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Abstract

We present a method for synthesizing recursive functions that
provably satisfy a given specification in the form of a poly-
morphic refinement type. We observe that such specifications
are particularly suitable for program synthesis for two reasons.
First, they offer a unique combination of expressive power and
decidability, which enables automatic verification—and hence
synthesis—of nontrivial programs. Second, a type-based spec-
ification for a program can often be effectively decomposed into
independent specifications for its components, causing the syn-
thesizer to consider fewer component combinations and leading
to acombinatorial reduction in the size of the search space. At the
core of our synthesis procedure is a new algorithm for refinement
type checking, which supports specification decomposition.

We have evaluated our prototype implementation on a large
set of synthesis problems and found that it exceeds the state of the
art in terms of both scalability and usability. The tool was able to
synthesize more complex programs than those reported in prior
work (several sorting algorithms and operations on balanced
search trees), as well as most of the benchmarks tackled by
existing synthesizers, often starting from a more concise and
intuitive user input.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; 1.2.2 [Automatic Programming]: Program
Synthesis

General Terms Languages, Verification

Keywords Program Synthesis, Functional Programming, Re-
finement Types, Predicate Abstraction
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1.

The key to scalable program synthesis is modular verification.
Modularity enables the synthesizer to prune candidates for
different subprograms independently, whereby combinatori-
ally reducing the size of the search space it has to consider.
This explains the recent success of type-directed approaches to
synthesis of functional programs [[12,[14}|15([27]: not only do
ill-typed programs vastly outnumber well-typed ones, but more
importantly, a type error can be detected long before the whole
program is put together.

Simple, coarse-grained types alone are, however, rarely
sufficient to precisely describe a synthesis goal. Therefore, ex-
isting approaches supplement type information with other kinds
of specifications, such as input-output examples [1} [12} 27],
or pre- and post-conditions [20}21]]. Alas, the corresponding
verification procedures rarely enjoy the same level of modularity
as type checking, thus fundamentally limiting the scalability of
these techniques.

In this work we present a novel system that pushes the idea
of type-directed synthesis one step further by taking advantage
of refinement types [13|133]]: types decorated with predicates
from a decidable logic. For example, imagine that a user intends
to synthesize the function replicate, which, given a natural
number n and a value x, produces a list that contains n copies
of x. In our system, the user can express this intent by providing
the following signature:

Introduction

replicate :: n:Nat —»z:a—{v: Lista|lenv=n}

Here, the return type is refined with the predicate len v =n,
which restricts the length of the output list to be equal to the
argument n; Nat is a shortcut for {v': Int|v >0}, the type of
integers that are greater or equal to zer Given this signature,
together with the definition of List and a standard set of integer
components (which include zero, decrement function, and in-
equalities), our system produces a provably correct implementa-
tion of replicate, shown in[Fig. 1] within fractions of a second.

We argue that refinement types offer the user a convenient
interface to a program synthesizer: the signature above is only
marginally more complex than a conventional ML or Haskell
type. Contrast that with example-based synthesis, which would

! Hereafter the bound variable of the refinement is always called v and the
binding is omitted.



replicate :: n:Nat — xia — {List « | len v =n}
replicate = An. Ax.if n<o
then Nil

else Cons x (replicate (dec n) x)

Figure 1. Refinement type signature of replicate and the
code synthesized from this signature.

require a conventional type together with multiple input-output
pairs, and in return provide much weaker correctness guarantees.

The replicate example is a perfect illustration of the power
of parametric polymorphism for specifying program behavior.
Even though the signature in|[Fig. I|never says explicitly that
each element of the output list must equal x, it nevertheless cap-
tures the semantics of replicate completely: since the function
knows nothing about the type parameter «;, it has no way of
constructing any values of this type other than x. This surprising
expressiveness of polymorphic types had been long known [40]],
but combined with refinements, it enables full-fledged higher-
order reasoning within the type system: a caller of replicate
can instantiate o with any refinement type, obtaining the fact
that whenever x has a certain property, every element of the
output list shares that same property.

Perhaps surprisingly, prior work on liguid types [19}133} 136}
37] has shown that this type of higher-order reasoning can be
fully automated for a large class of programs and properties.
The liquid type inference algorithm [33]] uses a combination of
Hindley-Milner unification and least-fixpoint Horn clause solver
based on predicate abstraction to discover refined instantiations
for polymorphic types and ultimately reduce verification to prov-
ing quantifier-free formulas over simple refinement predicates,
efficiently decidable by SMT solvers. The unique combination
of expressive power and decidability offered by polymorphic
refinement types makes them ideal for program synthesis.

Technical Challenges. Unfortunately, liquid type inference
cannot be applied out of the box to the context of synthesis.
Designed for the setting where, given a program, the goal is
to construct its type, the inference algorithm starts from the
leaves of the program, whose types are known, and propagates
type information bottom-up, constructing types of terms from
the types of their subterms. In program synthesis, however, the
setting is different: here the top-level type is given, and the
goal is to construct the program. One way to do so is to ex-
haustively explore program candidates, performing liquid type
inference on each one, and then checking if the inferred type
matches the given specification. While this approach does rule
out many ill-typed partial programs, it fails to take advantage
of the specification for guiding the search. A more promising
approach would propagate type information top-down from the
specification, using it to filter out irrelevant partial solutions.

Some program terms naturally support decomposing a spec-
ification into independent requirements for their subterms. For
example, given a goal type 7" and assuming that the top-level
construct of the program is a conditional with a known guard,
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we can pass 1" on to the two branches of the conditional, together
with the appropriate path conditions derived from the guard,
and proceed to check (or synthesize) them completely indepen-
dently. Unfortunately, for other program terms there might be
infinitely many ways to precisely decompose a specification.
Take a function application, f x: the specification f x :: Nat can
be satisfied by requiring that f subtract one and z be positive,
or that f add one, and x be greater than negative one, and so
on. The challenge in this case is to find an over-approximate
decomposition: that is, construct requirements on f and x that
are necessary but generally not sufficient for the correctness of
fx, yet are strong enough to filter out many incorrect subterms.

To address this challenge, we propose a new type checking
mechanism for refinement types, which we dub local liquid type
checking. At the heart of the new mechanism is a type system in-
spired by bidirectional type checking [30]]. Bidirectional systems
interleave top-down and bottom-up propagation of type informa-
tion depending on the syntactic structure of the program; in this
work we extend the bottom-up phase of bidirectional checking
with top-down propagation of over-approximate type informa-
tion, resulting in a round-trip type checking mechanism, which
promotes modular checking of function applications. Addition-
ally, we equip the type system with a novel liquid abduction
rule, which enables modular checking of branching terms.

Refinement type checking involves solving subtyping con-
straints over unknown refinement types. The modularity re-
quirement precludes our system from using the two techniques
employed to this end by liquid type inference—Hindley-Milner
unification and the least-fixpoint Horn solver—since both
techniques are designed to work on complete programs and
propagate type information bottom-up. Instead, local liquid
type checking incorporates an algorithm for solving subtyping
constraints incrementally, as it analyzes different parts of the
program. Most notably, top-down propagation requires finding
the greatest fixpoint solution to unknown refinements instead of
the least, which is known to be fundamentally more expensive;
we propose a practical implementation for this fixpoint computa-
tion, which we call MUSFIX, inspired by an existing algorithm
for enumerating minimal unsatisfiable subsets (MUSes) [22].

Results. We have combined local liquid type checking and
exhaustive enumeration of program terms in a prototype pro-
gram synthesizer called SYNQUID (for “SYNthesis with liQUID
types”), which we evaluated on 64 synthesis problems from
a variety of sources. The implementation, the benchmarks,
and a web interface for SYNQUID are available from the tool
repository [31].

Our evaluation indicates that the techniques described above
work well for synthesizing programs that manipulate lists and
trees, as well as data structures with complex invariants and
custom user-defined data structures. SYNQUID was able to syn-
thesize programs that are more complex than those previously
reported in the literature, including five different sorting algo-
rithms, and manipulations of binary search trees, AVL trees, and
Red-Black trees. The evaluation also shows that the modularity



features of local liquid type checking and the MUSFIX solver
are crucial for the performance of the system.

We compare our system with the existing synthesizers based
on input-output examples [1,112}14}[27], and Hoare-style ver-
ification [20,21]], and demonstrate that SYNQUID can handle
the majority of its competitors’ most challenging benchmarks,
taking a similar or shorter amount of time. In addition, compared
with the example-based tools, SYNQUID’s specifications are
usually more concise and the generated solutions are provably
correct; compared with the tools based on Hoare-style reason-
ing, SYNQUID can verify (and thus synthesize) more complex
programs thanks to automatic refinement inference.

2. Overview

SYNQUID operates within a core ML-like language featuring
conditionals, algebraic datatypes, pattern matching, paramet-
ric polymorphism, and fixpoints. We equip the language with
general decidable refinement types, closely following the liquid
types framework [19}133/136]]. The type system includes refined
base types of the form { B |1}, where ¢ is a refinement predicate
over the program variables and a special value variable v, which
does not appear in the program. Base types can be combined
into dependent function types of the form = : T, — 715, where x
may appear in the refinement predicates of T5. Our framework
is agnostic to the exact logic of refinement predicates as long
as validity of their boolean combinations is decidable; our pro-
totype implementation uses the quantifier-free logic of array
uninterpreted functions, and linear integer arithmetic, which is
sufficient for all the examples and benchmarks in this paper.

A synthesis problem is defined by (1) a goal refinement type
T (2) atyping environment I" and (3) a set of logical qualifiers
Q. A solution to the synthesis problem is a program term ¢
that has the type 7" in the environment I'. The environment
contains type signatures of components available to the syn-
thesizer (which may include datatype constructors, “library”
functions, and local variables) as well as any path conditions
that can be assumed when synthesizing . Qualifiers are pred-
icates from the refinement logic used as building blocks for
unknown refinements and branch guards. Our system extracts
an initial set of such predicates automatically from the goal
type and the types of components; for all our experiments, the
automatically extracted qualifiers were sufficient to synthesize
all the necessary refinements, but in general the user might have
to provide additional predicates.

Given a synthesis problem, SYNQUID constructs a candidate
solution, by either by either picking a component in I" or decom-
posing the problem into simpler subproblems and recursively
obtaining a solution ¢; to each one. Since the decomposition
is generally incomplete, a candidate obtained by combining
t;’s is not guaranteed to have the desired type T; to check
if the candidate is indeed a solution, the system generates a
subtyping constraint. If the constraint cannot be satisfied, the
system backtracks to pick a different combination of solutions

2 Arrays are used to model sets.
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to subproblems (or a different decomposition altogether); the
stronger the sub-goals produced during decomposition, the less
SYNQUID has to backtrack. The rest of the section illustrates
the details of this procedure and showcases various features of
the specification language on a number of examples.
Example 1: Recursive Programs and Condition Abduc-
tion. We first revisit the replicate example from the introduc-
tion. We assume that the set of available components includes
functions 0, inc and dec on integers, as well as a list datatype
whose constructors are refined with length information, ex-
pressed by means of an uninterpreted function (or measure) len.

0::{Int | v = 0}
inciix:Int — {Int |v = x + 1}
dec::x: Int — {Int | v = x - 1}

termination measure len :: List 3 — Nat
data List [ where

Nil :: {List S | len v =0}

Cons :: B — xs: List 8 —

{List 8 | len v =Tlen xs + 1}

Measure len also serves as the termination metric on lists (de-
noted with the termination keyword above): it maps lists to a
type that has a predefined well-founded order in our language
and thus enables termination checks for recursion on lists.

For the rest of the section, let us fix the set of logical qual-
ifiers Q to {x < *,x#}, where * is a placeholder that can be
instantiated with any program variable or v.

Given the specification

n:Nat—z:a—{List a|lenv=n}

SYNQUID picks A-abstraction as the top-level construct, and
creates a synthesis subproblem for its body with a simpler
goal type {List «|len v =n}. The system need not consider
other choices of the top-level construct, since every terminating
program has an equivalent 5-normal n-long form, where all
functions are fully applied and the head of each application is
a variable; moreover, the above decomposition is precise, since
any solution to the subproblem will satisfy the top-level goal.

As part of the decomposition, the arguments n : Nat and
x: «v are added to the environment, together with the function
replicate itself, to account for the possibility that it may be
recursive. In order to ensure termination of recursive calls, the
system weakens the type of replicate in the environment to

n':{Int|0<v<n}—2': a—{Lista|lenv=n'}

demanding that the first argument be strictly decreasing. SYN-
QUID picks n as the termination metric in this case, since it is the
only argument whose type has an associated well-founded order.

In the body of the function, the top-level construct might be a
branching term. Rather than exploring this possibility explicitly,
SYNQUID adds a fresh predicate unknown P, as a path condition
to the environment, and then searches for a branch-free program
term that satisfies the specification assuming F. Each candidate
branch-free term ¢ is validated by solving a subtyping constraint;
as part of this process, SYNQUID discovers the weakest P that



makes ¢ satisfy the specification. In case ¢ is valid uncondition-
ally, the weakest such P is True, and no branch is generated.

Suppose the first branch-free term that SYNQUID considers
is Nil; this choice results in a subtyping constraint
n:Natjz:o; Py {List B’ |tenv=0} <:{List a|lenv=n}
where (3’ is a free type variable. The constraint imposes two re-
quirements: (i) the shapes of the two types (i.e. their underlying
unrefined types) must have a unifier [29]] and (ii) the refinements
of the subtype must subsume those of the supertype under the
assumptions encoded in the environment. The constraint above
gives rise to a unifier [’ — {« | P1}] (where P; is a fresh
predicate unknown) and two Horn constraints: Py A Py = T
and 0 <nAFPyAlen v=0= len ry=n. SYNQUID uses the
MUSFIX Horn solver to find the weakest assignment
of liquid formulas to Py and P; that satisfies both Horn con-
straints. A liquid formula is a conjunction of atomic formulas,
obtained by replacing x-placeholders in each qualifier in Q with
appropriate variables. If for some P; no valid assignment exists,
or the weakest valid assignment is a contradiction, the candidate
program is discarded.

In our example, MUSFIX discovers the weakest assignment
L=[Py—n<0,P;+— T], effectively abducing the necessary
branching condition. Since the condition is not trivially true,
the system proceeds to synthesize the remaining branch under
the path condition —(n <0). A similar strategy for generating
branching programs has been successfully employed in several
existing synthesis tools [[1} /4,120, 21]] and is commonly referred
to as condition abduction. Each condition abduction technique
faces the challenge of searching a large space of potential condi-
tions efficiently; our approach, which we dub liquid abduction,
addressed this challenge by restricting conditions to liquid
formulas and using MUSFIX to explore the space of liquid
formulas efficiently.

The remaining branch has to deal with the harder case of
n.> (0. When enumerating candidates for this branch, SYNQUID
eventually decides to apply the replicate component (that is,
make a recursive call), and searches for the parameters via re-
cursive application of the synthesis procedure. At this point, the
strong precondition on the argument m, 0 < v <n, which arises
from the termination requirement, enables filtering candidate
arguments locally, before synthesizing the rest of the branch.
In particular, the system will discard the candidates n and inc n
right away, since they fail to produce a value strictly less than n.

Example 2: Complex Data Structures and Invariant In-
Jference. Assuming comparison operators in our logic are
generic, we can define the type of binary search trees as follows:

termination measure size :: BST o — Int
measure keys :: BST o — Set «
data BST « where
Empty:: {BST | keys v = []}
Node::x:a — U:BST{a | ¥ < x} — r:BST{a| x < v}
— {BST a| keys v = keys 1 + keys r + [x]}

According to this definition, one can obtain a BST either by
taking an empty tree, or by composing a node with key « and

two BSTs, [ and r, in which all keys are, respectively, strictly less
and strictly greater than x. The type is additionally refined by
the measure keys, which denotes the set of all keys in the tree,
and a termination measure size (size-related refinements are
omitted in the interest of space).

The following type specifies insertion into a BST:

insert::x:a — t:BST @ —
{BST | keys v = keys t + [x]}

From this specification, SYNQUID generates the following
implementation within two seconds:

insert = Ax. At .match t with
| Empty — Node x Empty Empty
| Nodey L r— if x<yAy<x
then t
else if y < x
then Node y 1 (insert x r)
else Node y (insert x 1) r

Pattern matching in this example is synthesized using
a special case of liquid abduction: type-checking the term
Node x Empty Empty against the goal type {BST « | keys v =
keys t + [z]}, causes the system to abduce the condition
keys t =[], which implies a match on ¢.

The challenging aspect of this example is reasoning about
sortedness. For example, for the term Node y [ (insert z r)
to be type-correct, the recursive call must return the type
BST {« |y <v}. This type does not appear explicitly in the user-
provided signature for insert; in fact, verifying this program
requires discovering a nontrivial inductive invariant of insert
(that adding a key greater than some value z into a tree with keys
greater than z again produces a tree with keys greater than z),
which puts this and similar examples beyond reach of existing
synthesizers based on Hoare-style reasoning [20}21]].

In our framework, this property is easily inferred by the Horn
constraint solver in combination with polymorphic recursion.
When insert is added to the environment, its type is general-
izedtoVB.x: B — u: {BST B |size u <sizet} — {BST 3|
keys v = keys t + {x}}. At the site of the recursive call, the
precondition of Node y [ imposes a constraint that simplifies
to BST 8 <: BST {a | y < v}, which leads to instantiating
[B—{a|Py}] and [Po—y <v].

Importantly, due to round-trip type checking (Sec.3.2)), this
assignment is discovered before the two arguments to insert are
synthesized, which has the effect of propagating the requirement
imposed by Node top-down through the application of insert
onto its arguments. In particular, using the goal type {«| y <v}
for the first argument of insert, the system can immediately dis-
card the candidate y, while trying x succeeds and leads to the ab-
duction of the branch condition y <. As our evaluation shows,
disabling this type of early filtering increases the synthesis time
for this example from less than two seconds to over two minutes.

Example 3: Abstract Refinements. Using refinement types
as an interface to synthesis raises the question of their expressive-
ness. Restricting refinements to decidable logics fundamentally



limits the class of programs they can fully specify, and for other
programs writing a refinement type might be possible but cum-
bersome compared to providing a set of input-output examples
or a specification in a richer language. The previous examples
suggest that refinement types are effective for specifying pro-
grams that manipulate data structures with nontrivial universal
and inductive invariants. In this example we demonstrate how
extending the type system with abstract refinements allows us
to express a wider class of properties, for example, talk about
the order of list elements.

Abstract refinements, proposed in [36], enable explicit quan-
tification over refinements of datatypes and function types. For
example, a list datatype can be parameterized by a binary relation
r that must hold between any in-order pair of elements in the list:

data RList « <r::a« — ¢ — Bool> where
Nil::RList a <r>
Cons::x:a — RList {a|r x v} <r> — RList « <r>

On the one hand this enables concise definitions of lists with
various inductive properties as instantiations of RList:

IList o = RList @ <Ax Ay .x <y> -- Increasing list
UList o = RList @ <Ax Ay .x # y> -- Unique list
List « = RList o <Ax Ay . True> -- Unrestricted list

On the other hand, making list-manipulating functions poly-
morphic in this relation, provides an elegant way to specify order-
related properties. Consider the following type for list reversal:

reverse::<r::a — & — Bool> . xs:RList a <r> —
{RList @ <AxAy.ry x> | len v = len xs}

It says that whatever relation holds between every in-order pair
of elements of the input list, also has to hold between every out-
of-order pair of elements of the output list. This type does not
restrict the applicability of reverse, since at the call site r can al-
ways be instantiated with True; the implementation of reverse,
however, has to be correct to any value of r, which leaves the syn-
thesizer no choice but reverse the order of list elements. Given
the above specification and a component that appends an element
to the end of the list (specified in a similar fashion), SYNQUID
synthesizes the standard implementation of list reversal.

Example 4: Higher-Order Combinators and Auxiliary
Function Discovery. Complex programs might require recur-
sive auxiliary functions. Discovering specifications for such
functions automatically is a difficult task, akin to lemma discov-
ery in theorem proving [[7} 16} 25]], which largely remains an
open problem. SYNQUID expects users to provide the high-level
insight about a complex algorithm in the form of auxiliary
function signatures. For example, if the goal is to synthesize a
list sorting function with the following signature

sort::xs:List aw — {IList a| elems v = elems xs}

(where elems denotes the set of list elements), the user can
express the insight behind different sorting algorithms by pro-
viding different auxiliary functions: insertion into a sorted
list for insertion sort, splitting and merging for merge sort, or
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partitioning and concatenation for quick sort. Naturally, the
implementation of the auxiliary functions can in turn be synthe-
sized, but coming up with their specification is the creative step
that generally requires user interaction, and can be considered
a major hurdle on the path to fully automatic synthesis.

It turns out, however, that replacing general recursion with
higher-order combinators such as map and fold—a style widely
used and highly encouraged in functional programming—makes
it possible to infer requirements on the auxiliary function from
the specification of the main program. This is one of the main
insights behind the synthesizer A? [12]], which relies on hard-
coded rules for propagating input-output examples top-down
through common combinators. SYNQUID supports this top-
down propagation of specifications out of the box thanks to the
combination of refinement types and polymorphism.

Consider the following type for function foldr, which folds
a binary operation f over a list ys from right to left:

foldr::<p::List 8 — v — Bool>.
fi(t:List S = h:f = acc:{y|p t v} —
{y|p (Cons h t) v}) —
seed: {y | p Nil v} —
ys:List 8 = {y|p ys v}

The shape of this type is slightly different from the usual sig-
nature of foldr: the operation f takes an extra ghost argument t,
which denotes the part of the list that has already been folde
The type of is parametrized by a binary relation p that foldr
establishes between the input list ys and the output; it requires
that the relationship hold between the empty list and the seed,
and that applying f to a head element h and the result of folding
a tail list t yield a result that satisfies the relationship with
Cons h t (in other words, p plays the role of a loop invariant).
Note that folding a list left-to-right (foldl) requires a more
complex specification that cannot currently be expressed within
the SYNQUID type system.

What happens if we ask SYNQUID to synthesize sort, while
providing foldr as the only component? When trying out
an application of foldr, round-trip type checking handles its
higher-order argument, f, in a special way, since in our type
system, as in [33]], f cannot appear in the result type of foldr.
Consequently, the exact value of f is not required to determine
the type of the application, which gives SYNQUID the freedom
to synthesize it independently from the rest of the program.

The tool quickly figures out that foldr ?? Nil xs has the
required type {IList « | elems v = elems xs}, given the fol-
lowing assignment to foldr’s type and predicate variables:
[B— a,y— IList a,pr> Aas.\bs.elems bs =elems as]. Now
that SYNQUID comes back to the task of filling in the first argu-
ment of foldr, its required type has been determined entirely as

t:List ¢ — h:a —
acc: {IList « | elems v = elems t} —
{IList oz\ elems v = elems (Cons h t)}

3 Extending SYNQUID with bounded refinement types [39] would enable a more
natural specification without the ghost argument.



(where elems (Cons h t) isexpandedinto [h] + elems tus-
ing the definition of the elems measure in the type of Cons); in
other words, the auxiliary function must insert h into a sorted list
acc. Treating this inferred signature as an independent synthesis
goal, SYNQUID easily synthesizes a recursive program for
insertion into a sorted list, and thus completes the following
implementation of insertion sort without requiring any hints
from the user, apart from a general recursion scheme:

sort = Axs . foldr f Nil xs
where f = At. Ah. Aacc.
match acc with
Nil — Cons h Nil
Cons z zs — if h <z
then Cons h (Cons z zs)
else Cons z (f zs h zs)

The next section gives a formal account of the SYNQUID
language and type system, and details its modular type checking
mechanism, which enables scalable synthesis.

3. The SYNQUID Language

The central goal of this section is to develop a type checking
algorithm for a core programming language with refinement
types that is geared towards candidate validation in the context
of synthesis. This context imposes two important requirements
on the type checking mechanism which are necessary for the
synthesis procedure to be automatic and scalable. The first one
has to do with the amount of type inference: the mechanism
can expect top-level type annotations—this is how users specify
synthesis goals—but cannot rely on any annotations beyond
that; in particular, the types of all polymorphic instantiations
and arguments of anonymous functions must be inferred. The
second requirement is to detect type errors locally: intuitively, if
a subterm of a program causes a type error independently of its
context, the algorithm should be able to report that error without
analyzing the context.

We build our type checking mechanism as an extension to the
the liquid types framework [19}[33]], which uses a combination
of Hidley-Milner unification and a Horn solver to infer refine-
ment types. The original liquid type inference algorithm is not
designed for synthesis, and thus makes different trade-offs: in
particular it does not satisfy the locality requirement. Our type
checking mechanism achieves locality based on three key ideas.
First, we apply bidirectional type checking [30] to refinement
types and reinforce it with additional top-down propagation of
type information, arriving at round-trip type checking (Sec.3.2);
we then further improve locality of rules for for function applica-
tions and branching statements (Sec. 3.4). Second, we develop
anew algorithm for converting subtyping constraints into horn
clauses, which is able to do so incrementally as the constraints
are issued before analyzing the whole program (Sec. 3.5). Fi-
nally, we propose a new, efficient implementation for a greatest-
fixpoint Horn solver (Sec. 3.6). In the interest of space we omit
abstract refinements (see[Sec. 2)) from the formalization; [36] has
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Refinement term:

| T|L]|0]|+]... (varies) interpreted symbol

|z uninterpreted symbol
[ application
A o= Sort:
|B|Z]... (varies) interpreted
|6 uninterpreted
t  u=el|b|f Program term
e = E-term:
|z variable
leele f application
b = Branching term:
|if e thentelset conditional
|match ewith |; C;(z7)—t; match
o ou= Function term:
| Azt abstraction
| fix z.t fixpoint
B = Base type:
|Bool|Int primitive
|DT; datatype
| type variable
T == Type:
[{B |v} scalar
|z: T—T function
S =V, T Type schema
C u=-lz:T;C Context
T :=1letCinT Contextual Type

Figure 2. Terms and types.

shown that integrating this mechanism into the type system that
already supports parametric polymorphism is straightforward.

In[Sec. 3.7\ we derive synthesis rules from the modular type
checking rules; in doing so we follow previous work on type-
directed synthesis [17,127]], which has shown how to turn type
checking rules for a language into synthesis rules for the same
language.

3.1 Syntax and Types

[Fig. 2)shows the syntax of the SYNQUID language.

Terms. Unlike previous work, we differentiate between the
languages of refinements and programs. The former consists of
refinement terms v/, which have sorts A; the exact set of inter-
preted symbols and sorts depends on the chosen refinement logic.
We refer to refinement terms of the Boolean sort B as formulas.

The language of programs consists of program terms ¢, which
we split, following [27] into elimination and introduction terms
(E-terms and I-terms for short). Intuitively, E-terms—variables
and applications—propagate type information bottom-up, com-
posing a complex property from properties of their components;
I-terms propagate type information top-down, decomposing
a complex requirement into simpler requirements for their
components. Note that conditional guards, match scrutinees,
and left-hand sides of applications are restricted to E-terms. We
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Figure 3. Well-formedness and subtyping.

further separate I-terms into branching terms—conditionals and
matches—and function terms—abstractions and fixpoints—and
disallow branching terms on the right-hand side of application.
This normal form is required to enable precise and efficient local
type checking, as explained below. It does not fundamentally
restrict the expressiveness of the language: every terminating
program in lambda calculus can be translated to SYNQUID by
first applying a standard S-normal n-long form [[15], 27] and
then pushing branching terms outside of applications, guards,
and scrutinees.

Types and Schemas. A SYNQUID type is either a scalar—
base type refined with a formula—or a dependent function type.
Base types include primitives, type variables, and user-defined
datatypes with zero or more type parameters. Datatype construc-
tors are represented simply as functions that must have the type
Vai...am. Ty — ... = Ty — D aq...auy. A contextual type is
a pair of a sequence of variable bindings and a type that can
mention those variables; contextual types are useful for precise
type checking of applications, as explained in[Sec. 3.2

SYNQUID features ML-style polymorphism, where type
variables are universally quantified at the outermost level to
yield type schemas. Unlike ML, we restrict type variables to
range only over scalars, which gives us the ability to determine
whether a type is a scalar, even if it contains free type variables.
We found this restriction not to be too limiting in practice.

Environments, Well-Formedness, and Subtyping. A typ-
ing environment I is a sequence of variable bindings x: 1" and
path conditions 1; we denote conjunction of all path conditions
in an environment as P(T"). A formula v is well-formed in
the environment I', written I - 4, if it is of a Boolean sort
and each of its free variables is bound in I' to a type that is
consistent with its sort in v. Well-formedness extends to types
as shown in[Fig. 3] Note the two different rules for first-order
and higher-order function types: in a function type x: 71 — 15,
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T may reference the formal argument x only if 7} is a scalar
type (that is, only first-order function types are dependent).

The subtyping relation I' = T <: T” is relatively standard
(Fig. 3). For simplicity, we consider all datatypes covariant in
their type parameters (rule <:-DT); if need be, variance can be
selected per type parameter depending on whether it appears
positively or negatively in the constructors. The crucial part is
the rule <:-Sc, which reduces subtyping between scalar types
to implication between their refinements, under the assump-
tions extracted from the environment. Since the refinements
are drawn from a decidable logic, this implication is decidable.
The function that extracts assumptions from the environment
is parametrized by a formula v and returns a conjunction of all
path conditions and refinements of all variables mentioned in
1) or the path conditions:

[CTy =P(I') ABrv(p(ry)urv(y) (I')

where
AB r
B, (D (B} = /YA B tayurven (1)
B,(I') (otherwise)
Bv (F,I : T) = Bv (F)
Bv () =T
This definition limits the effect of an environment variable with

an inconsistent refinement to only those subtyping judgments
that (transitively) mention that variable.

(xew)

(T non-scalar)

3.2 Round-Trip Type Checking

This section describes the core of SYNQUID’s type system. It
is inspired by bidirectional type checking [30]], which inter-
leaves top-down and bottom-up propagation of type information
depending on the syntactic structure of the program, with the
goal of making type checks more local. Bidirectional typing
rules use two kinds of typing judgments: an inference judgment,
written I' - e 1 T, states that the term ¢ generates type 1" in
the environment I'; a checking judgment, I't-¢ | T', states that
the term ¢ checks against a known type 7" in the environment
T". Accordingly, all typing rules can be split into inference
and checking rules, depending on the judgment they derive.
Bidirectional type checking rules for SYNQUID can be found
in the technical report [32].

In a bidirectional system, analyzing a program starts with
propagating its top-level type annotation top-down using check-
ing rules, until the system encounters a term ¢ to which no check-
ing rule applies. At this point the system switches to bottom-up
mode, infers the type T” of ¢, and checks if T” is a subtype of
the goal type; if the check fails, ¢ is rejected. Bidirectional type
propagation is “all-or-nothing”: once a checking problem for
a term cannot be decomposed perfectly into checking problems
for its subterms, the system abandons all information about the
goal type and switches to purely bottom-up inference. Our in-
sight is that some information from the goal type can be retained
in the bottom-up phase, leading to more local error detection. To
this end, we modify the bidirectional inference judgment into a
strengthening judgment T'=¢ | T 1 T”, which reads as follows:
in the environment I, term ¢ checks against a known type 1" and
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Figure 4. Rules of round-trip type checking.

generates a stronger type T”. We call the resulting type system

round-trip, since it propagates types top-down and then back up.

Derivation rules for round-trip type checking are presented
in[Fig. 4] All judgments are parametrized by the set of qualifiers

@, used to construct unknown refinements as explained below.

Checking rules encode the way a checking judgment for an
I-term ¢ is decomposed into simpler checking judgments for its
components. Strengthening rules encode the way a goal type for
an E-term e is decomposed into over-approximate goal types for
its subterms, which are necessary but in general not sufficient
for correctness, while the precise type of e is constructed from
the inferred types of its subterms. A round-trip type checker
starts with a top-down phase, just as a bidirectional one would,;
when it encounters an E-term, it applies the corresponding

strengthening rule and discards the inferred type (see rule IE).

Thus, instead of detecting type errors at the boundary between
I- and E-terms, the round-trip system performs local checks for
each variable and function application.
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In order to support goals types with an underspecified shape
(as required for match scrutinees and higher-order applications),
we augment SYNQUID with top and bot types, which are, re-
spectively, a supertype and a subtype of every type. Note that
these types are ignored when computing the logical represen-
tation of the environment [I'], since they are not considered
scalar. Also note that the precision of round-trip type checking
crucially relies on the fact that only E-terms appear in strengthen-
ing judgments; this is why S YNQUID bans branching terms from
function arguments, conditional guards, and match scrutinees.

Polymorphic instantiations. The rule VARY, which handles
polymorphic instantiations, replaces type variables o;; with types
T;; chosen nondeterministically to satisfy all subtyping checksﬂ
In order to tame this nondeterminism, following [33]], we restrict
T;s to liquid types. A formula ) is liquid in I" with qualifiers Q,
written I" =g v, if it is a conjunction of well-formed formulas,
each of which is obtained from a qualifier in Q by substituting %-
placeholders with variables. This notion extends to types, I'q
T, in a way analogous to well-formedness (Fig. 3). Note that the
set of all liquid formulas in a given environment is finite, and so is
the set of all liquid types with a fixed shape.[Sec. 3.5]and[Sec. 3.6|
present a deterministic algorithm for finding the types 7.

Applications. The application rules APPFO and AppHO
are the core of the round-trip type system: they are responsible
for propagating partial type information down to the left-hand
side of an application. The type system distinguishes between
first-order and higher-order applications, since in a function type
x: Th —T5, Ts cannot mention x if T} is a function type (see
[Fig. 3). As aresult, a higher-order application always yields the
type 15 independently of the argument. If instead 77 is a scalar
type, we have to replace x inside 75 with the actual argument of
the application. Unfortunately, we cannot assign the application
ey es the type [ea/x]Ts, since ey is a program term, which
does not necessarily have a corresponding refinement precisely
capturing its semantics. We address this problem by assigning
e1 eg a contextual type Let C in Ty, where the context C' binds
the variable z to the precise type of es.

Example. We demonstrate the local error detection enabled
by rule APPFO on the following type-checking problem:
I'tgappend zs s | {List Pos|lenv=>5}
where Pos is an abbreviation for {Int |~ >0} and I contains
the following bindings:
xs:{List Nat|lenv=2};

append:Va.l: {List a|lenv >0} —r: {List | lenv >0}

—{Lista|lenv=1lenl+lenr}
Intuitively, the constraint on the length of the output list is hard
to verify without analyzing the whole expression, while the
mismatch in the type of the list elements can be easily found
without considering the second argument of append. Refine-
ment types provide precise means to distinguish those cases:
the length-related refinement of append is dependent on the

4The same rule handles monomorphic non-scalar variables, assuming zero
type variables.



arguments [ and , whereas the type of the list elements cannot
possibly mention [ or 7, since it has to be well-formed in a scope
where these variables are not defined.

Applying the APPFO rule twice to the judgment above yields
I'tgappend | {By| L} —{B1|L}—{List Pos|lenv=2},
where the base types By and B; are yet to be inferred. Applying
VARY, and decomposing the resulting subtyping check with
<:-FUN, we get

Dil:{Bo|L};r:{B1| L}
{ListTy|lenv=1lenl+1lenr}<:{List Pos|lenv =2}

Using <:-Sc, this judgment can be decomposed into an impli-
cation on refinements—vacuous thanks to the types of / and
r—and subtyping on base types, List Ty <:List Pos, which
is not vacuous since here [ and r are out of scope. The first
argument of append is checked against the type List T (in
the second premise of APPFO), which imposes a subtyping
check I'-List Nat <:List T}. Since no type Ty satisfies both
subtyping relations, the type checker rejects the term append x's.

Recursion. Another rule in[Fig. 4] that deserves some dis-
cussion is F1X, which comes with a termination check. In the
context of synthesis, termination concerns are impossible to
ignore, since non-terminating recursive programs are always
simpler than terminating ones, and thus would be synthesized
first if considered correct. The FIX rule gives the “recursive call”
a termination-weakened type S, which intuitively denotes
“S with strictly smaller arguments”. The exact definition of
termination-weakening is a parameter to our system. Our imple-
mentation provides a predefined well-founded order on primitive
base types, and allows the user to define one on datatypes by
mapping them to primitive types using termination metrics;
then S~ is defined as a lexicographic order on the tuple of all
arguments of S that have an associated well-founded order.

3.3 Soundness and Completeness

We show soundness and completeness of round-trip type check-
ing relative to purely bottom-up liquid type inference [33].
Detailed proofs are available in the technical report [32].
Round-trip type checking is sound in the sense that whenever
a SYNQUID term ¢ type-checks against a schema S, 't | S,
there exist a set of qualifiers Q' and a schema S”, such that the
bottom-up system infers S’ for ¢, I'-g ¢ ::.S, and 'S’ <: S.
Note that bottom-up inference might require strictly more qual-
ifiers than type checking: in the bottom-up system, generating
types for branching statements and abstractions imposes the
requirement that these types be liquid; the round-trip system
obtains the types of those terms by decomposing the goal type,
thus the liquid restriction does not apply. In practice the dif-
ference is irrelevant, since the type inference algorithm can
extract the missing qualifiers from the top-level goal type and
the preconditions of component functions. Thus, if Q contains
a sufficient set of qualifiers such that the goals schema is liquid
(I" g S) and the preconditions of component function are
liquid, which we denote as g I, then we can take Q' =Q.
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Consistency
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Figure 5. Type consistency.

Theorem 1 (Soundness of round-trip type checking). If T,
I'tgS,andT'tgt ) S, thenT'Fgt::.S and g 57 <: S.

Unlike liquid type inference, the round-trip system requires
a proof of termination for all fixpoints; thus if I' g ¢ :: .S, but
t’s termination cannot be shown using the chosen definition of
termination weakening, the round-trip type system will reject ¢.
Thus we show completeness for a weakened round-trip system,
obtained fromby replacing S~ in the premise of the FIx
rule by S. We denote the checking judgment of the modified
systemas I'g ¢ | S,

Theorem 2 (Completeness of round-trip type checking). If
I'kgt:: S, thenFH@tL S.

3.4 Type System Extensions

In this section we further improve the locality of type checking
for function applications and branching terms.

Type Consistency. Recall the type checking problem
I't-gappend zs xs | {List Pos|lenv=>5}
from|[Sec. 3.2] and let us change the type of zs to {List Pos |
len v=06}. In this case, xs has the right element type, Pos, but
intuitively the partial application append x's can still be safely
rejected, since no second argument with a non-negative length

can fulfill the goal type.

To formalize this intuition we introduce the notion of type
consistency, defined in[Fig. 5] Two scalar types are consistent
if they have a common inhabitant for some valid valuation of
environment variables. For function types, the relation is not
symmetric: a type x: T, — T is consistent with a goal type if
their return types are consistent for some value of x of type 1.

We add a premise I' T A: T” to every rule in[Fig. 4] that
already has the premise of the form I'7"<:T”. The additional
premise has no effect on full applications, since for scalar types
consistency is subsumed by subtyping. The consistency check
can, however, reject a partial application e allowed by subtyping,
due to goals generated by the rule APPFO, which have a vacuous
argument type { B | L}. It is easy to show that in the absence
of consistency checks, any application of such e would always
be rejected by the subtyping check in APPFO; thus introducing
consistency checks does not affect completeness of type check-
ing. With consistency checks in place, the term append x s in the
example above is rejected since the formula len zs=6Alenr >
OAlenv=1enxs+1lenrAlenv=>5Iis unsatisfiable.



Liquid Abduction. Consider the IF rule in the type
checker can analyze the two branches of the conditional in-
dependently of each other, but can only proceed with either
branch once the precise type of the guard has been inferred.
In the context of synthesis this amount to blindly enumerating
type-correct boolean expressions as guards and then checking
if any of them enables synthesis of a correct branch. The goal
of this section is to improve the locality of the IF rule in order
to avoid such blind enumeration.

The idea comes from condition abduction [4}20,21]: instead
of starting with the guard, for which no information can be ex-
tracted from the goal type, start by analyzing one of the branches
and use logical abduction to infer the weakest assumption under
which the branch fulfills the goal type. If such a condition does
not exist or is a contradiction, the branch candidate is deemed
ill-typed; otherwise the abduced condition can be used as a
specification for the guard.

This strategy relies on the availability of a sufficiently fast
mechanism to perform logical abduction, which is generally
challenging. In SYNQUID, we treat unknown path conditions
the same way as unknown refinements in polymorphic instan-
tiations: we restrict their valuations to liquid formulas over
environment variables, and use the greatest-fixpoint Horn solver
(described in[Sec. 3.6) to discover the weakest such valuation.
We refer to the modified rule for conditionals as the liguid

abduction rule:
'y Sat([IyAv) Thgel {Bool|r=1}
Dbt I T Ui bqte | T
I'Fgifethent; elsety | T

This rule limits completeness of round-trip type checking by
restricting valid guard types to the form above. Most notably,
it excludes guards that contain function composition, and thus
users have to provide wrapper components to encapsulate com-
plex guard predicates; in all our experiments, the set of required
guard components was quite intuitive, thus we conclude that
the trade-off between expressiveness and efficiency offered by
liquid abduction is reasonable in the context synthesis.

Match Abduction. A similar technique can be used to pro-
pose pattern matching, assuming the types of potential scrutinees
are restricted to liquid types. In this case, however, the liquid
restriction imposes more substantial limitations on the struc-
ture of the program: abduction only works if the scrutinee is
a variable and its datatype has at least one scalar constructor
(such as Nil in List). Thus, SYNQUID employs a combined
approach: it first tries an abduction-based rule, but if that fails,
the system reverts to the original MATCH rule of As
a result, type checking (and synthesis) enjoys the efficiency
benefits of abduction without compromising completeness.

IFAB

3.5 The Local Liquid Type Checking Algorithm

Starting from the round-trip typing rules presented above, this
section develops local liquid type checking: a deterministic
algorithm that takes as input a SYNQUID program ¢, an environ-
ment I, a goal schema S, and a set of qualifiers Q, and either
produces a derivation of I' =g ¢ | S or rejects the program.
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The main challenge is to find suitable instantiations for poly-
morphic components, as required by the rule VARY; to this end,
the algorithm replaces the type variables «; in the component
schema with fresh free type variables o/ﬂ extracts subtyping
constraints on «; from the subtyping premises of the derivation,
and then solves the subtyping constraints to either discover a
valid type assignment mapping free type variables to liquid
types, or conclude that such an assignment does not exist.
For the purpose of constraint solving, we extend the syn-
tax of refinement terms with predicate unknowns P;. Local
liquid type checking maintains a set of subtyping constraints
C ={I; - T; <: T/}, a set of Horn constraints H = {1; },
a type assignment T = [o, — T;], and a liquid assignment
L = [P; — {¢};]. We denote with [¢/] z the formula ¢ with
all predicate unknowns substituted with conjunctions of their
valuations in £. The type checking process alternates between
the following two steps: it either extends the type derivation by
applying one of the rules of adding any of its subtyping
premises to C, or it picks a constraint ¢ from C and solves it;
constraint solving is formalized in the procedure Solve in[Fig. 6]
Solve does one of the following, depending on the operands
of a subtyping constraint: it either substitutes a type variable

for which an assignment already exists [Eq. 2), unifies
a type variable with a type (Eq. 4} [Eq. 5)), decomposes subtyping

over compound types (Eq. 6| [Eq.7), or translates subtyping over
scalar types into a Horn constraint and uses the procedure Horn,

described in the next section, to find an £ that satisfies all Horn
constraints (Eq. 8). Local liquid type checking terminates when
the entire type derivation has been built, and all constraints in
C are between free type variables (only[Eq. 3|applies).

During unification of o’ and T', procedure Fresh inserts fresh
predicate unknowns in place of all refinements in 7'; note that
due to the incremental nature of our algorithm, 7" might itself
contain free type variables, which are simply replaced with
fresh free type variables to be unified later as more subtyping
constraints arise. This novel feature of local liquid type checking,
which we call incremental unification, is crucial for early error
detection. Existing refinement type checkers [[13}133]] cannot
interleave shape and refinement discovery, since they rely on the
global Hindley-Milner inference algorithm to fully reconstruct
the shapes of all types in the program before discovering their
refinements.

Example. Starting from empty 7 and £, Solve(k o' <:
List 3 | len v > 0) instantiates o’ by [Eq. 4|leading to 7 =
[@'+—{List | Py}], L=[Py+> 0] and recycles the subtyping
constraint; next by[Eq. Tland[Eq. 7] the constraint is decomposed
into {List | Py} <:{List |lenv >0} and -+’ <: 3. The
former produces a Horn constraint Py = len v >0, which leads
to strengthening £[Py], while the latter is retained in C. If further
type checking produces a subtyping constraint on 3, say Nat <:
B', T will be extended with an assignment [3' — {Int| P; }],
which in turn will lead to transforming the constraint on ' into

5 We prime the names of free type variables to differentiate them from the
bound type variables of the top-level goal schema.



Solve(I'tc¢) = match cwith
[{ |9} <:T,a' €dom(T) —

C+CU{T'Refine(T (o) i) <: T} 1)
| T <:{a'|¥},0’ €dom(T) — (symmetrical) )
[{a' |91} <:{B' |92} —

CCuf{a [} <:{B |2} 3)
[{d |} <:T,a' ¢ T —>

T < T[a' — Fresh(T)];

C:=CU{T+{d |} <:T} )
| T <:{a' |4} — (symmetrical) 5)
|[(z: To = Th) <:(y: Ty—T>) —

C+CU{l'+T, <:T,Tyy: Ty Fy/z| Ty <: T2} (6)
{D T [} <:{D T3 |42} —
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[{Bl1} <:{Bl¢2} —
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L<+Horn(L,H)
| otherwise — fail )

Refine({B|v},0')={B|vAy'}
Fresh(T') = match T with
{a' |9} — B
|[{D T" |4} — {D Fresh(T")| P}, L+ L[P—0]
{Bl¢}—{BIP}, L L[P0)
Horn(L,H)=if Yhe H.Valid([h] ) then L else
let h< {H|—Valid([h] )} in
let £’ + Strengthen(L£,h) in Horn(L',/H)

Figure 6. Solving subtyping constraints.

F~' <:{Int| P, } and instantiating [y’ — {Int| P»}], at which
point all free type variables have been eliminated.

3.6 Solving Horn Clauses

The set of Horn constraints 7{ produced by Solve in[Fig. 6]con-
sists of implications of the form 1) = ¢/, where each side is
a conjunction of a known formula and zero or more predicate
unknowns P. The goal of the procedure Horn is to find a liquid
assignment to P that validates all constraints in H or determine
that H is unsatisfiable. The space of possible valuations of each
Pis 297 where Qp is a set of atomic formulas obtained by in-
stantiating qualifiers Q in the environment where P was created.

Local liquid type checking invokes Horn after every new
Horn constraint is issued, and expects to detect an unsatisfiable
set of constraints—and thus a type error—as early as possible.
Round-trip typing rules—in particular, APPFO and IF-ABD—
produce constraints in a specific order, such that for each un-
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known P, implications where P appears negatively (on the left)
are issued before the ones where it appears positively (on the
right). To enable early error detection in this setting, procedure
Horn looks for the weakest valuation of each P that validates all
Horn constraints issued so far, and deems A unsatisfiable if for
some P such a valuation does not exist or is inconsistent (an in-
consistent valuation can be safely discarded since it is guaranteed
to violate some future constraint where P appears positively).

As an optimization, Horn always starts form the current
assignment £ and possibly makes it stronger, since all weaker
assignments are known to be too weak to satisfy the previously
issued constraints (for a fresh P, £[P] is initialized with 0).
Horn uses an iterative greatest-fixpoint computation, outlined
in in every iteration, Strengthen(£,1) = 1’) produces
the weakest consistent assignment £’ strictly stronger than £,
such that [¢] 2 = [¢] ¢ is valid (or fails if this is not possible).
In general, £’ is not unique; in this case our algorithm simply
explores all alternatives independently, which happens rarely
enough in the context of refinement type checking and synthesis.

Implementing Strengthen efficiently is challenging: for
every unknown P in 1, the algorithm has to find the smallest
subset of atomic predicates from Qp \ £[P] that validates the
implication. Existing greatest-fixpoint Horn solvers [34]] use
breadth-first search, which is exponential in the cumulative size
of Qp and does not scale sufficiently well to practical cases of
condition abduction (see[Sec. 4). Instead, we observe that this
task is similar to the problem of finding minimal unsatisfiable
subsets (MUSs) of a a set of formulas; based on this observation,
we build a practical algorithm for Strengthen which we dub
MUSFIX.

The task of Strengthen amounts to finding all MUSs of
the set {J,.¢,,(Qx \ £[x]) U{=[¢'] £} under the assumption
[%] c- MUSFIX borrows the main insight of the MARCO algo-
rithm [22] for MUS enumeration, which relies on the ability
of the SMT solver to produce unsatisfiable cores from proofs.
We modify MARCO to only produce MUSs that contain the
negated right-hand side of the Horn constraint, =[] ¢, since
Horn should only produce consistent solutions. For each re-
sulting MUS (stripped of =[[¢/'] . ), MUSFIX finds all possible
partitions into valuations of individual predicate unknowns.
Since MUSes are normally much smaller than the original set of
formulas, a straightforward partitioning algorithm works well
and rarely yield more than one valid partition. As an important
optimization, when MUS enumeration returns multiple syn-
tactically minimal subsets, MUSFIX prunes out semantically
redundant subsets, i.e. it removes a subset m; if Am; = Am;
for some j #1.

3.7 Synthesis from Refinement Types

From the rules of round-trip type checking we can obtain syn-
thesis rules, following the approach of [27]] and reinterpreting
the checking and strengthening judgments in such a way that
the term ¢ is considered unknown. This interpretation yields
a synthesis procedure, which, given a goal schema S, picks a



rule where the goal schema in the conclusion matches .S, and
constructs the term ¢ from subterms obtained from the rule’s
premises. More concretely, starting from the top-level goal
schema S, the algorithm always starts by applying rule F1x (if
S~ is defined) followed by TABS (if the schema is polymor-
phic), and finally ABS (if the goal type is a function type). Given
a scalar goal, the procedure performs exhaustive enumeration of
well-typed E-terms up to a given bound on their depth, solving
subtyping constraints at every node and simultaneously abduc-
ing a path condition as per the IF-ABD rule. If the resulting
condition v is trivially true, the algorithm has found a solution;
if ¢ is inconsistent, the E-term is discarded; otherwise, the al-
gorithm generates a conditional and proceeds to synthesize its
remaining branch under the fixed assumption —), as well a term
of type {Bool | =1)} to be used as the branch guard. Once all
possible E-terms are exhausted, the algorithm attempts to syn-
thesize a pattern match using an arbitrary E-term as a scrutinee,
unless the maximal nesting depth of matches has been reached.

Soundness and Completeness. Soundness of synthesis fol-
lows straightforwardly from soundness of round-trip type check-
ing, since each program candidate is constructed together with a
typing derivation in the round-trip system. Completeness is less
obvious: due to condition abduction, the synthesis procedure
only explores programs where the left branch of each conditional
is an E-term. We can show that every SYNQUID program can
be rewritten to have this form (by flattening nested conditionals
and pushing conditionals inside matches). Thus the synthesis
procedure is complete in the following sense: for each schema
S, if there exists a term ¢, such that the depth of applications and
pattern matches in ¢ are within the given bounds, the procedure is
guarantees to find some term ¢’ that also type-checks against S
if such aterm ¢ does not exist, the procedure will terminate with a
failure. Note that the algorithm imposes no a-priori bound on the
nesting depth of conditionals (which is crucial for completeness
as stated above); this does not preclude termination, since in any
given environment, liquid formulas partition the input space into
finitely many parts, and every condition abduction is guaranteed
to cover a nonempty subset of these parts.

4. Evaluation

We performed an extensive experimental evaluation of SYN-
QUID with the goal of assessing usability and scalability of the
proposed synthesis technique compared to existing alternatives.
This goal materializes into the following research questions:

(1) Are refinement types supported by SYNQUID expressive
enough to specify interesting programs, including bench-
marks proposed in prior work?

(2) How concise are SYNQUID's input specifications compared
both to the synthesized solutions and to inputs required by
existing techniques?

(3) Are SYNQUID’s inputs intuitive: in particular, is the algo-
rithm applicable to specifications not tailored for synthesis?
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(4) How scalable is SYNQUID: can it handle benchmarks tack-
led by existing synthesizers? Can it scale to more complex
programs than those previously reported in the literature?

(5) How is synthesis performance impacted by various features
of SYNQUID and its type system?

4.1 Benchmarks

In order to answer the research questions stated above, we
arranged a benchmark suite that consists of 64 synthesis chal-
lenges from various sources, representing a range of problem
domains. In the interest of direct comparison with existing
synthesis tools, our suite includes benchmarks that had been
used in the evaluation of those tools [[1}14,[12, 14420, 121124} 277].
From each of these papers, we picked top three most complex
challenges (judging by the reported synthesis times) that were
expressible in SYNQUID’s refinement logic, plus several easier
problems that were common or particularly interesting.

Our second source of benchmarks are verification case stud-
ies from the LiquidHaskell tutorial [18]. The purpose of this
second category is two-fold: first, these problems are larger
and more complex than existing synthesis benchmarks, and
thus can show whether SYNQUID goes beyond the state of the
art in synthesis; second, the specifications for these problems
have been written by independent researchers and for a different
purpose, and thus can serve as evidence that input accepted
by SYNQUID is sufficiently general and intuitive. Out of the
total of 14 case studies, we picked 5 that came with sufficiently
strong functional specifications (list sorting, binary-search trees,
content-aware lists, unique lists, and AVL trees), erased all
implementations, and made relatively straightforward syntactic
changes in order to obtain valid SYNQUID input.

[Tab. T]lists the 64 benchmarks together with some metrics of
our type-based specifications: the number of synthesis goals in-
cluding auxiliary functions, the set of components provided, the
number of measures used, and the cumulative size of refinements.
Note that the reported specification size only includes refine-
ments in the signatures of the synthesis goals; refinements in
component functions are excluded since every such function (ex-
cept trivial arithmetic operations and helper functions) serves as
a synthesis goal in another benchmark; refinements in datatype
definitions are also excluded, since those definitions are reusable
between all benchmarks in the same problem domain. Full spec-
ifications are available from the SYNQUID repository [31].

The benchmarks are drawn from a variety of problem do-
mains with the goal of exercising different features in SYNQUID.
List and tree benchmarks demonstrate pattern matching, struc-
tural recursion, the ability to generate and use polymorphic
and higher-order functions (such as map and fold), as well as
reasoning about nontrivial properties of data structures, both
universal (e.g. all elements are non-negative) and recursive
(e.g. size and set of elements). Our most advanced benchmarks
include sorting and operations over data structures with complex
representation invariants, such as binary search trees, heaps,
and balanced trees. These benchmarks showcase expressiveness



Group L Description L #G Components #M Spec L Code T-all T-def T-nrt T-ncc T-nmus

is empty 1 true, false 1 6 6 0.02 0.02 0.02 0.02 0.01
is member 1 true, false, =, # 2 6 18 0.11 0.11 0.13 0.10 -
duplicate each element 1 1 7 16 0.05 0.05 - 0.08 0.04
replicate 1 0,inc, dec, <, # 1 4 21 0.05 0.05 9.63 0.05 -
append two lists 1 1 8 15 0.15 0.09 - 0.13 0.10
concatenate list of lists 1 append 3 5 12 0.05 0.05 0.22 0.04 0.04
take first n elements 1 0, inc, dec, <, # 1 8 27 0.12 0.12 55.82 0.12 -
drop first n elements 1 0,inc, dec, <, # 1 11 20 0.10 0.10 7.87 0.09 -
delete value 1 =,# 2 8 26 0.10 0.10 0.17 0.12 -
. map 1 1 5 22 0.03 0.03 0.06 0.03 0.02
List zip 1 1 10 22 008  0.08 - 0.10 0.07
zip with function 1 1 10 33 0.07 0.07 - 0.17 0.06
cartesian product 1 append, map 3 8 26 0.30 0.29 5.83 0.25 0.23
i-th element 1 0, inc, dec, <, # 1 12 20 0.05 0.05 0.38 0.05 -
index of element 1 0, inc, dec, =, # 2 8 20 0.08 0.08 0.14 0.07 -
insert at end 1 2 21 19 0.10 0.10 0.24 0.11 0.12
reverse 1 insert at end 2 15 12 0.09 0.10 0.29 0.12 0.09
foldr 1 2 14 32 0.10 0.10 - 0.10 0.44
length using fold 1 0, inc, dec 2 4 17 0.03 0.07 0.03 0.03 0.02
append using fold 1 2 8 20 0.04 2.19 0.05 0.04 0.03
insert 1 = # 2 8 26 0.27 0.22 0.85 0.20 -
. delete 1 = # 2 8 22 0.18 0.19 1.07 0.26 -
Unique remove duplicates 2 is member 2 13 47 0.36 0.87 072 033 -
list remove adjacent dupl. 1 = # 3 5 32 133 132 - 131 -
integer range 1 0, inc, dec, <, # 2 13 23 2.36 2.33 2227 2.33 -
. insert 1 < 2 8 41 0.18 0.17 0.43 0.16 -
Strictly delete 1 < 2 8 29 010 009 021 010 -
sorted list intersect 1 < 2 8 40 033 032 068 034 -
insert (sorted) 1 <,# 2 8 34 0.25 0.24 0.68 0.23 -
insertion sort 1 insert (sorted) 4 5 12 0.06 0.06 0.20 0.06 0.05
sort by folding 1 foldr, <, # 2 11 47 2.14 - - 2.21
extract minimum 1 < # 4 23 40 4.28 435 - 7.58 -
selection sort 1 extract minimum 6 5 16 0.49 0.44 - 0.42 0.38
Sorting balanced split 1 4 31 33 0.96 0.51 - 1.40 0.80
merge 1 <,# 2 17 41 2.19 14.61 - 6.85 -
merge sort 1 split, merge 6 11 25 2.10 2.10 - 2.52 1.69
partition 1 < 4 27 40 2.84 7.39 - 3.42 -
append with pivot 1 2 28 22 0.22 0.15 0.58 0.22 0.19
quick sort 1 partition, append w/pivot 6 11 22 2.71 18.45 - 2.49 4.94
is member 1 false, not, or, = 2 6 28 0.29 0.29 7.90 0.28 -
node count 1 0,1,+ 1 4 18 0.20 0.20 - 0.91 0.14
Tree preorder 1 append 2 5 18 0.21 0.20 - 0.91 0.15
create balanced 1 0, inc, dec, <, # 2 7 29 0.14 0.15 - 0.21 -
is member 1 true, false, <, # 2 6 37 0.09 0.08 0.10 0.08 -
insert 1 <, # 2 8 55 0.91 0.88 - 0.82 -
BST delete 1 < 4 2 8 68 568 562 B 10.74 :
BST sort 5 <,# 6 51 115 1.38 1.35 - 1.25 -
is member 1 false, not, or, <, # 2 6 43 0.38 0.38 9.63 0.35 -
Binary insert 1 <, # 2 8 55 0.51 0.50 8.83 0.48 -
Heap 1-element constructor 1 <,# 2 5 8 0.02 0.02 0.02 0.02 0.02
2-element constructor 1 <, # 2 6 55 0.08 0.08 0.25 0.07 -
3-element constructor 1 <,# 2 7 246 2.10 2.12 - 1.98 -
rotate left 3 inc 3 104 91 11.08 1243 - 17.06 10.08
rotate right 3 inc 3 107 91 19.23 18.34 - 36.35 17.87
balance 1 rotate, nodeHeight, isSkewed, isLHeavy, isRHeavy 4 31 119 1.56 - - 1.76 -
AVL insert 1 balance, < 3 » 47 184 181 - 1.64 -
extract minimum 1 < 5 11 25 1.92 1.87 - 1.72 -
delete 2 extract minimum, balance, < 5 37 63 15.67 - - 13.79 -
balance left 2 9 143 137 5.62 5.53 - 48.47 -
RBT balance right 2 9 144 137 7.63 7.72 - 45.32 -
insert 3 balance left, right, <, # 9 49 112 8.95 8.53 - 7.93 -
desugar AST 1 0,1,2 4 5 46 1.17 1.10 - 1.23 0.78
User make address book 1 is private 3 5 35 0.62 3.67 - 0.94 0.55
merge address books 1 append 3 8 19 0.35 5.85 - 0.31 0.24

Table 1. Benchmarks and SYNQUID results. For each benchmark, we report the number of synthesis goals #G; the set of provided
Components; the number of defined measures #M; cuamulative size of Specification and synthesized Code (in AST nodes) for all goals;
as well as SYNQUID running times (in seconds) with minimal bounds (7-all), with default bounds (7-def’), without round-trip checking
(T-nrt), without type consistency checking (T-ncc), and without MUSFIX (T-nmus). “-” denotes timeout of 2 minutes or out of memory.
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of refinement types, exercise SYNQUID’s ability to perform
nontrivial reasoning through refinement discovery, and repre-
sent a scalability challenge beyond the current state of the art
in synthesis. Finally, we included several benchmarks operating
on “custom” datatypes (including the “address book” case study
from [20])) in order to demonstrate that SYNQUID’s applicability
is not limited to standard textbook examples.

4.2 Results

Evaluation results are summarized in[Tab. I} SYNQUID was able
to synthesize (and fully verify) solutions for all 64 benchmarks;
the table lists sizes of these solutions in AST nodes (Code) as
well as synthesis times in seconds (7-all).

The results demonstrate that SYNQUID is efficient in syn-
thesizing a variety of programs: all but 7 benchmarks are
synthesized within 5 seconds; it also scales to programs of
nontrivial size, including complex recursive (red-black tree
insertion of size 69) and non-recursive functions (3-value bi-
nary heap constructor of size 246). Even though specification
sizes for some benchmarks are comparable with the size of the
synthesized code, for many complex problems the benefits of
describing computations as refinement types are significant: for
example, the type-based specifications of the three main oper-
ations on binary-search trees are over six times more concise
than their implementations.

The synthesis times discussed above were obtained for opti-
mal exploration bounds, which could differ across benchmarks.
[Tab. T)also reports synthesis times T-def for a setting where all
benchmarks in the same category share the same exploration
bounds. Although this inevitably slows down synthesis, on most
of the benchmarks the performance penalties were not drastic:
only three benchmarks failed to terminate within the two-minute
timeout.

In order to assess the impact on performance of various
aspects of our algorithm and implementation, [Tab. T|reports
synthesis times using three variants of SYNQUID, where certain
features were disabled: the column T-nrt corresponds to replac-
ing round-trip type checking with bidirectional type checking
(that is, disabling subtyping checks for partial applications);
T-ncc corresponds to disabling type consistency checks; T-nmus
corresponds to replacing MUSFIX with naive breadth-first
search. The results demonstrate that the most significant con-
tribution comes from using MUSFI1X: without this feature 37
out of 64 benchmarks time out, since breadth-first search cannot
handle condition abduction even with a moderate number of log-
ical qualifiers. The second most significant feature is round-trip
type checking, with 33 benchmarks timing out when disabled,
while consistency checks only bring significant speedups for
the most complex examples.

4.3 Comparative Evaluation

We compared SYNQUID with state-of-the-art synthesis tools
that target recursive functional programs and offer a comparable
level of automation. The results are summarized in[Tab. 2] For
each tool, we list the three most complex benchmarks reported
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Benchmark ‘ Spec  SpecS  Time  TimeS
7z | strict sorted list delete 14 8 15.1 0.10
8 strict sorted list insert 14 8 14.1 0.18
= merge sort 9 11 14.3 2.1
o BST find 51 6 64.8 0.09
A | bin. heap 1-element 80 5 61.6 0.02
bin. heap find 76 6 519 0.38
= sorted list insert 12 8 0.12 0.25
> | listrm adjacent dupl. 13 5 0.07 1.33
= BST insert 20 8 037 091
list remove duplicates 7 13 231 0.36
= list drop 6 11 3164 0.1
tree find 12 6 4.7 0.29
o | listrmadjacent dupl. n/a 5 1 1.33
f | treecreate balanced n/a 7 0.24 0.14
list duplicate each n/a 7 0.16  0.05
o BST insert n/a 8 1.81 0.91
£ sorted list insert n/a 8 1.02 025
= tree count nodes n/a 4 045  0.20

Table 2. Comparison to other synthesizers. For each benchmark
we report: Spec, specification size (or the number of input-output
examples) for respective tool; SpecsS, specification size for SYNQUID
(from(Tab. T)); Time, reported running time for respective tool; TimeS,
running time for SYNQUID (from|Tab. T).

in the respective paper that were expressible in SYNQUID’s
refinement logic; for each of the three benchmarks we report the
specification size (if available) and the synthesis time; for ease
of comparison, we repeat the same two metrics for SYNQUID
(copied over from [Tab. ). Note that the synthesis times are
not directly comparable, since the results for other tools are
taken from respective papers and were obtained on different
hardware; however, the differences of an order of magnitude
or more are still significant, since they can hardly be explained
by improvements in single-core hardware performance.

We split the tools into two categories according to the spec-
ification and verification mechanism they rely on.

Formal Specifications with Deductive Verification. The
first category includes LEON [20] and JENNISYS [21]]; both
tools use pre- and post-conditions (and data structure invariants)
to describe computations, and rely on unbounded, SMT-based
verification to validate candidate programs (and thus provide the
same correctness guarantees as SYNQUID). Unlike LEON and
SYNQUID, JENNISYS targets imperative, heap-based programs;
the evaluation in [21]], however, focuses on side-effect free
benchmarks. Both tools use variants of condition abduction,
which makes their exploration strategies similar to SYNQUID’s.

For both tools, translating their three most complex bench-
marks into SYNQUID proved to be straightforward. This sug-
gests that our decidable refinement logic is not too limiting
in practice, compared to other formal specification languages
used for synthesis. Our specifications are on average slightly
more concise than LEON’s and significantly more concise than
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Figure 7. Evaluation on non-recursive benchmarks.

those in JENNISYS; the latter is largely due to the heap-based
language, but the results still indicate that embedding predi-
cates into types can help curb the verboseness of traditional
Hoare-style specifications.

SYNQUID was able to synthesize solutions to all problems
tackled by the other two tools in this category. The converse is
not true: automatic verification of some of SYNQUID’s bench-
marks (such as the binary-search tree example in[Sec. 2) requires
invariant discovery, which is not supported by the other two tools.
This suggests that SYNQUID qualitatively differs from other
state-of-the-art synthesizers in terms of the class of programs for
which a verified solution can be synthesized. On the benchmarks
where the other tools are applicable, SYNQUID demonstrates
considerably smaller running times, which suggests that fast ver-
ification and early pruning enabled by type-based specifications
indeed improve the scalability of synthesis.

Input/Output Examples. Our second category of tools in-
cludes MYTH [27], A? [12] and ESCHER [1]], which synthesize
programs from concrete input-output examples, as well as
MyYTH?2 [[14]], which uses generalized input-output examples.
Using refinement types, we were able to express 3 out of 3,
10, 5, and 7 of their most complex benchmarks, receptively.
The functions we failed to specify either manipulate nested
structures in a representation-specific way (such as “insert a tree
under each leaf of another tree”), or perform filtering (“list of
nodes in a tree that match a predicate”).

At the same time, we found cases where refinement types are
concise and intuitive, while providing input-output examples is
extremely tedious. One of those cases is insertion into a binary
search tree: MYTH requires 20 examples, each of which contains
two bulky tree instances and has to define the precise position
where the new element is to be inserted; the type-based specifica-
tion for this problem, given in[Sec. 2} is straightforward and only
defines the abstract effect of the operation relevant to the user.
This suggests that in general, logic-based specification tech-
niques, including refinement types in SYNQUID, are a better fit
for describing operations that maintain a complex representation

536

invariant but have a simple abstract effect, while example-based
approaches fare better when describing operations that inher-
ently expose the complex representation of a data structure.

Experiments with example-based tools only report the num-
ber of examples required for synthesis and not their sizes;
however, we can safely assume that each example contains
multiple AST nodes, and thus conclude that type-based spec-
ifications for the benchmarks in are more concise. By
imposing more constraints on the set of examples (such as
trace completeness [27]) and increasing its size, example-based
synthesizers can trade off user effort for synthesis time. On the
benchmarks under comparison, MYTH appears to favor perfor-
mance, while \2 prefers smaller example sets. SYNQUID tries
to offer the best of both world and achieves good performance
with concise specifications.

4.4 Evaluation on Non-recursive Benchmarks

In order to asses the scalability of MUSFIX on larger search
spaces, we evaluated SYNQUID on two parametrized bench-
marks from the linear integer arithmetic track of the SyGuS’ 14
competition [3]]: max,, (find maximum of n integer arguments)
and array_search,, (find the position of a value in a sorted array
with n elements). Both benchmarks target non-recursive pro-
grams that consist of a series of nested conditionals; moreover,
the search space for the branch guards grows exponentially with
n. This makes the two problems ideal benchmarks for condition
abduction techniques.

shows SYNQUID synthesis times on the two bench-
marks for n=2,3,...,6. For reference, we also plot the results
for the enumerative solver (the fastest of the SyGusS baseline
solvers), as well as the higher-order solver ALLOY * [24], and
PUFFIN [4]], a specialized synthesizer for conditional integer-
arithmetic expressionsﬂ The results show that SYNQUID’s condi-
tion abduction scales relatively well compared to general synthe-
sizers, but loses to PUFFIN’s theory-specific abduction engine.

6The results for these tools are taken from their respective papers; only
differences in the order of magnitude are significant.



5. Related Work

Our work is the first to leverage general decidable refinement
types for synthesis, but it builds on a number of ideas from
prior work as has been highlighted already throughout the paper.
Specifically, our work combines ideas from two areas: synthesis
of recursive functional programs and refinement type inference.

Synthesis of Recursive Functional Programs. A number
of recent systems target recursive functional programs and use
type information in some form to restrict the search space. The
most closely related to our work are MYTH [27]], MYTH?2 [14],
and LEON [20].

MYTH pioneered the idea of leveraging bidirectional type
checking for synthesis. However, MYTH does not support
polymorphism or refinement types. Instead, the system relies
on examples in order to specify the desired functionality. For
certain functions, providing examples is easy whereas writing
arefinement type is cumbersome or, due to the limitations of de-
cidable refinement logic, even impossible. That said, examples
in general do not fully specify a program; thus programming
by example always involves a manual verification step. More-
over, for some less intuitive problems, such as insertion into a
balanced tree or AST transformations, providing input-output
examples requires familiarity with all details and corner cases of
the algorithm, whereas refinement types enable a more abstract
specification. Additionally, MYTH expects the set of examples
to be trace complete, which means that for any example the
user provides, there should also be examples corresponding to
any recursive calls made on that input. Other systems that use a
combination of types and input-output examples, and thus have
similar advantages and disadvantages relative to our system,
include A\? [12] and ESCHER [T].

MYTH2 generalizes example-based synthesis: it treats ex-
amples as singleton types, and extends the input language with
intersection and union types, as well as parametric polymor-
phism. This addresses some of the shortcomings of concrete
input-output examples (in particular, their verboseness), how-
ever, in the absence of dependent function types most interesting
programs still cannot be fully speficied. Combining SYNQUID’s
dependent types with singletons, intersection, and unions found
in MYTH?2 is an interesting direction for future work.

In LEON, synthesis problems are defined by first-order spec-
ifications with recursive predicates, and verification is based on
a semi-decision procedure [35]], implemented on top of an SMT
solver. LEON’s verification engine does not support invariant
inference, which prevents it from generating provably correct
implementations for problems such as insertion into a sorted list
or a binary search tree. The general synthesis strategy is similar
to ours: first decompose the specification and then switch to
generate-and-check mode, enhanced with condition abduction.
Unlike our system, LEON does not perform systematic speci-
fication decomposition in the generate-and-check mode, and
lacks support for polymorphism and high-order functions.

The use of type information has also proved extremely useful
for code completion [[151231128]], although none of these systems
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rely on a type system as expressive as ours, and they are designed
for a very different set of tradeoffs compared to SYNQUID. For
example, because the problem is highly under-constrained, these
systems place significant emphasis on the ranking of solutions.

Another important body of related work related is hole
driven development, as embodied in systems like Agda [26] and
Idris [6], which leverage a rich type system to aid development,
but are meant to be used interactively rather than to perform
complete synthesis. Djinn [5] serves a similar purpose but uses
the less expressive Haskell type system.

Refinement Type Checking. Our type checking algorithm
is based on liquid type inference [[19, |33} 136-38]], which pio-
neered combining Hindley-Miler unification with predicate
abstraction. We integrate their ideas with bidirectional type
checking [30]], which has been used before both for other flavors
of refinement types [9}[11}!4 1] and for unrestricted dependent
types [8]], but not for general decidable refinement types. An-
other difference with liquid types is that we use greatest-fixpoint
predicate abstraction procedure inspired by [34], and improved
using an algorithm for efficient MUS enumeration [22].

Logical Abduction. The concept of abduction in logical
reasoning has found numerous applications in programming
languages, including specification inference [2,[10] and pro-
gram synthesis [4, |20l 21]. Abduction techniques based on
quantifier elimination [2,[10] and theory-specific unification
operators [4], are precise and efficient, but only applicable to
restricted domains. SYNQUID performs abduction using predi-
cate abstraction and MUS enumeration, which can be applied to
a wider range of specification logics, but its precision is limited
to the given set of logical qualifiers.
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