
x,y

c⊺x x + c⊺y y

Axx + Ayy ≤ b
x ≥ 0

y ∈ {0, 1} |y |

To show that our DSL is complete, we need to show that we
can capture both the feasible space and the objective correctly
through our flow model for every possible linear optimization.

We first present a general algorithm to express the feasible
space of any given linear optimization as a flow model and
prove it is correct. Next, we show how we can use the same
algorithm to express any linear objective.

How to represent the feasible space with a flow model. We
can express the feasible space of any linear optimization as:

Axx + Ayy ≤ b (1)

x ≥ 0 (2)

y ∈ {0, 1} |y | (3)

where we denote matrices and vectors in bold. x and y are
vectors of continuous and binary variables of size |x| × 1 and
|y| × 1 , respectively. b is a constant vector of size |b| × 1 . Ax
and Ay are constant matrices of sizes |b| × |x| and |b| × |y|
respectively. Note that we can enforce an equality constraint
as two inequality constraints (Eq. 1), and represent any integer
variable as the sum of multiple binary variables. We map the
variables to flows in our model.

We need to transform the above optimization before we
can model it with our node behaviors:

▶ Transformation 1. The matrices Ax and A𝑦 , and the vector
b may contain negative entries. This conflicts with the non-
negativity requirement of the flows in our flow model. To
address this, we decompose these matrices and vector into
their positive and negative components:

Ax = A+
x − A−

x , Ay = A+
y − A−

y , b = b+ − b−

where all the elements in A+
x = [𝑎 (+,x)

𝑖 𝑗
] and A−

x = [𝑎 (−,x)
𝑖 𝑗

]
are non-negative such that at most one of 𝑎 (+,x)

𝑖 𝑗
or 𝑎 (−,x)

𝑖 𝑗

is non-zero for every 𝑖 ∈ Z[0, |b | ) and 𝑗 ∈ Z[0, |x | ) . Note that
Z[0,𝑚) = {0, . . . ,𝑚 − 1}. Same holds for both (1) A+

y and
A−
y , and (2) b+ = [𝑏+𝑖 ] and b− = [𝑏−𝑖 ] over every 𝑖. All

matrices have the same size as their originating matrix. After
substituting these decompositions into Eq. 1, we have:

A+
xx + A+

yy + b− ≤ A−
x x + A−

y y + b+ (4)

▶ Transformation 2. Eq. 4 and SPLIT NODEs qualitatively
represent similar behaviors. SPLIT NODEs split the incoming
traffic across outgoing edges and ensure the traffic on each
edge does not exceed the capacity constraints. Ideally, we can
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enforce the Eq. 4 constraints using a SPLIT NODEs and as a
flow conservation a constraint:

A+
xx + A+

yy + b− + f = A−
x x + A−

y y + b+ (Flow conservation)

0 ≤ f (Flow constraint) (5)

The problem is that Eq. 4 also involves coefficients associ-
ated with each variable (A), while SPLIT NODEs do not accept
weights. We address this by replacing each term (coefficient
multiplied by a variable) in each of the Eq. 4 constraints with
an auxiliary variable:

𝑢+𝑖 𝑗 = 𝑎
(+,x)
𝑖 𝑗

𝑥 𝑗 , 𝑢
−
𝑖 𝑗 = 0 if 𝑎 (+,x)

𝑖 𝑗
≥ 0 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |x | )

𝑢−𝑖 𝑗 = 𝑎
(−,x)
𝑖 𝑗

𝑥 𝑗 , 𝑢
+
𝑖 𝑗 = 0 if 𝑎 (−,x)

𝑖 𝑗
> 0 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |x | )

𝑣+𝑖 𝑗 = 𝑎
(+,y)
𝑖 𝑗

𝑦 𝑗 , 𝑣
−
𝑖 𝑗 = 0 if 𝑎 (+,y)

𝑖 𝑗
≥ 0 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |y | )

𝑣−𝑖 𝑗 = 𝑎
(−,y)
𝑖 𝑗

𝑦 𝑗 , 𝑣
+
𝑖 𝑗 = 0 if 𝑎 (−,y)

𝑖 𝑗
> 0 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |y | )

(6)

We define U+ = [𝑢+
𝑖 𝑗 ], U− = [𝑢−

𝑖 𝑗 ], V+ = [𝑣+𝑖 𝑗 ], and V− =

[𝑣−𝑖 𝑗 ]. We can then express Eq. 5 in terms of these auxiliary
variables:

U+dx + V+dy + b− + f = U−dx + V−dy + b+, 0 ≤ f

where dx and dy are vectors with all elements equal to 1
and sizes of |x| × 1 and |y| × 1 respectively. This is because
each of the auxiliary variables 𝑢𝑖 𝑗 or 𝑣𝑖 𝑗 appear in exactly one
inequality constraint.

▶ Transformation 3. We encounter a problem to enforce the
constraints in Eq. 6 using MULTIPLY NODE for 𝑢𝑖 𝑗 and 𝑣𝑖 𝑗 :
each MULTIPLY NODE has only one input and one output edge.
Each edge also corresponds to one variable. This means each
variable can appear in at most two constraints, corresponding
to the two nodes at the two ends of the edge. However, the
variables in Eq. 6 appear more than twice (for example, 𝑥 𝑗
can appear up to |b| times.)

We address this by introducing additional variables and
constraints:

𝑢+𝑖 𝑗 = 𝑎
(+,x)
𝑖 𝑗

𝑥+𝑖 𝑗 , 𝑢−𝑖 𝑗 = 𝑎
(−,x)
𝑖 𝑗

𝑥−𝑖 𝑗 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |x | )

𝑣+𝑖 𝑗 = 𝑎
(+,y)
𝑖 𝑗

𝑦+𝑖 𝑗 , 𝑣−𝑖 𝑗 = 𝑎
(−,y)
𝑖 𝑗

𝑦−𝑖 𝑗 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |y | )

𝑥+𝑖 𝑗 = 𝑥−𝑖 𝑗 = 𝑥 𝑗 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |x | )

𝑦+𝑖 𝑗 = 𝑦−𝑖 𝑗 = 𝑦 𝑗 ∀𝑖 ∈ Z[0, |b | ) ,∀𝑗 ∈ Z[0, |y | )

With these modifications, each variable 𝑥+𝑖 𝑗 and 𝑥−
𝑖 𝑗 appears

in exactly two constraints (same for y).
The final resulting optimization after all the transformations

is:

U+dx + V+dy + b− + f = U−dx + V−dy + b+, 0 ≤ f (7)

𝑢+𝑖 𝑗 = 𝑎
(+,x)
𝑖 𝑗

𝑥+𝑖 𝑗 ∀𝑖 ∀𝑗 (8)

𝑥−𝑖 𝑗 =
1

𝑎
(−,x)
𝑖 𝑗

𝑢−𝑖 𝑗 if 𝑎
(−,x)
𝑖 𝑗

> 0 ∀𝑖 ∀𝑗 (9)

𝑣+𝑖 𝑗 = 𝑎
(+,y)
𝑖 𝑗

𝑦+𝑖 𝑗 ∀𝑖 ∀𝑗 (10)

𝑦−𝑖 𝑗 =
1

𝑎
(−,y)
𝑖 𝑗

𝑣−𝑖 𝑗 if 𝑎
(−,y)
𝑖 𝑗

> 0 ∀𝑖 ∀𝑗 (11)

𝑥+𝑖 𝑗 = 𝑥−𝑖 𝑗 = 𝑥 𝑗 ∀𝑖 ∀𝑗 (12)

𝑦+𝑖 𝑗 = 𝑦−𝑖 𝑗 = 𝑦 𝑗 ∀𝑖 ∀𝑗 (13)

x ≥ 0 (14)

y ∈ {0, 1} |y | (15)

where for each of the equations above, notation ∀𝑖 ∀𝑗 means
all the possible 𝑖 and 𝑗 values should be considered accord-
ing to the specific constraints or conditions given for each
equation.

▶ Constructing the flow model. We can encode the above
constraints using a flow model. We first create one edge per
variable and then enforce each constraint using one node:
(S1) We encode Eq. 7 using SPLIT NODEs. We will have a

node for each possible 𝑖. The inputs to each node are
(1) one edge per variable on the left-hand side of the
constraint (U+ and V+), (2) one edge with a constant
rate b− , and (3) one additional edge associated with f .
The outputs are (1) one edge per variable on the right-
hand side of the constraint (U− and V−) and (2) one
additional edge with constant rate b+. Fig. 8 shows
how this encoding is done.

Split(𝑖)

∀𝑗 𝑢
+
𝑖 𝑗 𝑏−𝑖

∀𝑗 𝑣
+
𝑖 𝑗

𝑓𝑖

∀𝑗 𝑢
−
𝑖 𝑗 𝑏+𝑖∀𝑗𝑣

−
𝑖 𝑗∑

𝑗 [𝑢+
𝑖 𝑗 + 𝑣+𝑖 𝑗 ] + 𝑏−𝑖 + 𝑓𝑖 =

∑
𝑗 [𝑢−

𝑖 𝑗 + 𝑣−𝑖 𝑗 ] + 𝑏+𝑖

Figure 8: Step 1 of the encoding: SPLIT NODE for 𝑖. There
will be a SPLIT NODE for each possible 𝑖 ∈ Z[0, |b | ) . If a
variable is 0, we do not need to assign it to the node. There
are at most |x| arrows present for 𝑢+

𝑖 𝑗 and 𝑢−
𝑖 𝑗 since at most

one of 𝑎 (−,x)
𝑖 𝑗

or 𝑎
(+,x)
𝑖 𝑗

is non-zero. Similarly, there are at
most |y| arrows present for 𝑦+𝑖 𝑗 and 𝑦−

𝑖 𝑗 .
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(S2) We express Eq. 8 – 11 using MULTIPLY NODEs. The U−

edges originate from SPLIT NODEs to these MULTIPLY
NODEs while U+ edges are in the opposite direction. So,
the node that models Eq. 8 has 𝑥+𝑖 𝑗 as its input edge and
𝑢+
𝑖 𝑗 as its output edge. Conversely, the input edge is 𝑢−

𝑖 𝑗

and the output edge is 𝑥−
𝑖 𝑗 for Eq. 9 (same holds for 𝑦

and 𝑣). Fig. 9 shows this step.

×𝑎 (+,x)
𝑖 𝑗

𝑥+𝑖 𝑗

𝑢+
𝑖 𝑗 = 𝑎

(+,x)
𝑖 𝑗

𝑥+𝑖 𝑗

× 1
𝑎
(−,x)
𝑖 𝑗

𝑢−
𝑖 𝑗

𝑥−
𝑖 𝑗 =

1
𝑎
(−,x)
𝑖 𝑗

𝑢−
𝑖 𝑗

Figure 9: Step 2 of the encoding. There will be a MULTIPLY
NODE for each possible 𝑖 and 𝑗 . At most of these two
MULTIPLY NODEs will be needed since at most one of
𝑎
(−,x)
𝑖 𝑗

or 𝑎 (+,x)
𝑖 𝑗

is non-zero.

(S3) We model Eq. 12 – 13 using ALL EQUAL NODEs. Note
that for a fixed 𝑖 and 𝑗 , since at most one of 𝑎 (−,x)

𝑖 𝑗
and

𝑎
(+,x)
𝑖 𝑗

is non-zero, at most of the equations in Eq. 8 and
Eq. 9 are needed for that 𝑖 and 𝑗 (same holds for Eq. 10
and Eq. 11). Consequently, at most of 𝑥+𝑖 𝑗 and 𝑥−

𝑖 𝑗 is
needed in Eq. 12 (same holds for 𝑦+𝑖 𝑗 and 𝑦−

𝑖 𝑗 in Eq. 13).
The 𝑥 𝑗 and 𝑥−

𝑖 𝑗 s are input edges and 𝑥+𝑖 𝑗 s are the output
edges (same for 𝑦). Fig. 10 illustrates this step.

AllEq( 𝑗)

𝑥 𝑗 ∀𝑖 𝑥−
𝑖 𝑗

∀𝑖 𝑥+𝑖 𝑗

Figure 10: Step 3 of the encoding. There will be a ALL
EQUAL NODE for each possible 𝑗 ∈ Z[0, |x | ) .

(S4) The input variables are the variables in x and y. We
represent binary variables in Eq. 15 using PICK NODES.
It has one incoming edge with a constant rate of 1 and
two outgoing edges. One of the outputs corresponds to
the binary variable. If the node selects that specific edge
to carry the flow, the binary variable is 1. Otherwise,
it is 0. Eq. 14 is inherently satisfied as flows are all
non-negative.

This flow model provably captures the optimization’s feasi-
ble space as there is a one-to-one correspondence between the
constraints in the optimization and the constraints enforced
by the nodes.
How to capture the optimization objective. We can express
the objective of any linear optimization as maxx,y c⊺x x+c⊺y y
where cx and cy are constant vectors. We can reformulate and
add a constraint that enforces 𝑝 = c⊺x x + c⊺y y, so the objective
of the optimization changes to maximizing 𝑝. Then, we can
use similar transformations, as we explained before, to capture
this constraint within the flow model. We add a sink node that
has one incoming edge 𝑝. This way, we can express any linear
optimization objective with our model.

□
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