
Po-An Tsai, Andres Sanchez,

Christopher Fletcher, and Daniel Sanchez

ASPLOS 2020

Safecracker: Leaking Secrets through Compressed Caches

Executive Summary
2

 First security analysis of cache compression

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victim

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms

Executive Summary
2

 First security analysis of cache compression

 Compressibility of a cache line reveals info about its data

 Attacker can exploit data colocation to leak secrets

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms

Leaks large fraction of victim memory

when combined latent memory safety vulnerabilities

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Compressed cache attacks

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Compressed cache attacks

Compressibility of secret

(and data in same line)

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Compressibility of secret

(and data in same line)

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Timing difference to infer

a line’s compressibility

Compressibility of secret

(and data in same line)

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Kiriansky et. al, MICRO’18

Speculation-Based vs. Compressed Cache

Side-Channel Attacks 3

Victim’s

protection

domain

Secret Transmitter

Attacker’s

protection

domain

SecretReceiver

Side

channel

Compressed cache attacks

Writing secret data

(or data in same line)

Timing difference to infer

a line’s compressibility

Compressibility of secret

(and data in same line)

Speculation-based cache side channel attacks (e.g., Spectre)

Speculatively executed

instructions

Timing difference to infer

a line’s presence

Presence of a line and its

address (location in cache)

Compressed cache attacks leak data without relying on speculation

Kiriansky et. al, MICRO’18

Outline
4

 Background on cache compression

 Pack+Probe: Measuring cache line compressibility

 Safecracker: Exploiting data colocation to leak secrets

 Potential defenses

Cache Compression Tradeoffs
5

 Higher effective capacity Higher hit rate

 Somewhat higher hit latency

Cache Compression Tradeoffs
5

 Higher effective capacity Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)
L3

Cache

Cache Compression Tradeoffs
5

 Higher effective capacity Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3

Cache

Cache Compression Tradeoffs
5

 Higher effective capacity Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3

Cache

Cache Compression Tradeoffs
5

 Higher effective capacity Higher hit rate

 Somewhat higher hit latency

 Highly beneficial for large caches (e.g., LLC)

 Intense research activity over past 15 years
L3

Cache

All focus on performance, not security

Cache Compression Ingredients
6

Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?

Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?

 We focus attacks on a commonly used baseline:

 VSC compressed cache architecture

 BDI compression algorithm

Cache Compression Ingredients
6

 Architecture: How to locate and manage variable-

sized compressed blocks?

 Algorithm: How to compress each cache block?

 We focus attacks on a commonly used baseline:

 VSC compressed cache architecture

 BDI compression algorithm

 Attacks apply to other architectures & algorithms

 Leads to different characteristics about leaked data

VSC [Alameldeen and Wood ISCA‘04]
7

 Conventional caches can only manage
fixed-size blocks

Tag0 Tag1 Data0 Data1
2-way set-associative cache

64 bytes

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

Tag0 Tag1 Data array

128 bytes
8 bytes

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3

VSC [Alameldeen and Wood ISCA‘04]
8

 VSC divides data array into small segments and lets

compressed lines take a variable number of segments

 VSC increases tags relative to uncompressed caches

to track more compressed lines per set

Tag0 Tag1 Data array

128 bytes
8 bytes

Tag2 Tag3

BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a

common base + small deltas

BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a

common base + small deltas

 BDI supports multiple formats with different base sizes

(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)

BDI [Pekhimenko et al. PACT‘12]
9

 Base-Delta-Immediate (BDI) compresses lines with similar values by using a

common base + small deltas

 BDI supports multiple formats with different base sizes

(2, 4, 8 bytes) and delta sizes (1, 2, 4 bytes)

 Reasonable compression ratio, simple implementation

Pack+Probe: Measuring Compressibility
10

 Threat model:

 Attacker and victim run in different protection domains

(processes, VMs, etc.)

 Attacker and victim share compressed cache

 Attacker knows compressed cache architecture &

algorithm used

 Attacker knows set of victim’s target line

(can use standard techniques to find it)

Core Core

L2 L2

Compressed LLC

Main Memory

Pack+Probe: Measuring Compressibility
10

 Threat model:

 Attacker and victim run in different protection domains

(processes, VMs, etc.)

 Attacker and victim share compressed cache

 Attacker knows compressed cache architecture &

algorithm used

 Attacker knows set of victim’s target line

(can use standard techniques to find it)

 Goal: Find compressed size of target line

Core Core

L2 L2

Compressed LLC

Main Memory

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

Tag0 Tag1 Data arrayTag2 Tag3

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits Victim line ≤ S segments

 Any miss Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits Victim line ≤ S segments

 Any miss Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and
at least one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits Victim line ≤ S segments

 Any miss Victim line > S segments

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Miss Victim > 4

segments

Pack+Probe: Measuring Compressibility
11

Attacker packs target set with lines of known sizes, leaving S free segments and at least
one free tag

After victim accesses target set, attacker probes all lines used to pack target set

 All hits Victim line ≤ S segments

 Any miss Victim line > S segments

By doing a binary search over S, one can find exact size in

log2(MaxSegmentsPerCacheLine) measurements

Tag0 Tag1 Data arrayTag2 Tag3

Tag0 Tag1 Data arrayTag2 Tag3

S=4

Miss Victim > 4

segments

Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe

Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

 Multiple colocation vectors:

 Victim itself colocates (contiguous allocation, stack spills, etc.)

 Memory safety violations (buffer overflows, heap spraying, etc.)

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe

Safecracker: Exploiting Data Colocation to Leak Secrets
12

 Threat model:

 Attacker and victim run in different domains,
share compressed cache (as in Pack+Probe)

 Attacker can get victim to collocate attacker-controlled data
near victim’s own secret data

 Goal: Leak victim’s data

 Multiple colocation vectors:

 Victim itself colocates (contiguous allocation, stack spills, etc.)

 Memory safety violations (buffer overflows, heap spraying, etc.)

 Safecracker changes attacker-controlled data to reveal

nearby secret data through changes in compressibility

 Search strategy depends on compression algorithm

Core Core

L2 L2

Compressed LLC

Main Memory

encrypt 0x01…

Pack+Probe

Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line

decreases in size

Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line

decreases in size

… 0x000000000x00000000 0x0F00BA20 32B

Compressed

sizeSecret data

Attacker-controlled input

Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

32B

Compressed

sizeSecret data

Attacker-controlled input

Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

…

32B

Compressed

size

… 0x0F0000000x0F000000 0x0F00BA20

Secret data

Attacker-controlled input

Safecracker on BDI
13

 Starting from largest delta, sweep high-order bytes until target line

decreases in size

… 0x000000000x00000000 0x0F00BA20

… 0x000100000x00010000 0x0F00BA20 32B

…

32B

Compressed

size

… 0x0F0000000x0F000000 0x0F00BA20

20B !0x0F000000 0000 0000 0000 0000 0000 0000 0000 BA20

4B base 2B deltas

Secret data

Attacker-controlled input

Safecracker on BDI
14

 Continue sweeping lower-order bytes until recovering all bytes

Safecracker on BDI
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20 20B

Compressed

size

Safecracker on BDI
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

20B

Compressed

size

…

Safecracker on BDI
14

 Continue sweeping lower-order bytes until recovering all bytes

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

…

20B

Compressed

size

… 0x0F00BA200x0F00BA20 0x0F00BA20 8B

…

Safecracker on BDI
14

 Continue sweeping lower-order bytes until recovering all bytes

 BDI allows recovering up to 8 bytes this way

Secret data

Attacker-controlled input
… 0x0F0001000x0F000100 0x0F00BA20

… 0x0F00BA000x0F00BA00 0x0F00BA20 12B

…

20B

Compressed

size

… 0x0F00BA200x0F00BA20 0x0F00BA20 8B

…

Secret Size Compression Format Sequence Attempts

2B NoComp→B2D1→B8D0 O(28)

4B NoComp→B4D2→B4D1→B8D0 O(216)

8B NoComp→B8D4→B8D2→B8D1→B8D0 O(232)

 Buffer overflows let Safecracker control where attacker-

controlled data is located

 Makes search more efficient

 Can leak data far away from buffer

Enhancing Safecracker w/ buffer overflows
15

 Buffer overflows let Safecracker control where attacker-

controlled data is located

 Makes search more efficient

 Can leak data far away from buffer

 With BDI, can leak 1/8th of victim’s memory!

 Other compression algorithms (e.g., RLE) allow more leakage

Enhancing Safecracker w/ buffer overflows
15

Safecracker Evaluation
16

 Microarchitectural simulation using zsim

 Multicore system modeled after Skylake
Core Core

L2 L2

Compressed LLC

Main Memory

8MB VSC with 64-byte lines,

2x tag array, 32 tags/set

BDI compression

Safecracker Evaluation
16

 Microarchitectural simulation using zsim

 Multicore system modeled after Skylake

 Two Proof-of-Concept (PoC) workloads:

 Login server that colocates key and attacker data

 Server with buffer overflow + key elsewhere in stack

Core Core

L2 L2

Compressed LLC

Main Memory

8MB VSC with 64-byte lines,

2x tag array, 32 tags/set

BDI compression

Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)

Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)

PoC 2: Buffer overflow

Safecracker steals secrets quickly
17

PoC 1: Fixed colocation

Leaks 4B in under 100ms, 6B in 200ms

(comparable to time spent finding target set)

8B would take much longer (~90 hours)

PoC 2: Buffer overflow

Leaks 8B in ~10ms

Attack time grows linearly with leaked bytes

Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of

lines Pack+Probe still applies

Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of

lines Pack+Probe still applies

 See paper for more discussions

Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of

lines Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is

Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of

lines Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is

 Adaptive compression algorithms use shared state

Generalizing attacks to other compressed caches
18

 Most compressed cache architectures allow conflicts among a small set of

lines Pack+Probe still applies

 See paper for more discussions

 Compressibility always leaks information about data

 More info the better the compression algorithm is

 Adaptive compression algorithms use shared state

 additional attack vector

Defense against cache compression attacks
19

Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays

Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays

 Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and

static partitioning:

Defense against cache compression attacks
19

 Cache partitioning for isolation

 Prevents attacks without software changes

 Invasive: must partition both tag and data arrays

 Performance distribution of 25 mixes of 4 SPEC CPU2006 apps, using no and

static partitioning:
Partitioning increases fragmentation in

VSC, reduces effective compression ratio

See paper for more!
20

 Other possible defenses for compressed cache attacks

 Examples of vulnerable apps due to colocation with attacker-controlled data

 Discussion on generalizing attacks to other compressed caches

 Artifact description

Conclusions
21

 Compressed caches introduce new side channel & attacks

Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of

victim’s lines

Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of
victim’s lines

 Safecracker exploits compression algorithms + colocation of attacker-controlled &
secret data to leak data quickly

 Can leak a large fraction of program data

 Potentially as damaging as speculation-based attacks

Conclusions
21

 Compressed caches introduce new side channel & attacks

 Pack+Probe exploits compressed cache architectures to observe compressibility of
victim’s lines

 Safecracker exploits compression algorithms + colocation of attacker-controlled &
secret data to leak data quickly

 Can leak a large fraction of program data

 Potentially as damaging as speculation-based attacks

 Defenses have drawbacks

 Motivates future work on efficient defenses

THANK YOU FOR WATCHING!

SHARE YOUR QUESTIONS/COMMENTS WITH US!
22

Attacker Victimencrypt 0x01…

1 Attacker sends encryption

request to victim

Secret key

Attacker-controlled input

0x01020304050607 0x01
2 Victim stores input next to key

7B cache line

Cache compresses line

3 Attacker measures line’s

compressed size, infers

0x01 is in the secret data

Compromises secret key in ~10ms

Safecracker: Leaking Secrets through Compressed Caches

