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Abstract
We present LIFTY, a language that uses type-driven program
repair to enforce information flow policies. In LIFTY, the pro-
grammer specifies a policy by annotating the source of sensitive
data with a refinement type, and the system automatically in-
serts access checks necessary to enforce this policy across the
code. This is a significant improvement over current practice,
where programmers manually implement access checks, and
any missing check can cause an information leak.

To support this programming model, we have developed
(1) an encoding of information flow security in terms of decid-
able refinement types that enables fully automatic verification
and (2) a program repair algorithm that localizes unsafe ac-
cesses to sensitive data and replaces them with provably secure
alternatives. We formalize the encoding and prove its noninter-
ference guarantee. Our experience using LIFTY to implement
a conference management system shows that it decreases policy
burden and is able to efficiently synthesize all necessary access
checks, including those required to prevent a set of reported
real-world information leaks.

1. Introduction
From conference management systems to health record man-
agement systems, today’s software manipulates sensitive data
in increasingly complex ways. To protect sensitive data, pro-
grammers must enforce fine-grained, evolving confidentiality
policies. For example, policies for the very system used to submit
this paper include “a reviewer may see the score for the sub-
mission if there is no conflict of interest” and “authors may see
reviews for their own papers during or after the rebuttal phase.”

To some, it may seem surprising that conference management
systems still leak information. If we consider the code, however,
security bugs are not so shocking. Traditionally programmers
enforce confidentiality by inserting policy checks across the
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program. For example, inside a function that displays the status
of all submissions to a reviewer, the programmer must check,
for each submission, if there is a conflict. Then there is the
issue of the viewer: there is a documented bug in the HotCRP
conference management system [52], for instance, where users
were allowed to send themselves password reminder emails—
from any user in the system. As such, both the placement and
content of the checks are nontrivial to determine. The many
opportunities for accidental information leaks supports the case
for automatic information flow control.

We divide existing approaches to information flow control
into four categories. The first two include program analysis tech-
niques that check a given program against a high-level, declar-
ative description of a policy. Dynamic techniques [8, 25, 52]
insert checking code into otherwise unencumbered programs,
with the downside of unpredictable runtime behavior, as failed
policy checks cause exceptions or silent failures. Runtime behav-
ior is predictable using static techniques [10, 22, 28, 33, 45, 54],
but these either lack support for complex policies present in
realistic applications, or require programmers to provide aux-
iliary annotations. Moreover, none of the analysis approaches
frees the programmer from both writing policy checks across
the program and writing code to handle cases when a viewer
does not have access.

Addressing the problem of programmer burden, the other two
categories of techniques aim to go beyond checking a given pro-
gram, and instead modify the program—either at runtime or at
compile time—in order to avoid leaks. With the policy-agnostic
paradigm [6, 50, 51] the programmer is free to omit policy
checks from the code and instead associates policy functions
with data definitions. The language runtime is responsible for
steering dynamic behavior to adhere to policies, which are ex-
pressive and may depend on sensitive values. Unfortunately, this
solution incurs potentially prohibitive performance overheads
and may result in unexpected dynamic behavior. Static program
repair techniques avoid these pitfalls, but none of the existing
repair techniques for security [18, 20, 43] target policies as
expressive as those that policy-agnostic programming supports.

In this paper we present LIFTY, a new security-typed pro-
gramming language that combines advantages of all four cat-
egories of existing approaches. LIFTY provides a static solution
to policy-agnostic programming: the programmer provides high-
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Figure 1. Type-driven repair for LIFTY programs.

level, policy specifications, expressed directly in the form of
logical predicates over viewers and states; the compiler automat-
ically inserts policy checks across the code in such as way that
the resulting program provably satisfies the policies. Like other
static approaches, LIFTY has no run-time overhead relative to the
necessary policy checks. At the same time, it supports complex,
representative policies, allowing both policies and policy eval-
uation context (e.g. the viewer) to depend on sensitive values.

Providing a static, repair-based solution to policy-agnostic
programming poses two major challenges: program verification
and policy synthesis. Because we want a verification algorithm
for the purpose of repair, we need a fully automatic static analy-
sis technique that supports expressive policies that may depend
on sensitive values. In addition, it is nontrivial to determine op-
timal policy checks statically, as they depend both on the source
of sensitive data and on the viewer to whom the data is flowing.

Our core insight is that we can encode information flow
security using liquid types [38, 47], an expressive yet decidable
refinement type system. We take advantage of two key aspects
of liquid types: (1) the support for decidable type-checking
and error localization and (2) the support for sound and au-
tomatic program synthesis [36]. Our solution has two main
aspects. First, we present an encoding of information flow using
liquid types that is both flexible enough to verify programs
with complex policies. Second, we present a repair algorithm
that decomposes the global problem of policy enforcement
into independent, local program synthesis problems, hereby
overcoming the scalability limitations of program synthesis.

In this paper, we describe the input language, information
flow encoding, and compiler implementation for LIFTY (which
stands for Liquid Information Flow TYpes). In Fig. 1 we show
an overview of LIFTY’s work flow. The programmer specifies
information flow policies as refinement types associated with

sources of sensitive data. LIFTY’s verifier uses a variant of
liquid type inference [38] to produce a program with holes,
where each hole corresponds to an unsafe data access paired
with a local policy specification. Our repair algorithms extends
on an existing type-based program synthesis technique [36] to
produce a policy check for each hole.

This paper makes the following contributions:
• Repair-based approach to information flow control.

We present the first technique that statically repairs pro-
grams to ensure information flow security with respect to
fine-grained, state-dependent policies.
• Verification of expressive policies. We developed an en-

coding of information flow security in the formalism of
liquid types, which is sound, requires no programmer annota-
tions besides policy specifications, and supports fine-grained,
state-dependent policies, which may depend on sensitive
values. Verification against such policies is out of scope for
existing static analysis techniques.
• Formalization and proof of security guarantee. We for-

malize contextual noninterference: a generalization of non-
interference for viewer- and state-dependent policies, and
prove that LIFTY guarantees this property.
• Demonstration of practical promise. We implement a

LIFTY-to-Haskell compiler and demonstrate through the
implementation of a conference management system that
our solution supports expressive policies, reduces the burden
placed on the programmer, is able to generate all neces-
sary checks for our benchmarks (about seven minutes for
the entire conference management system), and can repair
programs to prevent reported real-world leaks.

2. Overview
LIFTY is a pure, call-by-value functional language with Haskell-
like syntax. The implementation of a typical LIFTY application
consists of a data module defining data schemas and information
flow policies and other modules implementation application
functionality in a policy-agnostic manner. Only the data module
is trusted: the LIFTY compiler verifies the remainder of the
program, inserting missing policy checks where necessary.

2.1 Programming in LIFTY

We use simplified snippets from our conference management
system case study to introduce the LIFTY language, our en-
coding of information flow control, and the repair mechanism.
Recall the password-reminder-of-any-user bug [52] from our
Introduction. Here we implement similar functionality to send
to send an email to a given member of program committee
with the list of all conference submissions and their current
scores. In Fig. 2 we show excerpts form the data module (DM) and
application code (Server) for implementing this functionality.
Policy-Agnostic Application Code. In the Server module
(line 12), we implement the function sendReminder to send
an email with the list of all conference submissions and their
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module DM where -- Mediates data access

import Tagged -- uses info flow library

getTitle :: World → PaperId →
5 Tagged String <True>

getAuthors :: World → pid: PaperId →
Tagged [User] < λ w _ . phase w ≥ rebuttal>

getScore :: World → pid: PaperId →
Tagged Int < λ w u . u in pc w ∧

10 u 6∈ conflicts w pid>

module Server where -- Application logic

import Tagged, DB

15 sendReminder :: World → UserId → World

sendReminder w i =

let paperRow pid =

do t ← getTitle w pid

as ← getAuthors w pid

20 s ← getScore w pid

return (unwords [t, show as, show s])

out =

do allPids ← getAllPaperIds w

rows ← mapM paperRow allPids

25 return (unlines rows)

mem = getPCMember w i

in print w mem out -- Send message out to mem

Figure 2. Snippets from two modules of the conference
management system.

current scores. The function first defines a helper function
paperRow pid that retrieves the title, authors, and score of the
submission pid from the data store and concatenates them into
a line of text. Next, the function computes the entire output by
mapping paperRow onto the list of all papers and concatenating
the resulting list of lines. Finally, it retrieves the identity of the
PC member and outputs the text (using print from LIFTY’s
standard library). Note that the function has both read effects
(retrieval from the data store) and write effects (output to user).
In our pure language we capture these effects by propagating
a single additional argument w (of type World) through the code.
We assume that a World value encapsulates both the state of the
data store and the observations made by the users. As we explain
below, we encode information flow control using a monad; hence
the code uses monadic construct such as do and mapM, which are
however standard and familiar to Haskell programmers.

What is remarkable about the body of sendReminder is that
it accesses sensitive data, using accessor functions such as
getTitle, getAuthors, and getScore, without implementing
policy checks! In a conference management system, imple-
menting double-blind review requires hiding the list of paper
authors from reviewers until the rebuttal phase, as well as hiding
the score of a paper from those reviewers who have a conflict

of interest. And because we are implementing a function that
sends email to an arbitrary user, implementing checks for such
policies involves additionally keeping track of the viewer. But
sendReminder as it is written does not seem to take this policy
into account at all. This is because, as we will show, the LIFTY
compiler is responsible for inserting these checks automatically,
based on programmer specifications.
Policy Specifications. The LIFTY programmer provides spec-
ifications of information flow policies by associating types with
accessor functions in the data module. The programmer desig-
nates a data value as sensitive by tagging it: wrapping the return
type of the corresponding accessor function in a Tagged type
constructor that is parameterized by a predicate corresponding
to the confidentiality policy.

In Fig. 2 we show how to specify the policies mentioned
above. The type Tagged α <P >, where P is a binary predicate,
stores a value (of type α) that can only be seen by a user u in
a worldw provided that P w u holds. For example, we gave the
result of getScore the type
Tagged Int < λ w u . u ∈ pc w ∧ u 6∈ conflicts w pid>

This policy says that a viewer u may see the return value of the
function as long as at the time of output, u is in the PC and not
in conflict with the paper. Policy predicates can directly refer
to the fields of the data store (such as conflicts on line 10);
all accesses to sensitive values in executable parts the program
obtain Tagged versions through the accessor functions. The
LIFTY compiler uses the associated types to insert necessary
policy checks into the program.

For implementing policy specifications LIFTY supports
abstract refinement types in the style of Vazou et al. [47]. Our
framework is agnostic to the exact logic of refinement predi-
cates, as long as it is decidable. Our implementation uses the
quantifier-free logic of arrays (used to model sets and maps),
uninterpreted functions, and linear integer arithmetic. In our
experience this was sufficient to express all policy predicates
for the conference management system are a direct translation
of the intuitive statement of the policy.

2.2 Inserting Policy Checks
We now describe how the LIFTY compiler inserts missing
policy checks. Our key insight in developing LIFTY is that
we can use the results of a failed verification attempt to both
(1) identify where in the code we need to guard sensitive data
and (2) determine the appropriate check.
Step 1: Verification. To compile sendReminder, the LIFTY
compiler first attempts to verify the body with respect to the
specified policies using a variant of liquid type inference [38]. It
detects, for instance, that the authors list obtained from calling
getAuthors (line 6) with policy λ w _ . phase w ≥ rebuttal

flows into the argument out of print, which is required to have
the policy

λ w u . u = pcMember w i ∧ u ∈ pc w

(or weaker) resulting from type information propagated back
from evaluating mem = getPCMember w i (line 26). Lifty uses
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sendReminder w i =

let paperRow pid =

do t ← getTitle w pid

as ← ifM (do t1 ← getPhase w

5 return (rebuttal ≤ t1))

(getAuthors w pid)

(return []))

s ← ifM (do t2 ← getPCMember w i

t3 ← getConflicts w pid

10 return (not (elem t2 t3)))

(getScore w pid)

(return -100)

return (unwords [t, show as, show s])

out = ... -- as before

15 mem = getPCMember w i

in print w mem out

Figure 3. Example implementation after repair (injected
policy checks are highlighted).

the SMT solver to check whether the latter policy implies the
former. (Note that this is always decidable thanks to the restric-
tions on the logic of policy predicates.) Since this is not the case,
LIFTY deems this flow unsafe.
Step 2: Error Localization. What is the best way to prevent
this leak? One option is to wrap the print invocation itself
in a conditional. This would prevent the leak, but will have an
undesired side effect of hiding the titles and the scores along with
the authors. Even worse, in this example there is actually another
sensitive value—the score—with a different policy flowing into
the same print operations, making such a solution even more
clumsy. Our goal for the LIFTY compiler is to preserve as much
of the original program behavior as possible, and so LIFTY
always chooses to guard the smallest possible subterm, i.e. the
invocation of the accessor method. In this case, even though
several data elements flow into the same print operation, LIFTY
is able to determine only two of them are sensitive and require
policy checks, and associates the checks with getAuthors w pid

and getScore w pid. Such precision becomes increasingly
important with larger programs that access many pieces of data.

Key to our precise error localization is our encoding of
information flow in terms of liquid types. Our encoding enables
LIFTY to leverage the type checker to perform two important
functions. First, we can use type error localization to identify
each offending term. Second, we can use type inference to prop-
agate the information about the eventual viewer from the invo-
cation of print back to the source in order to infer a local policy
specification for each offending term (i.e. what is the most restric-
tive policy the repaired term must satisfy in order to avoid the
leak). In this example, the local policy specification for both of-
fending terms is λ w u . u = pcMember w i ∧ u ∈ pc w, since
they are flowing into the same print operation.

Step 3: Repair. The next step is guard each offending access
with a policy check so that the guarded access adheres to the
local policy specification derived through type inference. LIFTY
uses a modification of the SYNQUID program synthesizer [36] to
generate the weakest guard that is sufficient to make the access
safe. Using a program synthesizer as opposed to syntactically
deriving checks from policy predicates, makes LIFTY more
robust and allows it to avoid redundant checks. For example, the
policy for getScore contains a conjunct u ∈ pc w, but LIFTY
determines from the local policy specification that in this context
the viewer is always a PC member and omits this redundant
check. Similarly, if the programmer has already implemented
the checks in the program, LIFTY will leave the program as
is (it is also able to enhance existing partial checks by adding
conditionals inside of the existing ones).

In Fig. 3 we show the repaired version of the code, where
the invocations of getAuthors and getScore are guarded with
an appropriate checks. The monadic operation ifM branches on
a sensitive Boolean expression. In case the policy is violated,
the guarded access returns a default value (in this example, -100
for the score in line 8). The programmer designates a default
for every sensitive accessor method.
Step 4: Verification to Prevent Leaky Enforcement. As a
final step, LIFTY verifies the resulting program to ensure that the
insertion of policy checks did not introduce new leaks. It does
this to address the problem of leaky enforcement, which occurs
when policy checks leak information about the sensitive values
they depend on. Leak enforcement may occur in our system
because LIFTY allows policies to depend on sensitive values.
Note that policies that depend on sensitive values are becoming
common in realistic applications, but have been largely ignored
in previous work on static verification of information flow
security. (For more details, see Sec. 6.)

To illustrate leaky enforcement, consider how the policy as-
sociated with the getScore function depends on the conflicts

field. Now suppose a programmer specified the following policy
for getConflicts, which allows only the PC chair to view it:

getConflicts :: World → pid: PaperId →
Tagged Int < λ w u . u = chair w>

If the programmer really intended such a policy, then there is
a leak of information, since an ordinary, non-chair PC member
now sees scores differently depending on whether they have a
conflict, thus leaking information about the conflict field. In this
program there is no way to precisely check the policy as stated
without leaking information, and so LIFTY will detect a leak in
the repaired code. In this case LIFTY and alerts the programmer
that the policy for score might be ill-formed.
Reasoning About Self-Referential Policies Supporting poli-
cies that depend on sensitive values involves handing self-
referential policies. As an example, consider the list of conflicts
for a submission that the injected code in Fig. 3 accesses. It is
natural to demand, in a double-blind conference, that a reviewer
cannot access the conflicts list of a submission when they are
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themselves in conflict. We can express this with the following
policy specification on getConflicts:

getConflicts :: World → pid: PaperId →
Tagged Int < λ w u . u 6∈ conflicts w pid>

This policy is self-referential because it guards access to the field
conflicts in a way that depends on the value of conflicts.

Self-referential policies pose a challenge in defining a secu-
rity guarantee. The traditional notion of noninterference cannot
apply: it would be too restrictive to demand that a reviewer
cannot tell whether they are in conflict with a submission or not.
Instead all we care about is that a conflicted reviewer cannot tell
who else is in conflict; in other words, a principal must not be able
to distinguish between two values of a sensitive field that they are
not allowed to see. This relaxed notion of noninterference was
first introduced in dynamic policy-agnostic programming [50].
In the context of LIFTY, we refer to it as contextual noninter-
ference and formalize it in Sec. 3. LIFTY is able to reason about
these self-referential policies statically and automatically in a
way that is sound with respect to contextual noninterference.

2.3 Encoding Information Flow with Liquid Types
Key to our solution is our encoding of information flow using
liquid types. Goals for our solution included (1) strong for-
mal guarantees, (2) support for expressive high-level policies,
(3) automated verification, and (4) precise error localization.

For strong formal guarantees, we build on a line of work [22,
39, 44, 45] that encodes information flow policies using value-
dependent data types. To ensure soundness, the module system
disallows client code to explicitly construct or destruct values
of this type. Instead clients manipulate labeled values using
a predefined monadic library, which only allows secure ma-
nipulations. In LIFTY, the module Tagged, imported by DM and
Server in Fig. 2, is such a monadic library defining the Tagged

datatype, along with primitive monadic operations (return and
bind), derived operations (such as liftM, ifM, and mapM), and
well as the output function print for extracting values from
Tagged. The type signatures of these operations propagate labels
through the code in a sound way. For example, the signature of
bind prescribes that applying a sensitive function to a sensitive
value yields a result that is at least as secret as either of them; the
signature of print imposes the requirement that the sensitive
value it consumes is visible to the target of the output. In our
meta-theory we prove that these signatures guarantee contextual
noninterference.

We fulfilled goals (2) through (4) using a careful encoding of
information flow using liquid types. In LIFTY, the programmer
encodes policies as predicates over the program state, as opposed
to less directly in terms of labels and axioms, as in Fable [44]
and Fine [45]. Our encoding allows us to take advantage of a
combination of subtyping and predicate abstraction available in
liquid types to infer all auxiliary policy annotations completely
automatically. The encoding also facilitates precise error local-
ization, relying on type inference to identify the data sources.

Modifying Data Store A LIFTY application can perform both
reads and writes. When the code writes a value, LIFTY makes
sure that it does not introduce an information leak by reading
a private field and then writing it into a more public one. Note
that this is separate from access control (i.e. which users are
allowed write access), which can be implemented by normal
preconditions, and is not the focus of this paper. To establish
these checks, the data module also declares setters, for example

setScore :: World → PaperId → Tagged Int

< λ w u . u ∈ pc w ∧ u 6∈ conflicts w pid> → World

which complements getScore and has the same policy. If
setScore is called, e.g., with a value visible only to the chair,
it would be detected as a type error. Such type annotations
preserve the global invariant that only values with sufficiently
weak policies are stored.

Note that the presence of mutable stores necessitates an inter-
pretation of every policy with respect to the world at the time of
output, which is why our policies accept w: World as an argument.
A case where a value is public when it is read, but private when
it is printed, will be detected and handled correctly by LIFTY.

3. Formal Semantics and Guarantees
We present the semantics and guarantees of LIFTY in two steps.
First, we present the static semantics of BL, a simple pure func-
tional language that extends λP , the core language of abstract
refinement types [47], with type constructors (polymorphic data
types) that are parameterized by types and predicates and obey
nominal subtyping rules. Our extension is sufficiently minimal
that we can take advantage of λP ’s decidable type-checking
and automatic type inference.

Polymorphic data types allow us to encode tagging values
with information flow policies directly in BL, rather than ex-
tending the language. We first show how to implement tagging
inBL as the information flow monad Tagged. We then use a new
proof technique we have developed to prove non-interference,
introducing the Tagged2 monad that relates pairs of executions
and showing that type-checking with Tagged2 implies contex-
tual non-interference with Tagged. Since the repair phase always
generates type-correct programs, this is sufficient for verifying
the correctness of LIFTY’s repair.

3.1 Syntax and Types of BL
We now present BL. Like λP , BL’s type system features
decidable refinement types, as well as type- and predicate-
polymorphism. Our presentation of the syntax, types, and
semantics closely follows Vazou et al.’s presentation of λP [47].
BL additionally includes a formalization of type constructors
parameterized both by types and by predicates. These type
constructors, combined with the subtyping rules we define
for them, are crucial for supporting the phantom predicates
necessary for our solution.

We show the BL syntax in Fig. 4.
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v ::=x |λx :T.e Values
e ::=v |let x=v v in e Expressions

|if x then e else e
|match x withD x̄→e

ψ ::= Formulas:
|>|⊥|0 |+ | ... (varies) interpreted symbol
|f uninterpreted symbol
|ψ ψ application

a ::=ψ |π x̄ |ψ⇒a Atomic refinement
r ::=a |a∧r Refinement
p ::=r |λx :T.p Parametric refinement

B ::= Base types:
|() |Bool |Int primitive
|α type variable
|D T̄ 〈p̄〉 data type

T ::={B |r}|x : T→T Types
◦ ::=⊕|	|� Variance
S ::=T |∀◦α.S |∀◦〈π :T 〉.S Type schemas

Figure 4. Terms and types.

Expressions. We differentiate between program terms and re-
finement terms. The former include values (variables and abstrac-
tions) as well as let-bindings, conditionals, and pattern-matching.
All BL programs are in A-normal form [16]: application only
appears in let-bindings and are built out of values, not arbitrary
expressions (this is important for refinement type checking).

For simplicity of presentation we omit recursion and assume
our data types are record types (i.e. have a single constructor);
hence the match expression, which binds the fields of the record
to variables, only has one case. Our implementation supports
both recursion and proper algebraic data types (tagged unions);
extending the formalism to include these features would be
straightforward.
Refinements. Refinements are built up from formulas ψ of
the refinement logic and applications of predicate variables π.
Inside formulas, the exact set of interpreted symbols depends
on the chosen refinement logic; the only requirement is that the
logic be decidable to enable automatic type checking. Predicate
variables always appear positively inside refinements to enable
type inference.
Types and Schemas. BL types include refined base types
{B | r} and dependent function types x : Tx→T . Here r is a
refinement predicate over the program variables and a special
value variable ν, which denotes the bound variable of the type,
and xmay appear in the refinement predicates of T . Base types
include primitives, type variables, and data types. A data type is
an application of a type constructorD to zero or more types and
zero or more parametric refinements. Schemas are obtained by
universally quantifying types over type and predicate variables.
We explicitly label each quantification with its variance: covari-
ant (⊕), contravariant (	), or invariant (�). ⊕ is the default
variance and may be omitted.

Well-Formedness Γ`r Γ`B Γ`S

WF-π
Γ`π x̄ :Bool Γ(π) 6=T [	]

Γ`π x̄ WF-α
Γ(α) 6=	

Γ`α

WF-FUN
Γ−`Tx Γ;x :Tx`T

Γ`Tx→T

WF-D
Γ(D)=∀◦αi.∀◦〈πj :Uj〉.T |Ti|= |αi| Γ`pj :Uj

Γ`D Ti 〈pj〉

WF-∀α
Γ;α :◦`S
Γ`∀◦α.S

WF-∀π
Γ;π :T [◦]`S

Γ`∀◦〈π :T 〉.S

Subtyping Γ`T <:T ′

<:-SC
Γ`B <:B′ Valid(JΓK∧r⇒r′)

Γ`{B |r}<: {B′ |r′}

<:-D
Γ(D)=∀◦iαi.∀◦j 〈πj〉.T Γ`Ti∼◦i T ′i Γ`pj∼◦j p′j

Γ`D Ti 〈pj〉<:D T ′i 〈p′j〉

Γ`T <:T ′

Γ`T ∼⊕T ′
Γ`T ′<:T

Γ`T ∼	T ′
Γ`T <:T ′ Γ`T ′<:T

Γ`T ∼�T ′

Γ;x :T `p∼◦ p′

Γ`λx :T.p∼◦λx :T.p′
Γ`{() |r}∼◦ {() |r′}

Γ`r∼◦ r′

Type Checking Γ`e ::S

IF

Γ`x ::{Bool |r}
Γ;[>/ν]r`e1 ::T Γ;[⊥/ν]r`e2 ::T

Γ`if x then e1 else e2 ::T

T-GEN
Γ;α :◦`e ::S

Γ`e ::∀◦α.S
T-INST

Γ`e ::∀◦α.S Γ`{B |r}
Γ`e :: [{B |r}/α]S

P-GEN
Γ;π :T [◦]`e ::S Γ`T

Γ`e ::∀◦〈π :T 〉.S

P-INST
Γ`e ::∀◦〈π :T 〉.S Γ`p :T

Γ`e :: [pBπ]S

Figure 5. Relevant rules from the static semantics of BL:
well-formedness, subtyping, and type-checking.

3.2 BL Static Semantics
In Fig. 5 we show the relevant subset of well-formedness, sub-
typing, and type checking rules forBL (the omitted rules can be
found in supplementary material). These rules deviate from the
standard semantics is in the way we track variances of type and
predicate parameters of polymorphic schemas; explicit variance
annotations are required to control the subtyping relation for
data types with phantom predicate parameters, which we use
to encode policies. Note that while our extensions to λP are
standard, they are important for deriving our safety property.
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In our semantics, a typing environment Γ maps variables to
type schemas (x : S), bound type variables to their variances
(α : ◦), and bound predicate variables to their types and vari-
ances (π :T [◦]). We assume that for each type constructorD the
environment contains a data constructor with the same name; the
type schema of the constructor has the form ∀◦ᾱ.∀◦π :T .T1→
...→Tn→{D ᾱ π x̄ |r}and determines the type and predicate
parameters of the type constructorD (here and below, a for any
syntactic element a denotes a sequence a1,...,an).
Well-Formedness. A refinement r is well-formed in the envi-
ronment Γ, written Γ`r, if it sort-checks to Boolean and none of
its predicate variables are bound in a contravariant manner in Γ
(rule WF-π). We use a judgment Γ`r :T in the premise of WF-
π to denote simple sort checking of refinement terms, as opposed
to Γ` e ::T , which denotes refinement type checking of pro-
gram terms. Well-formedness extends to base types, types, and
type schemas. The well-formedness rules ensure that variance
annotations on type and predicate parameters are consistent with
how those parameters are used inside the type (i.e. whether they
appear positively, negatively, or in both positions); to this end,
Γ− in the premises of rules for function types inverts variance an-
notations for all type and predicate variables in the environment.
Subtyping. The subtyping relation Γ ` T <: T ′ is standard
(Fig. 5) except for data types. Rule<:-SC reduces subtyping
between scalar types to implication between their refinements,
under the assumption extracted from the environment. Since the
refinements are drawn from a decidable logic, this implication
is decidable. Refinement assumption is simply a conjunction
of all refinements of scalar variables:

JΓK=
∧

x:{B|r}∈Γ

[x/ν]r

Rule<:-D reduces subtyping between two instantiations of
the same type constructor to a relation between their type and
predicate arguments. Each argument is compared according to
its variance annotation in the corresponding data constructor.
Type Checking and Inference. Type checking rules are stan-
dard; rules for variables, abstractions, application/let-bindings,
and matches are omitted. We show the rule for conditionals
(P-IF) to demonstrate that BL is path-sensitive, which is impor-
tant for verifying policy checks (in this rule, we use a shortcut
Γ;r for Γ;x : {() | r}, where x is a fresh variable name). The
most interesting rule is P-INST, which instantiates a term of
predicate-polymorphic type with a parametric refinement p of
an appropriate type. The operation [πBp]S can be understood
as substituting the lambda-term p for every occurrence of π in S
and then “beta-reducing” the result using the actual arguments
of π (see [47] for details).

Note that rules T-INST and P-INST are non-deterministic:
they guess appropriate instantiations for type and predicate vari-
ables. In practice these instantiations are inferred automatically
by liquid type inference (see Sec. 4).

module Tagged where

-- | Tagged data constructor

private Tagged: ∀α . ∀	 <p: W → U → Bool> .
5 val:α → Tagged α <p>

return: ∀α . ∀	 <p: W → U → Bool> .
α → Tagged α <p>

10 bind: ∀α β . ∀	 <p: W → U → Bool> .
∀ <f:α → β → Bool> .

x: Tagged α <p>

→ (y: α → Tagged {β | f y ν} <p>)

→ Tagged {β | f (val x) ν} <p>

15

print: ∀α . ∀	 <p: W → U → Bool> .
w: W → viewer: Tagged {U | p w ν}<p>
→ msg: Tagged α <p> → W

20 downgrade: ∀	 <p: W → U → Bool> . ∀ <c: Bool> .
x: Tagged {Bool | ν ⇒ c} < λ w u . p w u ∧ c>

→ Tagged {Bool | ν ⇒ c} <p>

Figure 6. The Tagged monad.U denotes the type of principals;
W encapsulates state and observations by the viewers.

3.3 Encoding Information Flow in BL
We track information flow by wrapping sensitive values in-
side a data type Tagged α 〈λw.λu.r〉. The predicate parameter
〈λw.λu.r〉, which we refer to as policy, encodes which whether
a principal u is allowed to see the wrapped value in a worldw.
We show the type of the corresponding data constructor together
with the primitive monadic operations in Fig. 6. To prevent user
code from matching on a tagged value and freely extracting the
protected sensitive value, we place a restriction that the Tagged

constructor is not accessed from other modules; this is similar
to prior work [22, 39, 44, 45]. The four primitive operations
in Fig. 6 are the only functions that use the Tagged constructor
directly, and thus have to be proven secure in the meta theory.

An important feature of our encoding is that the policy
parameter of the Tagged constructor is contravariant. As a result
the subtyping relation Taggedα 〈π〉<:Taggedα 〈ρ〉 holds when
ρ⇒π, which is resolved automatically by the SMT solver. In
other words, we use the subtyping relation ofBL to enforce that
a value with a less restrictive tag (i.e. visible to more users, more
public) is allowed to flow into a variable with a more restrictive
tag (more secret) and not the other way around. This is different
from prior work that uses dependent type for information
flow [22, 44, 45], which lack subtyping between types with
different labels; this complicates the encoding of operations on
labeled types and conversion between types with different labels.
Manipulating tagged values. Policy-agnostic code manipu-
lates tagged values using the operations return, bind, and print
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shown in Fig. 6. Their type signatures (in combination with
contravariant subtyping) ensure proper propagation of tags. The
signature of return allows tagging a non-sensitive value with an
arbitrary policy. The signature of bindmeans that applying a sen-
sitive function to a sensitive value yields a result that is at least
as secret as either of them; the additional predicate parameter
f of bind allows the type checker to reason about the functional
properties of a Tagged computation, alongside its policies.
Output. The signature of print is responsible for imposing the
requirement that the sensitive value it outputs is visible to the
target of the output. In addition to the sensitive message msg, the
function takes as argument the viewer who is going to observe
the output. The type of print is parameterized by a policy p,
which labels both the viewer and the message. The rationale
is that the identity of the viewer may itself depend on sensitive
information. When checking an application print w u x, the
type checker must infer a concrete instantiation of p that is at
least as restrictive as the policies guarding both u and x, but at
the same time p w u must hold (as expressed by the refinement
on the type of viewer).
Downgrading policy checks. The signature of bind requires
that all steps in a computation over sensitive values carry the
same policies as the result. This can be overly restrictive when
we want to type-check policy checks that depend on sensitive
values. Consider the check for getScore from Fig. 3, desugared
to use only bind bind:

let

mem = getPCMember w i

check = bind mem (λ t2 . bind (getConflicts w pid)

(λ t3 . return (not (elem t2 t3))))

5 s = bind check (λ c . if c

then getScore w pid

else return -100)

...

in print w mem out

Here, the value getConflicts w pid flows, via check, s, and
out, to the PC member mem, and thus the type checker will require
that it be visible to mem. But getConflicts has a self-referential
policy, as is only visible to mem when mem is not one of the con-
flicts, which is not known statically: in fact, that’s precisely what
we are trying to check! To type-check this code we need to wrap
check in an invocation of downgrade. The type of downgrade is
parametrized by an additional nullary predicate c, and has the
effect of removing a conjunct c from a policy of a sensitive
Boolean x. This type is sound and does not allow leaking any
information: in a world where c holds, x is visible to the same
viewers as downgrade x, while in a world where c does not hold,
the value inside x is always false, and thus x it cannot leak infor-
mation. The downgrade operation is not meant to be used directly
by LIFTY programmers, but instead is used to implement ifM,
which LIFTY uses in the generated policy checks.

module Tagged2 where

private cw: W, cu: U -- Current context

5 -- | Tagged data constructor

private Tagged2: ∀α . ∀	 <p: W → U → Bool> .
l:α→ r:α→ prop: ({() | p cw cu} → {() | l = r})

→ Tagged α <p>

10 print2: ∀α . ∀	 <p: W → U → Bool> .
w: W → u: Tagged2 {U | p w ν}<p> → x: Tagged2 α <p> →

W

print2 = λ w . λ u . λ x .
match u with Tagged2 ul ur up →
if w 6= cw ∨ (ul 6= cu ∧ ur 6= cu) then w

15 else if ul 6= ur then fail (up ())

else match x with Tagged2 xl xr xp →
if xl 6= xr then fail (xp ()) else doPrint w xl

Figure 7. The Tagged2 monad, which keeps track of two
projections, used in the proof of noninterference.

3.4 Proving Non-Interference Using Tagged2

We now prove that executions involving the Tagged monad
preserve contextual noninterference: if a sensitive value v may
not flow to a given viewer, then any pair of executions involving
different assignments to v should yield equivalent outputs.

Reasoning directly about noninterference is inconvenient be-
cause it requires talking about two executions. We simplify our
noninterference proof using a technique similar to that of Pottier
and Simonet [37]: we introduce auxiliary constructs that allow
us to reason about two executions in one. Being able to encode
security labels as a library makes the formalization particularly
nice: the only auxiliary construct we need for the proof is an
alternative definition of the Tagged monad. We introduce the
Tagged2 monad with new implementations of the four primitive
operations, yielding the property that if a program type-checks
with Tagged2, then it preserves contextual noninterference with
Tagged.
The Tagged2 monad. To simplify formalization of noninter-
ference, we parameterize the semantics of BL by the context,
i.e. the principal who is observing the execution and the world
at the time of output. More concretely, we assume that the
environment always contains two variables cw :W and cu :U ;
when a program executes, it executes with all possible values
of cw and cu “in parallel”, but in each of these parallel threads,
print only performs the output when its arguments match cw

and cu, so this parametric semantics has no effect on the output.
We first construct a phantom encoding: a new information

flow monad, Tagged2, that explicitly relates pairs of program exe-
cutions. The intuition behind Tagged2 is as follows: it represents
two versions of a sensitive value from two different executions
of the program as seen by the current context. Mirroring what we
want for our noninterference property, the two versions are only
allowed to differ for those sensitive values that are not visible
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in the context. The Tagged2 constructor accepts two α values, l
and r, which we call projections. Its third argument prop serves
as a proof of the property p cwcu⇒l= r, that is, if the policy
holds of the current context, the two projections must be equal.

A Tagged2 value with different projections corresponds to
Pottier and Simonet’s “bracket value” in [37], and the prop

requirement corresponds to their rule that all bracket values are
assigned high security labels. The main conceptual difference of
our treatment is that the division between high and low security,
as well as the notion of a leak, is context-specific.

We show an excerpt from the implementation of the Tagged2

in Fig. 7. The phantom encoding provides alternative implemen-
tations for the four primitive operations. The function return2

gives the same value for both projections, while bind2 applies
the function projection-wise (these two operations are omitted
from Fig. 7 in the interest of space). There is also a definition
of downgrade2 (also omitted), that allows the checker to prove
that downgrading policies is safe.

The function print2 is designed to fail when it detects
interference: namely, whenever the target of the output is dif-
ferent in the two executions (ul 6= ur) or because it outputs
two different values (xl 6= xr). We assume that fail has the
type {() | False}→a, so the only way to type-check print2

is to prove that both failing branches are unreachable, which
the BL type checker successfully accomplishes. To understand
why the first failing branch is unreachable, recall that from the
type of u we know that p w ul ∧ p w ur; we also know that
w = cw and ul = cu ∨ ur = cu from the path condition, thus
p cw cu holds, which gives ul = ur guaranteed by the Tagged2

constructor.
Contextual noninterference. It remains to prove that type-
checking with Tagged2 implies contextual noninterference with
Tagged. Because the Tagged2 functions type-check and because
the type system of BL is sound [47], we know that no type-
correct program that manipulates Tagged2 values can go wrong,
i.e. attempt to print the results of two executions that are differ-
ent. Now we only have to formally connect computations with
Tagged values and those with Tagged2 values, and show how
type safety of the latter implies noninterference for the former.

We first show that replacing a Tagged2 value with its projec-
tion in Tagged at the beginning of an execution yields the same re-
sult as projecting at the end of an execution. A projection of an ex-
pression e (written becj , for j={l,r}) is an expression where ev-
ery occurrence of Tagged2 xl xr _ in e is replaced by Tagged xj .
Lemma 1 (Projection). If e→∗ e′ then becj →∗ be′cj , for
j={l,r}.
Theorem (Contextual Noninterference). Let Γ;x :Taggedα 〈p〉`
e :: W , and ¬(p cw cu). Let for j ∈ {l, r}, Γ ` vj :: α and
[(Tagged vj)/x]e→∗wj . Thenwl =wr.

We omit the proofs in the interest of space; more details can
be found in the supplementary material.

Algorithm 1 Repair

1: REPAIR(Γ,e,T )
2: leaks← VERIFY(Γ,e,T )
3: for (x,T ′)← leaks do
4: e← FIX(Γ,x,T ′,e)
5: leaks ′← VERIFY(Γ,e,T )
6: if leaks ′=[] then return e
7: else fail

8: FIX(Γ,x,T,let x=f v̄ in e)
9: ψ← ABDUCE(Γ;ψ`f v̄ ::T )

10: c← SYNTHESIZE(Γ′`c ::{Bool |ν⇔ψ})
11: c′← LIFT(Γ,c)
12: return let x=ifM c′ (f v̄) fdef in e

13: FIX(Γ,x,T,e)
14: recursively call FIX on subterms of e

4. Repair Algorithm
In this section we give more detail about how LIFTY inserts
access checks into policy agnostic code. We outline the process
in Algorithm 1. REPAIR takes as input a program term e (in
A-normal form), its top-level type annotation T , as well as an
environment Γ that includes all necessary components (such
as the Tagged library and all sources of sensitive data). Repair
proceeds as follows.
Type-checking (1) and error localization. Type-checking the
program (line 2) will either succeed, result in a failure (if the
e has a type-error unrelated to information flow), or return a
list leaks of unsafe accesses. Each unsafe access is a pair of a
variable namex and a typeT ′, wherex is bound to an unsafe sub-
expression of e and needs to be enhanced by a conditional check.
Repair. Error localization has reduced the repair problem to
local synthesis. Function FIX replaces every violation (line 4).
Type-checking (2) . While repair is guaranteed to produce
functionally correct checks, the checks themselves may leak
information if they depend on sensitive values. For this reason
we re-run type-checking the resulting program in line 5.

4.1 Verification and Error Localization
The LIFTY compiler uses a variation of the liquid type infer-
ence [38] with predicate polymorphism [47] to produce a list
of typed leaks. We first provide an overview of liquid type
inference and then describe how we extend it.

Liquid type inference with predicate polymorphism trans-
lates a type checking problem Γ ` e :: T into a set of Horn
constraints over predicate unknowns Pi, corresponding to un-
known parametric refinements in the instantiations of predicate-
polymorphic components (i.e. the p in the typing rule P-INST
in Fig. 5). The inference algorithm solves Horn constraints
using predicate abstraction: restricting the search space for
each Pi to conjunctions of atomic predicates generated from a
given set of templates called qualifiers. The algorithm efficiently
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finds a solution to the set of Horn constraints using the Houdini
algorithm [15], a a least-fixpoint algorithm that computes the
strongest solution for each Pi (i.e. the largest subset of atomic
predicates that satisfies the constraints).

The LIFTY compiler modifies standard liquid type infer-
ence to produce the list of leak signatures by (1) labeling
Horn clauses and (2) using a version of the least fixed point
algorithm that finds all violations, rather than the first vio-
lation we can find. LIFTY’s type checker labels each Horn
clause it generates with the name of the variable whose type
is constrained by this clause. For example, print w mem out

where mem: {User | ν = pcMember w i ∧ ν ∈ pc w}from our
introductory example (Fig. 2) produces (among others) a Horn
clause labeled with mem:

mem : ν=pcMemberw i ∧ν∈pcw ⇒P1

whereP1 is the (as yet unknown) policy parameter of this print;
this clause corresponds to the precondition on mem that it satisfy
the policy. All Horn clauses generated by the type checker
are either definite clauses of the form ψ ∧ P̄ ⇒ P (like the
one above; P̄ stands for a conjunction of multiple unknowns)
or goal clauses of the form ψ∧ P̄ ⇒ φ, where φ is a known
formula. Whereas the Liquid Haskell type checker looks for
the first offending term, we want all offending terms. Thus our
implementation of the least fixpoint algorithm first finds the
strongest solution that satisfies all definite clauses and then
checks which goal clauses are violated by this solution. (Note
that finding the strongest solution is always possible since a
definite clause can always be satisfied by assigning > to its
right-hand side.) The labels of these goal clauses give us the list
of variables to return as leaks.

It turns out that we can rely on type checking to determine, for
an insufficiently protected sensitive value, both (1) the precise
source access that is “too secret” for the sink it is flowing into,
and (2) the most restrictive policy it must satisfy in order to be
“public enough” for that sink (represented by the solution to
definite subset of Horn clauses). Normally, when type checking
functional properties, goal clauses arise from checking either
preconditions of function calls or the top-level user-provided
type annotation. Because the policy parameter of the Tagged type
is contravariant, however, policy checks produce Horn clauses
with the two sides flipped, so goal clauses correspond to the
user-specified policies on the sources of the sensitive data. For
instance, in the introductory example, binding the variable s to
rest of the Tagged computation produces the constraint s : P0⇒
u′∈pcw′∧u′ /∈conflictsw′ pid (where P0 is the policy pa-
rameter of the corresponding bind andw′,u′ are fresh variables).
As a result, the first phase of the least-fixpoint algorithm has
the effect of propagating the type of the sinks all the way back-
wards through a Tagged computation, resulting in the assignment
P0 7→ u′ = pcMember w i ∧u′ ∈ pc w′ for this example. The
second phase has the effect of identifying accesses to sources
whose policies are too restrictive for the inferred sinks, such as s,
whose goal clause does not hold for the inferred solution to P0.

4.2 Fix generation
We now give details of the FIX procedure outlined on lines 8–14
of Algorithm 1. Given a leak signature (x,T ), the function
finds the violating binding let x=f v̄, which it has to replace
with some let x= e′. Since we only need a specific kind of
repair, finding e′ reduces to solving the following local synthesis
problem:

Γ`ifM (??) (f v̄) fdef ::T

Here fdef is the user-defined default alternative for the source
f : we require that for every component f : Ū→ Tagged T 〈p〉,
the user designate, through a special annotation, a component
fdef : Tagged T 〈>〉 to serve this purpose. Thus the only un-
known term in the synthesis problem is the check. Note that
this synthesis problem is completely local, i.e. can be solved
independently from other violations.

LIFTY’s synthesizer relies on procedures from the SYNQUID
tool for synthesis from refinement types [36], but with a key
modification. While off-the-shelf SYNQUID can solve our prob-
lem in principle, the monadic code LIFTY needs to synthesize is
the worst-case scenario for SYNQUID’s goal-directed approach.
Our insight for efficient synthesis is that we can make use of
the property that functional properties (i.e. compute a condition
that is strong enough to make f v̄ comply to the policy in T ) are
orthogonal to confidentiality policies (i.e. the check itself should
not be too secret). Synthesis in LIFTY first tries to satisfy the
functional specification and then checks if the result is too secret.

LIFTY performs synthesis in three steps.
Condition abduction. LIFTY infers the weakest precondition
ψ that would make the first branch of the conditional above type
check (line 9). To that end, LIFTY uses the liquid abduction tech-
nique from SYNQUID, which searches for a solution as a minimal
conjunction of atomic predicates (qualifiers) from a given set.
There might be no unique solutionψ: abduction may return mul-
tiple solutions, which we treat as a disjunction. If the weakest ψ
the solver can construct out of given qualifiers is⊥, the system
issues a warning that it failed to adbuce a nontrivial access check.
Check synthesis. In the next step (line 10), we use SYNQUID
to synthesize from the abduced condition a pure version of
the check, i.e. a program term c of type {Bool | ν⇔ ψ}; the
synthesis is performed in a modified environment Γ′, where
all sensitive components are stripped of their tags. Since this
is non-monadic code, SYNQUID can synthesize it efficiently.
Lifting. On line 11 we lift the pure term c into a Tagged com-
putation c′ through a simple syntactic transformation, inserting
calls to bind and return where required. Since the lifting step
is purely syntactic, if policies depend on sensitive values the
resulting lifted check might end up being too private for the
policies in T . For this reason, the REPAIR algorithm re-checks
the solution on line 5.

4.3 Implementation
We have implemented LIFTY in Haskell, using the same min-
imal Haskell dialect as SYNQUID and using infrastructure pro-
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vided by the SYNQUID synthesizer [36]. We implemented the
least-fixpoint Horn solver required for VERIFY on top of SYN-
QUID’s abduction and program synthesis mechanisms. We also
enhanced SYNQUID’s qualifier extraction procedure. Like SYN-
QUID, LIFTY uses the Z3 SMT solver [13] for solving Horn con-
straints. We also implemented a SYNQUID to Haskell compiler
that enables executing the code repaired by LIFTY and linking it
with non-security-critical modules written directly in Haskell.

5. Evaluation
We implemented a conference management system example
comprising of several views and forms, measuring code size
and compiler performance. We demonstrate the following:
• Expressiveness of policy language. We demonstrate that

we can use LIFTY’s policy language to implement realistic
systems with nontrivial policies.
• Support for policy-agnostic programming. We compare

LIFTY’s output to checks that were written manually. We
show that not only does our policy specifications allow for
information checks to be centralized and concise, but also
that the compiler is able to recover all necessary checks,
without reducing the functionality.
• Good performance. We demonstrate that the LIFTY com-

piler is sufficiently efficient at verification, error localization,
and repair to use for systems of reasonable size. We demon-
strate that LIFTY is able to generate all necessary checks for
our conference management system (421 lines of LIFTY)
in about seven minutes.

5.1 Overview of Case Study
We implemented a basic conference management system, using
LIFTY to implement all information policy checks. It consists
of a rewrite, in LIFTY, of the system used as a case study in [51].
The system handles confidentiality policies for papers in dif-
ferent phases of the conference (Submission, Review, and Done)
and different statuses of each paper (NoDecision, Accepted, and
Rejected). Users of the system have the roles of author, PC
member, and PC chair. Policies depend on this state, as well as
additional properties such as conflicts with a particular paper.
The system provides features for displaying (1) paper title and
authors, (2) paper status, (3) list of conflicts, and (4) conference
information conditional on acceptance. Information may be
displayed to the user currently logged in (“session user”) or sent
via various means to different users.

The system contains 785 lines of code in total (421 LIFTY +
364 Haskell) and provides a superset of the functionality shown
in our micro-benchmarks. This case study exposes some cross-
dependencies between software features. We show statistics, bro-
ken down by the different components of the system, in Tab. 1.

5.2 Measuring the Quality of Repair
Towards quantitatively and qualitatively evaluating LIFTY’s
repair capabilities, we had a developer who was not involved
with developing LIFTY build an alternate implementation of

the conference management system with manual checks. For
this benchmark we compare three versions of the code: (1) a
policy-agnostic implementation with no checks at all, (2) an
implementation with manually implemented checks, and (3) an
implementation with automatically generated checks.

We show the results of the comparison in Tab. 1. The column
“Original” shows the size of the code, in terms of number of to-
kens, without any security checks. Then we show the size of addi-
tional security checks, both those inserted manually by a human
programmer and those automatically generated by the system.
The size of the predicates specifying the policy is given as “Pol-
icy size”. Note that the checks sometimes approach the size of
the code, confirming our hypothesis that for many applications,
much of the programming burden is in the security checking.

Our results reveal that while manual checks are more concise
than LIFTY-generated checks, the tool generates checks that are
the same order of magnitude. The most code overhead is 3×. We
found that the bloat in the automatically generated code comes
from redundancy and unnecessary verbosity, rather than from
additional functionality; for example, LIFTY would typically
generate an expression such as ifM t1 e1 (ifM t2 e1 e2) in-
stead of ifM (liftM or t1 t2) e1 e2 , essentially duplicating
e1 and causing some bloat. However, this affects only the size
of the code and neither its functionality nor its performance.
The manual and automatic checks were semantically equivalent
across our benchmarks: the checks are not more conservative
than needed.

5.3 Performance Statistics
We show the performance of the LIFTY compiler for the differ-
ent transactions implemented in our case study, in Tab. 1. We
break down running time into verification, error localization,
and synthesis of new checks. For the version that contains
manual checks, we show only verification time, as LIFTY skips
the other phases. Notice that the LIFTY is able to determine that
six of our benchmarks required no checks at all; in particular,
all the writes are safe.

It is important to explain that the repair of each function
is independent. Cross effects arise only from (1) interactions
between policies and (2) having more generic components in
scope, as the synthesizer needs to search over this space. Other
than such cross effects, changing the body of one function
does not require recompilation of other functions. This makes it
possible to cache compilation artifacts to speed up development.

6. Related Work
We describe related work in language-based information flow
security, program synthesis, and program repair.
Type-based information flow control. LIFTY builds on a
long history of work in language-based information flow [40].
Label-based approaches [4, 7, 11, 29, 33, 37, 54] provide a basis
for using value-dependent types for security. As the label-based
approach trusts programmers to correctly express high-level
policies in terms of label-manipulating code, people have re-
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Policy size
(tokens):
345

Program size (tokens) Time
Security checks Manual Auto

Benchmark Original Manual Auto Verify Verify Repair Recheck Total
Register user 10 0 0 0.00s 0.00s 0.00s 0.00s 0.00s
View users 20 9 24 4.01s 2.72s 0.43s 9.21s 12.37s
Paper submission 45 0 0 5.15s 5.45s 0.00s 0.00s 5.45s
Search papers 73 120 82 62.34s 23.17s 16.68s 72.10s 111.96s
Show paper record 53 46 82 39.18s 13.08s 19.24s 62.13s 94.45s
Show reviews for paper 57 54 45 68.04s 23.11s 99.16s 63.29s 185.57s
User profile: GET 66 0 0 5.03s 5.84s 0.00s 0.00s 5.84s
User profile: POST 17 0 0 1.14s 1.24s 0.00s 0.00s 1.24s
Submit review 40 0 0 4.55s 4.88s 0.00s 0.00s 4.88s
Assign reviewers 47 0 0 16.22s 17.67s 0.00s 0.00s 17.67s
Totals 428 229 233 205.70s 97.19s 135.52s 206.74s 439.46s

Table 1. Case study: conference management system.

ferred to labels as providing an “assembly language” [20] for
enforcing security policies.

Like other approaches using expressive value-dependent
types [9, 10, 22, 45, 46], LIFTY additionally provides a policy
language on top of the types. Unlike Fine [9, 45] and F∗ [46],
however, type-checking for LIFTY is decidable, making it better
suited for casual development. LIFTY additionally supports
policies that may depend on sensitive values, and thus be self-
referential. Type-checking information flow in AURA [22] is
decidable, but as AURA uses authorization logic, programmers
must explicitly pass proof terms, whereas inference in LIFTY
automates this process.

Similar to the non-interference property dynamic policy-
agnostic approaches [], our contextual non-interference property
extends standard non-interference to be more like a declassi-
fication property [28] in order to take into account potential
dependencies of policies on sensitive values, and the parameter-
ization of policies by the viewer. Our parameterized policies are
like those in UrFlow [10], but UrFlow does not support negative
or self-referential policies.
Policy-agnostic programming. LIFTY supports the first static
solution for policy-agnostic programming. The Jeeves lan-
guage [6, 50] and Jacqueline web framework [51] support a
programming model where the programmer implements infor-
mation flow policies as program functions and runtime performs
faceted execution [5], simulating simultaneous multiple execu-
tions in order to propagate sensitive values and policies. There
are two main drawbacks: (1) nontrivial runtime overheads and
(2) difficulty of reasoning about program behavior. Our static
repair-based approach supports similarly expressive policies
without these drawbacks.
Error Localization and Program Synthesis. LIFTY relies on
capabilities provided by liquid type inference [38, 47–49] for
verification and error localization. The localization problem we
solve is easier than that of Haskell type error localization tools
such as SHErrLoc [53], since it is meant for consumption by our
synthesis algorithm rather than by a human developer. LIFTY’s
repair technique uses abduction technique of the SYNQUID

tool [36], which, like other prior approaches for program synthe-
sis [1–3, 14, 17, 21, 26, 32, 34, 42], solves synthesis problems
(1) based on full functional specifications and (2) for synthesiz-
ing self-contained, rather than cross-cutting, functionality.
Program repair. Our repair solution differs from prior work
on general repair techniques [12, 23, 24, 27, 30, 31, 35, 41] in
that it is (1) sound, (2) based on specifications that are seman-
tically intertwined with the rest of the program, and (3) based
on specifications of a cross-cutting concern rather than on full
functional specifications.

LIFTY also differs from prior work on rewriting programs
based on security concerns because of the generality of its
policies, and because it can rewrite the program to do more
than halting or silently failing when checks are not satisfied.
The SWIM tool [20] performs automatic instrumentation to
insert process-level label-manipulation code for operating
system-level decentralized information flow control. Policy
weaving [18] inserts checks into programs based on stateful,
temporal logic access policies, but does not track implicit
flows. Similarly, there are also repair solutions for access con-
trol [19, 43] that do not reason about the interaction between
sensitive values and the rest of the program.

7. Conclusions
We demonstrate that by encoding information flow policies
as refinement types, we can develop a sound and automatic
program repair technique to insert missing conditional policy
checks across a program. This allows us to support a policy-
agnostic programming model, where the compiler, rather than
the programmer, is responsible for implementing policy checks.
We show how, by decomposing a global synthesis problem into
local synthesis problems, we can decrease the opportunity for
programmer error to cause information leaks.
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