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Abstract

Neuroscientists hypothesize that the pathologies of some neurological diseases are
associated with neuroanatomical abnormalities. Diffusion Tensor Imaging (DTI)
and stochastic tractography allow us to investigate white matter architecture non-
invasively through measurements of water self diffusion throughout the brain. Many
comparative studies of white matter architecture utilize spatially localized compar-
isons of diffusion characteristics. White matter tractography enables studies of fiber
bundle characteristics. Stochastic tractography facilitates these investigations by
providing a measure of confidence regarding the inferred fiber bundles. This the-
sis presents an implementation of an easy to use, open-source stochastic tractography
system that will enable novel studies of fiber tract abnormalities. We demonstrate an
application of the system on real DTI images and discuss possible studies of frontal
lobe fiber differences in Schizophrenia.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a valuable imaging modality for studying the

brain in-vivo. We can use use MRI to differentiate between tissue types, which is

useful in anatomical studies. Diffusion Tensor Imaging (DTI) provides a method to

characterize white matter tracts, enabling studies of white matter architecture.

We can visualize DTI data sets using a number of methods. DTI data sets provide

information about the diffusion of water at each voxel, or volume element, in the

form of diffusion tensors. A popular technique to visualize these diffusion tensors is

to extract fiber tracts which summarize the diffusion information across many voxels.

This technique is known as DTI Tractography.

One possible method of performing tractography is to generate tracts which follow

the direction of maximal water diffusion of the voxels they pass through [18, 2].

This method is known as streamline tractography. However, this method does not

provide information about the uncertainty of the generated tracks due to noise or

insufficient spatial resolution. Stochastic white matter tractography methods try to

address this problem by performing tractography under a probabilistic framework.

Stochastic methods provide additional information that enables clinical researchers

to perform novel studies. Several formulations of probabilistic tractography have

been suggested [4, 3, 22, 11, 17], however tools which enable widespread adoption

of stochastic tractography in clinical studies are not currently available. This thesis

implements an easy to use system for performing stochastic white matter tractography
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Figure 1-1: 3D Slicer environment displaying the Stochastic Tractography Module
interface and a connectivity map overlaid on a fractional anisotropy image.

based on the algorithm described by Friman et al. [8, 9].

Researchers have hypothesized that white matter abnormalities may underlie some

neurological conditions. For instance, people characterize schizophrenia by its behav-

ioral symptoms. These symptoms include auditory hallucinations, disordered think-

ing and delusion [16]. Studies have suggested that these behavioral symptoms have

some connection with the neuroanatomical abnormalities observed in schizophrenia

patients[16]. Researchers can noninvasively investigate the relationship between brain

white matter abnormalities and schizophrenia by using white matter tractography.

Ultimately the success of the system developed in this thesis will depend on its use

in the research community. To this end, we implement the system within the open

source ITK Segmentation and Registration Toolkit [7] framework. ITK is currently

used in many medical data processing applications. ITK’s large existing user base will

encourage the system’s use in the research community. Additionally, implementing

the stochastic tractography algorithm within ITK facilitates its integration into the

3D Slicer [5] for medical data visualization environment. This thesis also implements

16



a 3D Slicer graphical user interface module for the stochastic tractography system,

increasing its ease of use and further encouraging its application in clinical research

(figure 1-1).

Finally, we have applied this system towards the analysis of real DTI data. Orig-

inally, the data was investigated using non-stochastic tractography methods. We

present a new analysis of the data using the system implemented in this research.

We also compare and contrast the results obtain from stochastic tractography and

non-stochastic methods.

In this thesis we describe the motivation and implementation of the stochastic

tractography system followed by a demonstration of possible applications of the sys-

tem. The next chapter provides a background on nerve fiber tracts, DTI and prior

work in white matter tractography. After the background, the following chapter

provides a detailed explanation of the stochastic tractography algorithm. Then, we

describe the implementation of the algorithm within the ITK framework and opti-

mizations used to improve performance. Next, we demonstrate the system through

an example analysis of frontal lobe nerve fiber bundles. We conclude by discussing a

potential study enabled by the algorithm.
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Chapter 2

Background

Diffusion Tensor Imaging (DTI or DTMRI) is a recently developed Magnetic Reso-

nance (MR) technique that provides information about the diffusion of water molecules

in the brain. In white matter, due to the interactions between water molecules and

the surrounding nerve fibers, the principal diffusion direction is aligned with the local

fiber orientation.

White matter tractography is a visualization and analysis tool for DTI data. It

takes local diffusion information provided by DTI images and produces explicit rep-

resentations of fiber bundles which may explain the observed global diffusion distri-

bution. White matter tractography characterizes fiber bundles in-vivo and provides

insights into questions concerning white matter architecture.

A number of clinical studies have used tractography to compare fiber bundle char-

acteristics in different populations. Many of these studies utilize tractography meth-

ods which do not provide a measure of the confidence regarding the estimated fiber

bundles. The stochastic tractography system implemented in this research provides

these measures of confidence, and may open new avenues of clinical investigation of

white matter architecture.
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Figure 2-1: Example of human brain fiber tracts viewed from the front (coronal) and
from the left (sagittal). This image was derived from anatomical atlas diagrams in
Gray’s Anatomy [19].

2.1 Neuroanatomy and Fiber Tracts

Nerve tissue in the brain can be divided into gray and white matter. Gray matter

is found throughout the brain but is concentrated on the cortical surface as well as

in structures deep within the brain such as the thalamus. The defining characteristic

of gray matter is its lack of myelinated axons. In contrast, white matter is white in

color because it has an abundance of myelinated axons. Myelin consists mostly of

lipids and gives white matter its color. Bundles of these axons comprise white matter

tracts. Figure 2-1 illustrates some prominent fiber tracts.

2.2 Diffusion Tensor MRI Physics

MRI is typically used to differentiate between different tissue types, such as gray

and white matter. This technique works by magnetically polarizing a particular

slice of the brain. A strong uniform magnetic field is applied to the entire brain

causing the spins of the water molecules to orient in the same direction. Another

magnetic field, this one nonuniform in space, polarizes the spins of the atoms in

the brain differently depending on their location. This gradient field is turned off

and as the spins of the electrons reorient, or relax, back to the strong uniform field,

they release an electro-magnetic signal which is picked up by the receiving coil. The

20



frequency of these emitted waves depends on the atom’s polarization which in turn

depends on its position in space. The time needed for the spins to relax, known

as the relaxation time, depends on the type of tissue. Using this data, an image

can be constructed that differentiates between tissue types due to their characteristic

relaxation time. Unfortunately, white matter appears homogeneous in anatomical

MRI images. Anatomical MRI images do not provide much information about the

orientation of the white fiber tracts within each voxel. Without this information

it is not possible to reliably determine the connectivity between different regions of

gray matter. Diffusion Tensor Imaging is a recently developed MR technique which

provides more information to characterize fiber tracts.

Diffusion Tensor Imaging (DTI) or DTMRI is an imaging technique that indirectly

provides information about fiber tract orientation from the diffusion profile of water

in the brain tissues. Diffusion in many parts of the brain occurs anisotropically; the

rate of diffusion varies with direction. This anisotropy is caused by local physical

constraints that impede diffusion. The diffusion of water molecules, which are the

predominant signal emitters in MR imaging, is believed to be constrained by the

myelin that surrounds axons. DTI images describe the diffusion profile of water within

each voxel using a diffusion tensor. These tensors can be modeled as ellipsoids with the

eigenvectors describing the major and minor axes of the ellipsoid and the associated

eigenvalues scaling these axes. Isotropic diffusion profiles result in spherical tensors

while anisotropic diffusion profiles produce more eccentric tensors. The parameters

which describe these tensors are obtained from Diffusion Weighted Images (DWI)

of the same volume captured using at least six unique gradient directions and one

reference image obtained in the absence of weighting gradients.

Each Diffusion Weighted Image (DWI) provides information about the magnitude

of diffusion in one particular direction. Diffusion Weighted imaging works similarly

to anatomical MRI imaging but it also captures the Brownian diffusion of molecules

during the imaging process. Unlike anatomical MRI, an additional gradient magnetic

field is applied in a chosen direction which then makes the resulting observations sen-

sitive to the self diffusion of water in that direction. An MRI image obtained using
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these diffusion sensitizing gradients is referred to as a Diffusion Weighted Image or

DWI. Associated with each of these images is the direction of the magnetic field gra-

dient used to polarize the molecules. This information is necessary because different

magnetic field gradients may result in significantly different DWI images due to the

anisotropy of diffusion in certain regions of the brain. Finally, this diffusion informa-

tion can be used to estimate the parameters of a diffusion tensor which is then used

to infer the orientation of fiber tracts in that voxel.

2.3 Diffusion Tensor

The diffusion tensor is a 3x3 symmetric matrix which describes the distribution of

diffusion within each voxel. Under ideal, noise-free conditions, the diffusion tensor is

related to the DWI intensity by the observation model:

zi = z0e
−big

T
i Dgi (2.1)

where D is the diffusion tensor, zi is the DWI intensity, z0 is the baseline intensity

given by the B0 image, gi and bi are the associated magnetic gradient directions and

diffusion weighting factor respectively.

The diffusion tensor is positive definite, thus all of its eigenvalues are positive.

Each eigenvalue represents the magnitude of diffusion in the direction of the eigen-

vector associated with that eigenvalue. The diffusion distribution described by the

tensor can be visualized as an ellipsoid, whose major and minor axis are described

by the eigenvectors and associated eigenvalues of the tensor. The eigenvector asso-

ciated with the largest eigenvalue is sometimes referred to as the principal diffusion

direction. If the diffusion is sufficiently anisotropic, the principal diffusion direction

is a good estimate of the local fiber orientation [6].

The diffusion tensor is sensitive to changes in the orientation of the object being

scanned. Thus clinical studies tend to use statistics which are invariant to changes

in orientation. The most commonly used properties are the trace and the fractional
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(a) superquadric tensor glyphs (b) streamline tractography

Figure 2-2: Glyphs and streamlining tractography on the same DTI data [12]. The
color in both images represent the estimated orientation of the fiber tract modulated
by the degree of anisotropy in the data. The color key is red is for left-right, blue
for superior-inferior, green for anterior-posterior. Regions that are white have low
anisotropy while saturated regions exhibit highly anisotropic diffusion.

anisotropy. The trace of the tensor is the sum of the diagonal elements of the tensor

and represents the average total diffusion. A higher trace implies that there are few

obstacles to water diffusion in that voxel. Fractional anisotropy is a measure of the

degree of difference between the largest eigenvalue and the smaller two eigenvalues:

FA =

√
3[(λ1 −Dav)2 + (λ2 −Dav)2 + (λ3 −Dav)2]

2(λ2
1 + λ2

2 + λ2
3)

(2.2)

Dav =
λ1 + λ2 + λ3

3
(2.3)

where λ1, λ2, λ3 are the eigenvalues of the diffusion tensor and Dav FA ranges from 0

for perfectly isotropic diffusion, a sphere, to 1 for perfectly anisotropic diffusion, an

infinite cylinder. While many other measures of anisotropy exist, fractional anisotropy

is currently the most popular.

The two primary ways to visualize DTI data is through the use of glyphs and

tractography. Figure 2-2 demonstrates these two methods. Glyphs are visual repre-

sentations of the tensors at each voxel in one slice of DTI data. For instance, direct

renderings of the diffusion tensor can be used as glyph. Glyph visualization is used
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for understanding diffusion in a localized region of interest. Studies that investigate

local differences in DTI observations between different subjects are known as Region

of Interest or ROI studies. Although ROI analysis is straightforward, it is limited in

the information it can provide and may actually introduce errors. For instance, it is

difficult to determine if the observed location along a fiber bundle in one patient cor-

responds to the observed location in another patient. Ultimately, clinical researchers

are often interested in the global fiber bundles which produced these local DTI ob-

servations. The fiber bundles span multiple voxels, limiting the usefulness of glyph

visualization in global studies of fiber bundle characteristics. These inquiries into

the characteristics of fiber bundles led to the invention of white matter tractography

methods. In contrast to glyph visualization, white matter tractography incorporates

diffusion information across multiple voxels in order to estimate a fiber bundle or

bundles which could explain the observed diffusion data.

2.3.1 Streamline Tractography

Tractography can be performed in a number of ways. One method is to estimate

tracts which are collinear with the principal direction of diffusion direction of every

voxel it passes through. These methods are collectively known as streamlining meth-

ods and have been suggested and characterized by a number of researchers [18, 2].

Streamline tractography has relatively low computational cost and is very useful for

visualization of DTI data. However, streamline approaches do not provide information

regarding the certainty of the estimated fiber tracts, limiting their usefulness in clin-

ical studies which investigate white matter architecture characteristics. Additionally,

this lack of confidence information limits the regions that streamlining tractography

can analyze. Fiber orientation in highly isotropic regions are very uncertain. Since

streamlining methods do not account for this uncertainty, one cannot confidently an-

alyze a region containing isotropic voxels using streamlining methods. To reflect this

limitation, many streamline methods will not estimate tracts that even momentar-

ily pass through isotropic regions. Unfortunately, isotropic voxels occur throughout

the brain, even in regions with highly coherent fibers. These voxels appear isotropic
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due to noise, distortions in the DTI data or due to limitations in imaging resolution

which result in partial volume effects. Partial volume effects occur when multiple

fibers cross within a single voxel resulting in a diffusion distribution which is affected

by both fiber orientations. Under a single fiber observation model, partial volume

effects result in reduced anisotropy and thus increased uncertainty in the fiber orien-

tation estimate. This lack of robustness limits the method’s application in studies of

fiber bundle characteristics. These limitations motivated the invention of stochastic

or probabilistic tractography algorithms. This class of tractography algorithms over-

comes the shortcomings of streamline methods by explicitly modeling the uncertainty

in the local fiber orientation.

2.3.2 Stochastic Tractography

Stochastic tractography, sometimes known as probabilistic tractography, differs from

streamlining methods in that it takes into account the uncertainty in fiber orientation

when calculating estimates of fiber tracts. Stochastic methods perform tractography

under a probabilistic framework; beliefs regarding the estimated local fiber orientation

are propagated to provide a measure of confidence regarding fiber tracts that span

multiple voxels. This explicit modeling and propagation of beliefs allows stochastic

methods to generate tracts in regions of low anisotropy. Stochastic methods can

generate tracts that momentarily pass through regions of low anisotropy because

they integrate local fiber orientation uncertainty into the uncertainty of the entire

tract. The robustness of stochastic methods to local fiber orientation uncertainty has

even enabled some studies to directly assess the connectivity of gray matter, which

generally exhibits isotropic diffusion, with other regions of the brain[3].

Bootstrap Method

The Bootstrap Method is a stochastic method that calculates the degree of connec-

tivity between different regions of the brain based on the variance in the original

DTI data. The method obtains a measure of the variance of the DTI data by using
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redundant sets of DTI data and through the creation of new data which consist of

recombinations of the original data. In Jones et al. [11] nine redundant sets of DWI

volumes are obtained to perform the Bootstrap method. Random combinations of

portions of DWI volumes are sampled from this pool to generate a large number of

complete mixed DWI sets known as bootstraps. These complete mixed DWI sets are

then converted to DTI images. Standard streamline tractography is then performed

on each bootstrap set at the same starting, or seed location. A visitation percentage

is then calculated for each voxel in the volume indicating the percentage of sample

sets which generated a tract that passed through that particular voxel. This visita-

tion percentage can be interpreted as the probability that a voxel is connected to the

seed point via a fiber tract.

Bayesian Methods

Stochastic tractography methods which use Bayesian frameworks express beliefs about

estimated fiber tracts by generating a posterior probability distribution of fibers given

the observed DTI data. These tractography methods use a probabilistic model to re-

late the underlying fiber orientation with the observed DTI data. The probabilistic

model is applied to every voxel to generate a posterior distribution of possible fiber

orientations given the observed diffusion in that voxel. A streamline-like tractogra-

phy method is then used to generate tracts by randomly sampling fiber directions

from the fiber orientation posterior at each voxel as calculated by the local model.

The sampled tract is a realization of a random variable generated from the posterior

distribution of fibers. Since there are many possible paths, to obtain a good approx-

imation of the posterior distribution, many paths must be sampled. Additionally,

similar to the Bootstrap method, the probability that region A is connected to region

B can then be found by calculating the fraction of paths that pass through region B

originating from A.

Behrens’s Bayesian approach was one of the pioneering works in the field of

stochastic tractography[3]. An important idea in Behren’s work is in keeping clear

the distinction between estimating a general diffusion distribution from DWI data
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and estimating the local fiber orientation from DWI data. Although an inference of

the local fiber orientation can be made from the tensor model’s principal diffusion

direction, the tensor model is primarily a model to infer the distribution of diffu-

sion given the data. However, in stochastic tractography, we wish to infer the local

fiber orientation from the observed diffusion data. Behrens’s formulates this distinc-

tion by avoiding the tensor model altogether in favor of the two-compartment model.

The two-compartment model makes the assumption that only a single fiber passes

through a voxel. Deviations from this simple model due to crossing fibers is cap-

tured as uncertainty in the fiber orientation. In this model a voxel is described as

two compartments whose net diffusion profile is the sum of a small anisotropic diffu-

sion component that occurs in and around the fiber and a larger isotropic diffusion

component outside of the fiber [3]. The fiber orientation distribution is analytically

intractable. Behrens overcomes this issue by computing the PDF using Markov Chain

Monte Carlo (MCMC) techniques [1]. MCMC is a method to numerically integrate

an analytically intractable integral. Unfortunately, MCMC methods are sometimes

computationally expensive. Thus Friman et al. [9] introduced a stochastic method

that avoids MCMC. Our system implements a stochastic tractography method based

on Friman’s approach. In the next section, we provide a detailed explanation of the

theory behind the stochastic tractography algorithm implemented in this thesis.
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Chapter 3

Stochastic Tractography Algorithm

The stochastic tractography algorithm implemented in this thesis is based on Friman’s

[9] approach with some modifications to the stopping criteria. Figure 3-1 provides a

flow chart demonstrating key steps in the algorithm.

A fiber tract is modeled as a sequence of unit vectors. The orientation of these

unit vectors is determined by sampling a posterior fiber orientation distribution which

is dependent on the local diffusion data as well as the orientation of the unit vector

in the previous step. The posterior distribution is a normalized product of the prior

likelihood of the fiber orientation and the likelihood of that fiber orientation given

the local diffusion data.

Friman uses a subset of the tensor model which is called a constrained diffusion

model. In this model, the two smallest eigenvectors of diffusion tensor are equal,

constraining the shape of the diffusion tensor to be linearly anisotropic. The con-

strained model rules out the possibility of nonlinear, or non-cylindrical anisotropic

diffusion distributions. Deviations from linearly anisotropic diffusion distributions are

captured as uncertainty in the fiber orientation. The constrained model is combined

with a Gaussian DWI noise model to obtain a fiber orientation likelihood function.

The parameters for the constrained model are derived from a weighted least squares

estimation of the parameters for the log tensor model.

The orientation of each vector depends only on the previous vector. This de-

pendency is formulated in the prior on the fiber orientation. Prior knowledge about
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Figure 3-1: A flow chart demonstrating key steps in the stochastic tractography
algorithm

the regularity of the fiber tract can encoded in this prior probability. The prior also

serves to prevent the fiber from backtracking, since the likelihood distribution alone

is axially symmetric.

Friman’s approach is a Bayesian inference algorithm similar to Behrens’s but with

some important optimizations [9]. In contrast with Behrens’s two-compartment ob-

servation model, the constrained model used by Friman is derived from the thoroughly

studied tensor model of diffusion. The advantage of using the constrained model is

that it is relatively easy to estimate the parameters for the model. The parameters

for the constrained model are obtained after the tensor model has been fit to the

diffusion data. Since the parameters for the tensor model are easily obtained through

many computationally efficient ways, the constrained model’s parameters are likewise

easy to obtain. The constrained model can be fit to every voxel within a matter of

seconds whereas Behrens’s model takes a couple of hours [9]. Additionally Friman

avoids using MCMC techniques by assuming that parameters other than the princi-

ple diffusion direction take on their ML estimates with certainty within each voxel.

Friman demonstrates that eliminating this source of uncertainty has little effect on

the resulting posterior fiber orientation distribution.

In Friman’s paper on stochastic tractography, the tracking is terminated when

an encountered voxel’s diffusion distribution below a minimal measure of anisotropy.

However, since the stochastic tractography algorithm takes into account this uncer-
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tainty with an increase in the spatial variance of sampled fibers, this termination

criterion seems arbitrary and contradictory with the goals of stochastic tractography,

which is to enable sampling of tracts in regions of uncertainty. Thus we replace this

termination criterion with one which terminates tractography based on the posterior

probability that a fiber tract exists within the current voxel. The posterior proba-

bility that a fiber tract exists in a given voxel can be obtained by performing a soft

segmentation of white matter on an anatomical image co-registered with the DWI

data. Alternatively, the soft segmentation can also be performed on the B0 image

of the DWI data set, thus eliminating the need for additional data. While this may

seem equivalent to using an anisotropy threshold criterion, since white matter gen-

erally has higher anisotropy than gray matter, it does not exclude regions of white

matter which have low anisotropy due to crossing fibers. This criteria should enable

the algorithm to detect more tracts than under the anisotropy termination criteria.

3.1 Mathematical Derivation

3.1.1 Linearized Diffusion Tensor Model

For each voxel in the DWI volume a signal intensity zi can be measured given a partic-

ular diffusion weighting factor bi and magnetic gradient direction gi = (gix giy giz)
T .

The subscript i enumerates multiple measurements of the same voxel under different

magnetic gradient directions.

The tensor model is a popular model used to describe the relationship between

a particular gradient direction gi, the diffusion weighting factor bi and the measured

voxel intensity zi:

zi = z0e
−big

T
i Dgi (3.1)

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (3.2)
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where D is the diffusion tensor, encoded as a 3× 3 matrix that describes the rate of

diffusion in 3D space.

Taking the log of both sides of the equation leads to a more tractable linear

relationship:

log(zi) = log(z0)− big
T
i Dgi (3.3)

The model is now in a linear form so that we can apply standard techniques such

as least squares to estimate the diffusion parameters (the entries of the D). The

linearized form can be further simplified by expanding the matrix multiplications and

isolating the parameters into a separate vector.

log(zi) = aT
i q (3.4)

ai =
(

1 −big
2
ix −big

2
iy −big

2
iz −2bigixgiy −2bigixgiz −2bigiygiz

)T

(3.5)

q =
(

z0 Dxx Dyy Dzz Dxy Dxz Dyz

)T

(3.6)

The entries of the diffusion tensor D and the scaling factor z0 now correspond to

entries in the q vector.

There are 7 parameters that must be solved for in q. At least 6 additional inde-

pendent equations are required in order to solve for the parameters. These equations

can be obtained by measuring the voxel intensity using at least 7 noncolinear gradi-

ent directions gi and optionally by varying the diffusion weighting factor bi. However,

more than 7 directions are required to estimate the variance of the original data,

as we discuss later in this section. The full system of equations containing all n

measurements of a voxel can be succinctly represented in matrix form:

log(z) = Aq (3.7)
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Where A is a n× 7 matrix and log(z) is an n length vector of the n voxel intensities.

The least squares solution has the following form:

q̂ = (ATA)−1AT log(z) (3.8)

3.1.2 Constrained Diffusion Tensor Model

Although the tensor model provides a good description of a general diffusion profile,

ultimately we would like to estimate the distribution of the fiber orientations from

the voxel intensities. To simplify the tractography process we assume that each voxel

contains only one fiber, and the majority of diffusion occurs in the single direction dic-

tated by this single fiber. The assumption is mathematically modeled by constraining

the diffusion tensor to forcing the two smallest eigenvalues to be equal. Under this

constraint the eigen-decomposition of the diffusion tensor D

D = λ1ê1ê1
T + λ2ê2ê2

T + λ3ê3ê3
T (3.9)

is simplified by assuming the two smallest eigenvalues λ2 = λ3 = α:

D = λ1ê1ê1
T + α(ê2ê2

T + ê3ê3
T )

= (λ1 − α)ê1ê1
T + αI

= βê1ê1
T + αI (3.10)

Substituting this expression into the tensor model in equation(3.1) yields the con-

strained model:

zi = z0e
−αbie−βbi(g

T
i v̂)2 (3.11)

where v̂ represents ê1, the eigenvector associated with the largest eigenvalue. This

change emphasizes that the constrained model attempts to model the underlying fiber

orientation and not the general diffusion profile.
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The parameters of the constrained model can be derived from the parameters of

the tensor model. Given matrix D with the eigenvalue factorization of equation (3.9),

the closest symmetric matrix, in terms of the Frobenius norm , with the two equal

smallest eigenvalues is [9]:

S = λ1ê1ê1
T +

λ2 + λ3

2
(ê2ê2

T + ê3ê3
T ) (3.12)

Hence after fitting the tensor model we obtain the constrained model parameters:

α =
λ2 + λ3

2
, β = λ1 − α, v̂ = ê (3.13)

The additional constraints imposed by the constrained model reduces the goodness

of fit, as compared to the diffusion tensor model, for voxels that do not exhibit

anisotropic diffusion. The reduction in anisotropy may be due to partial volume

effects and the constrained model captures this uncertainty with an increase residual

variance which translates into a wider fiber orientation likelihood function.

3.1.3 Fiber Orientation Likelihood Function

The log of the measured voxel intensity can be described as the log of the true intensity

zi with some additive noise ε:

yi = log(zi) + εi (3.14)

For moderate levels of SNR, Salvador et al. [21] demonstrates that the distribution

of the noise (3.14) is approximately normal with a mean of zero and a variance equal

to the variance of the original complex data [21], divided by the square of the non-log

noise-free voxel intensity:

p(εi) = N

(
0,

σ2
i

z2
i

)
(3.15)

Therefore the resultant distribution of the log of the measured voxel intensity can be

modeled by the same normal distribution, whose mean has been shifted by the log of
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the noise-free intensity:

p(yi) = N

(
log(zi),

σ2
i

z2
i

)
(3.16)

The joint distribution of the n noisy voxel log-intensities is obtained by multiplying

the n distributions together. It is assumed that the variance of the original complex

data is constant across all n measurements of a voxel.

p(y) =
n∏

i=1

N

(
log(zi),

σ2

z2
i

)
(3.17)

In other words, equation (3.17) is the likelihood of observing the measured data

given the noise-free intensities zi. Since we cannot directly observe zi we estimate

them by fitting parameters for the constrained model from the observed noisy data

y. Hence, after substituting in the constrained model, zi becomes ẑi and equation

(3.17) becomes the likelihood of observing the measured data given a choice of pa-

rameters for the constrained model. Since the parameter of primary interest is the

estimated fiber direction v̂, it is separated from the estimated secondary parameters

θ̂ = {ẑ0, α̂, β̂, σ̂2}. σ2 is the variance of the original complex data [21], not the vari-

ance of the intensity zi. It can be estimated by calculating the residual variance after

fitting the parameters of the constrained model.

σ̂2 =
(log(y)−Aq̂)T (log(y)−Aq̂)

n− 7
(3.18)

p(y|v̂, θ̂) =
n∏

i=1

N

(
log(ẑi),

σ̂2

ẑ2
i

)
(3.19)

3.1.4 Connectivity Probability Function

A generated fiber tract k of length l can be modeled as string of l unit vectors lined end

to end: vk,1:l = {v̂1, . . . , v̂l}k. Ωl
A is the set of all possible l length paths that originate

from point A. A probability function can be defined on the path space for l length

paths: p(vk,1:l) and consequently p(Ωl
A) = 1. Additionally, a discrete probability

function p(l) can be defined on the path length. Given the diffusion measurements
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y, the probability that region A is connected to region B by a fiber tract, assuming

that the path length is independent of the diffusion measurements is:

p(A → B|y) =
∞∑
l=1

∫
Ωn

AB

p(l)p(v1:l|y) (3.20)

In general, equations such as (3.20) which contain multidimensional integrals over

complex path spaces are not tractable analytically and must be calculated numeri-

cally. The equations below provide a method to approximate equation (3.20) numer-

ically. Nl paths of length l are sampled from the path space Ωl
A. I is an indicator

function that takes on the value 1 only if a particular l length path vk
1:l originating

from region A passes through region B, and is 0 otherwise. The indicator function

is used to calculate the fraction of sampled paths originating in region A that pass

through B, of a particular length l. Finally, these fractions are weighted by the prob-

ability of the path length p(l) and summed over all possible path lengths. The infinite

summation over path length converges because there is a maximum path length be-

yond which longer lengths have zero probability.

I =

 1 vk,1:l ∈ Ωn
AB

0 otherwise
(3.21)

p(A → B|Y ) ≈
∞∑
l=1

Nn∑
k=1

p(l)
I(vk,1:l)

Nn

(3.22)

3.1.5 Stochastic Fiber Tract Generation

According to equation (3.22), we must randomly sample tracts originating from region

A. These tracts can be generated stochastically, in the sense that the tract can be

generated from repeated samples from a probability distribution. In this case we are

drawing from the distribution of fiber orientations at a given point in space. This

prior distribution can be refined by incorporating likelihood information from the

constrained model, as well as prior information regarding the regularity of the fiber

tract, to generate a posterior fiber orientation distribution.
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p(v̂i, θ|v̂i−1,y) =
p(y|v̂i−1, v̂i, θ)p(v̂i, θ|v̂i−1)

p(y|v̂i−1)
(3.23)

Assuming the secondary parameters θ at the current point are independent of the

previous step direction and prior knowledge about the next step direction: p(v̂i, θ|v̂i−1) =

p(v̂i|v̂i−1)p(θ) and assuming diffusion measurements at the current point don’t de-

pend on the previous step direction: p(y|v̂i−1, v̂i, θ) = p(y|v̂i, θ) and p(y|v̂i−1) = p(y)

equation (3.23) simplifies:

p(v̂i, θ|v̂i−1,y) =
p(y|v̂i, θ)p(v̂i|v̂i−1)p(θ)

p(y)
(3.24)

The denominator p(y) normalizes the posterior probability distribution, allowing it

to integrate to 1, and can be written as the integral of the numerator.

p(y) =

∫
v̂i,θ

p(y|v̂i, θ)p(v̂i|v̂i−1)p(θ) (3.25)

The likelihood function p(y|v̂i, θ) is given by equation 3.19.

The prior probability function p(v̂i|v̂i−1) is used to encode knowledge about the

regularity of fiber tracts:

p(v̂i|v̂i−1) =
1

ζ

 (v̂T
i v̂i−1)

γ v̂T
i v̂i−1 ≥ 0,

0 v̂T
i v̂i−1 < 0

(3.26)

While data from invasive studies nerve fibers can be used to estimate this PDF, for

the purposes of this implementation a simple distribution given by (3.26) where γ ≥ 0

and 1
ζ

is a normalization factor that allows the distribution to integrate to 1. This

particular distribution gives preference to paths which continue in the prior direction

and gives zero probability to perpendicular turns. The most important function of

the prior is to prevent the fiber tract from backtracking on itself. Without the prior,

this may occur because the likelihood function is symmetric.

Since we want to obtain the posterior PDF for the fiber direction alone, we must

marginalize the joint posterior distribution (3.24) by integrating over the secondary
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parameters θ. To simplify this integration, we remove uncertainty regarding the sec-

ondary parameters, θ by assuming an ML estimate. These ML estimates were calcu-

lated by fitting the constrained model (3.13). Under this assumption equation (3.25)

simplifies to an integration only over the fiber directions v̂i. To simplify drawing sam-

ples from the posterior distribution, the continuous PDF (3.24) can by approximated

by a discrete PDF as long as the continuous PDF is sampled finely enough. Friman

et al. [9] found empirically that 2,562 directions spread evenly over a unit sphere S

was sufficient. Taking these simplifications into account, equation (3.24) becomes:

p(v̂i|v̂i−1,y) =
p(y|v̂i, θ)p(v̂i|v̂i−1)∑
v̂∈S p(y|v̂i, θ)p(v̂i|v̂i−1)

(3.27)

Finally, since the probabilistic tractography is performed in the continuous space

while the diffusion data is discretized, a decision must be made about which voxel’s

diffusion information should be used in the calculation of the posterior PDF at the

current point. This algorithm chooses an probabilistic interpolation method suggested

by Behrens et al. [3] which randomly selects a voxel near the current tract generation

point, with closer voxels having a higher probability of being selected.
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Chapter 4

Implementation

4.1 Architecture

We implemented the algorithm as a new filter in the Insight Segmentation and Regis-

tration Toolkit (ITK). The ITK toolkit is a collection of image processing and statis-

tical analysis algorithms for biomedical imaging applications. Additionally, the ITK

toolkit is open-source software, which allows other researchers to learn directly how

this system was implemented and make improvements in the future. Including the

algorithm in the ITK toolkit makes it available to a large existing research commu-

nity. Additionally, we created a GUI module for the 3D Slicer medical visualization

program that provides easy access to the algorithm via an intuitive visual interface.

We also created a command line interface to the ITK filter that can be used to process

large numbers of data sets in a batch mode. Choosing to implement the algorithm

as an extension of already established tools facilitates adoption of the algorithm in

clinical studies.

The stochastic tractography algorithm is a Monte Carlo algorithm which samples

the high dimensional parameter space of fiber tracts. This parameter space is large

because fiber tract are characterized by a sequence of segment orientations, each of

which can be considered a separate parameter describing the fiber tract. As such, it

may take many samples to accurately approximate the posterior distribution of these

parameters. However, since these samples are IID, the samples can be generated
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in parallel. Implementing the system in a multithreaded fashion enables parallel

sampling of the tract distribution.

ITK provides a framework for implementing multithreaded algorithms. The ITK

multithreading framework assumes that the output region can be divided into disjoint

sections with each thread working exclusively on their own section of the output im-

age. This design prevents threads from simultaneously writing to the same memory

region, which may cause unexpected results. However, since the stochastic tractog-

raphy algorithm generates tracts that may span the entire output image, dividing

the output region into disjoint sections is not possible. Additionally, in order to ob-

tain statistics on these tracts, we need to output the generated tracts as well as the

resultant connectivity image. Thus the existing ITK framework for implementing

multithreaded filters is not very useful for our stochastic tractography filter. Fortu-

nately ITK also provides basic multithreading functions which allowed us to create

a custom multithreaded design for the stochastic tractography system that is still

within the ITK framework.

Each thread of stochastic tractography filter is an instance of the stochastic trac-

tography algorithm. The block diagram in figure 4-1 demonstrates graphically the

architecture of the ITK stochastic tractography filter. Every thread allocates it own

independent memory for the tract that it is currently generating. Once the tract has

terminated, the thread stores a memory pointer to the completed tract in a tract

pointer container that is shared among all threads. The tract pointer container is

protected by a mutex, which serializes write operations so that only one thread can

store its completed tract in the vector at a time. Once the filter has generated enough

samples, the tracts can be transferred to an output image to create a connectivity

map. Additionally other statistics can be computed on the tracts. In essence, we

divide the process into two sections, a multithreaded portion that samples the tracts

and a single threaded portion which accumulates the tracts and calculates relevant

statistics on them.

The most computationally expensive part of the algorithm is the calculation of the

likelihood distribution. The algorithm must compute probabilities for 2,562 possible
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Figure 4-1: A block diagram of the filter showing its shared likelihood cache and
multithreaded architecture.

fiber orientations in a voxel. Fortunately, this likelihood distribution is a deterministic

function of the diffusion observations within that voxel. The filter runs much faster,

at the cost of additional memory, by caching the generated likelihood distribution for

later access. Caching is effective because in highly anisotropic regions of the brain,

the sampled tracts are expected to be dense causing many of the sampled tracts to

visit the same voxels many times.

The cache is implemented as an image whose voxels are re-sizable arrays. ITK’s

optimized pixel access capabilities enable quick access to the likelihood distribution

associated with any voxel in the image. On creation, every voxel in the likelihood

cache image is initiated to a zero length array. Whenever the algorithm encounters

a voxel, it first checks to see if the likelihood cache contains this voxel by testing if

associated array is zero length. If the voxel has never been visited, the associated

array is resized and the computation of the likelihood distribution associated with

this voxel is stored inside the newly resized array.
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Using a shared likelihood cache between multiple concurrent threads creates addi-

tional complexities. Simultaneous writes to the cache would cause unexpected behav-

ior. Additionally there is the possibility of one thread reading an incomplete cache

entry while another thread is trying to write it. One possible solution is to ensure that

only one thread can read or write to the likelihood cache at a time. This is easily im-

plemented by serializing access to the likelihood cache using a mutex. A mutex serves

as a lock on data. A thread will wait to obtain a lock on the data before it proceeds

to the next section of code. Inside this section, which is called the critical section,

the thread holds the lock ensuring exclusive access to the otherwise shared data. All

other threads must wait and idle while the thread which owns the lock finishes it

operations. Since threads must access the likelihood cache very often, this results in

a situation where many threads are waiting for other threads to finish accessing the

likelihood cache. The serialized access to the likelihood cache creates a bottleneck,

which in the worse case would result in performance that is only marginally better

than a single threaded version of the filter.

Access collisions to the likelihood cache can be reduced if we increase the granu-

larity of the lock. Instead of using one large lock for the entire likelihood cache image,

we use a lock for each voxel. The probability of two threads accessing the same voxel

simultaneously is much less than the probability of two threads accessing any part

of the likelihood cache. These per voxel locks are conveniently constructed using an

ITK image whose voxel data type is a mutex. Similar to the likelihood cache, this

collection of mutexes is indexed by coordinates which correspond to the coordinates

of the voxels in the DWI input data. Again, access to the mutex image is fast due

to ITK’s optimized access operators for data types indexed by coordinates. The only

cost to using this high resolution mutex image is the additional memory required to

store pixel mutexes. However this cost is small since a mutex is essentially a Boolean

variable. The mutex image allows different voxels in the likelihood cache image to be

updated simultaneously, increasing the rate that the likelihood cache is filled. The

advantage of using a mutex image is most evident when tracking in highly isotropic

regions, where collisions are very unlikely to occur, since the sampled paths are very
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Figure 4-2: A graph displaying the amount of time needed to sample a number of
tracts. Each line represents the algorithm’s performance using different numbers of
threads. This test was run on a 4 processor machine.

dispersed. Even on uni-processor systems, using multiple threads may improve per-

formance since the rate of encountering an unvisited voxel may be higher, thus filling

the likelihood cache faster. Figure 4-2 demonstrates the required computation time

for a given number of tracts under different number of threads.

Additionally, to compute the weighted least squares estimates for the log tensor

model parameters, we must first estimate the weights. These weights are found by

calculating a least squares estimate of the true intensities of each voxel. The A

matrix 3.7 used in this least squares estimation is a function solely of the magnetic

gradient directions and associated b-values, which are the same for every voxel in

the image. Since the same A matrix is used for each voxel in the least squares

calculation, a common optimization is to orthogonalize the A matrix by computing its

QR decomposition. While this operation is computationally expensive, it is performed

only once for the entire DWI image. The orthogonalized A matrix reduces the cost

of computing the weights for every voxel.
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4.2 ITK Stochastic Tractography Filter

The Stochastic Tractography Filter is implemented as a multithreaded image filter in

ITK under the class name itk::StochasticTractographyFilter. The filter is templated

over the DWI and white matter probability map input image types and also on the

connectivity map image type. The filter expects the DWI input image type to be

an ITK VectorImage Type. The code below demonstrates how to instantiate the

Stochastic Tractography Filter.

//Define Types

typedef itk::VectorImage< unsigned short int, 3 > DWIVectorImageType;

typedef itk::Image< float, 3 > WMPImageType;

typedef itk::Image< unsigned int, 3 > CImageType;

typedef itk::StochasticTractographyFilter< DWIVectorImageType, WMPImageType,

CImageType > PTFilterType;

//Allocate Filter

PTFilterType::Pointer ptfilterPtr = PTFilterType::New();

The filter’s required inputs and parameters must be set before it can be run.

Table 4.1 lists filter methods that should be called to set the required inputs and

parameters, and a short description of what each methods expects as arguments.

The code below is a continuation of the demonstration above and shows how to

setup the filter’s required inputs and parameters. The inputs to these methods are

provided by ITK’s image readers.

ptfilterPtr->SetInput( dwireaderPtr->GetOutput() );

ptfilterPtr->SetWhiteMatterProbabilityImageInput( wmpreader->GetOutput() );

ptfilterPtr->SetbValues(bValuesPtr);

ptfilterPtr->SetGradients( gradientsPtr );

ptfilterPtr->SetMeasurementFrame( measurement_frame );

ptfilterPtr->SetMaxTractLength( maxtractlength );

ptfilterPtr->SetTotalTracts( totaltracts );
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Filter Member Method Description
SetInput DWI Image: An ITK VectorImage consisting

of a vector of DWI measurements including
the baseline b0 measurements, at each voxel.

SetWhiteMatterProbabilityImageInput White Matter Probability Input: An ITK
image whose voxel values range from 0 and
1 representing the posterior probability that
the voxel is a white matter.

SetbValues b-Values: An ITK VectorContainer whose
elements are the corresponding b-values for
the DWI input image. The b0 measurements
must have a 0 b-value.

SetGradients magnetic gradient directions: An ITK Vec-
torContainer whose elements are 3 dimen-
sional vnl vectors. These vectors should be
unit length.

SetMeasurementFrame DWI Measurement Frame: A 3x3 vnl ma-
trix which transforms the gradient directions
to the physical reference frame of the image.
For instance multiplying a magnetic gradient
direction vector by the Measurement Frame
Matrix will take the vector to the RAS ref-
erence frame if RAS is the physical frame of
the DWI image.

SetMaxTractLength Maximum Tract Length: A positive integer
that sets the maximum length of a sampled
tract. This can also be interpreted as the
number of segments which comprise the tract
when using the default step size of 1 unit in
the physical frame of the DWI image.

SetTotalTracts Total Sampled Tracts: A positive integer
that sets the total number tracts to sample
from the seed voxel.

SetMaxLikelihoodCachSize Maximum Likelihood Cache Size(MB) A
positive integer that sets the maximum size
of the Likelihood Cache in megabytes.

SetSeedIndex Seed Voxel Index: The discrete index of the
seed voxel, in the (IJK) reference frame of
the image to start tractography.

Table 4.1: ITK Stochastic Tractography Filter Required Inputs and Parameters
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ptfilterPtr->SetMaxLikelihoodCacheSize( maxlikelihoodcachesize );

ptfilterPtr->SetSeedIndex( seedindex );

The filter can then be run by calling the Update method.

ptfilterPtr->Update();

For the specified seed voxel, the filter outputs a connectivity map and a container

holding all of the sampled tracts used to generate the connectivity map. The container

of sampled tracts can be further processed outside of the stochastic tractography

filter to obtain various statistic on the sampled tracts. Additional seed voxels can

be included in the seed region by changing the seed voxel index and rerunning the

filter. The statistics for a multi-voxel seed region can be analyzed by accumulating

statistics for all seed voxels within the seed region. These outputs can be accessed

by calling the GetOutput and GetOutputTractContainer methods after calling the

Update method. The code below continues the example above and demonstrates how

to obtain the filter’s outputs.

PTFilterType::TractContainerType::Pointer tractcontainer =

ptfilterPtr->GetOutputTractContainer();

CImageType::Pointer cmap = ptfilterPtr->GetOutput();

4.3 Command Line Module Interface

The command line module interface provides an easy to use method of performing

common tasks which use the ITK stochastic tractography filter. The command line

module takes as input a DWI volume, a white matter probability map and a label

map to produce a connectivity probability map and fractional anisotropy and length

statistics for a selected seed region in the label map. Currently the command line

module is designed to work only with NRRD formatted volumes due to its support

of the diffusion measurement frame, but future revisions of the software will extend

support to other formats.
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The command line module is named StochasticTractographyFilter. Calling

the executable with the --help flag will list all available inputs and options as well

as a short description of each item (Appendix B). This section will demonstrate two

typical usages of the command line module interface.

Given a DWI volume, an associated white matter probability map and a label

map, the command line module can be used to generate an image that provides the

probability of connectivity from an ROI in the label map to all other voxels in the

DWI. The label map is an integer valued image that segments voxels into different

classes or labels.

Let case24 be the name of the subject we are interested in analyzing. The direc-

tory case24 contains all relevant files for that subject. It will also hold the output

files generated by the command line module. Before executing the command line

module interface, a possible list of files in the case24 directory may include:

case24_DWI.nhdr (DWI NRRD header)

case24_DWI.raw (DWI NRRD data)

case24_whitematterPB.nhdr (White Matter Probability Map NRRD header)

case24_whitematterPB.raw (White Matter Probability Map NRRD data)

case24_labelmap.nhdr (Label Map NRRD data)

case24_labelmap.raw (Label Map NRRD data)

Assuming that the starting ROI is labeled 15 inside the labelmap, the stochastic

tractography filter can be run by executing the command below within the case24

directory: To run the command line module, execute the command:

StochasticTractographyFilter -c 6500 -m 500 -t 200 -e 15 -l 15

-r -o case24_RUN0 case24_DWI.nhdr case24_whitematterPB.nhdr

case24_labelmap.nhdr

After the command completes, the case24 directory will contain the following addi-

tional files:

case24_RUN0_CMAP.nhdr (Connectivity Map NRRD header)
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case24_RUN0_CMAP.raw (Connectivity Map NRRD data)

case24_RUN0_TENSOR.nhdr (Tensor image NRRD header)

case24_RUN0_TENSOR.raw (Tensor image NRRD data)

case24_RUN0_COND.nhdr (Conditioned Connectivity Map NRRD header)

case24_RUN0_COND.raw (Conditioned Connectivity Map NRRD data)

case24_RUN0_CONDFAValues.txt (Conditioned Tract-Averaged FA values)

case24_RUN0_CONDLENGTHValues.txt (Conditioned Tract Length values)

The conditioned connectivity map is identical to the normal connectivity map

when the start label and end labels are the same. However, if the label map contains

ROIs designated by two labels, the conditioned connectivity map will be generated

using only fibers which start in the start ROI and also pass through the second ROI.

Assuming the second ROI is labeled 2 in the labelmap, the following command will

isolate tracts which start in the start ROI and pass through the end ROI:

StochasticTractographyFilter -c 6500 -m 500 -t 200 -e 2 -l 15

-r -o case24_RUN0 case24_DWI.nhdr case24_whitematterPB.nhdr

case24_labelmap.nhdr

Now the conditioned connectivity maps and statistics are generated using only

tracts which fulfill the condition of passing through both ROIs. This feature allows

us to analyze the particular bundle of tracts which connect two regions.

4.4 3D Slicer Interface

To encourage the algorithm’s adoption in clinical studies, we created an interactive

GUI module (Figure 4-3) for the 3D Slicer medical image visualization program was

created which interfaces with the ITK stochastic tractography filter.

The module was implemented using the command line module interface provided

by the 3D Slicer environment. This interface greatly eased the adaption of the com-

mand line interface into a graphical interface that could be included with 3D Slicer.
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Figure 4-3: Stochastic Tractography GUI module within 3D Slicer.

The command line interface and the graphical interfaces are both completely de-

scribed using an XML file. This XML file description is then parsed by a program

provided by 3D Slicer which generates code that can be included with the command

line interface to create what 3D Slicer refers to as a command line module. Command

line modules can be run independently of 3D Slicer but can also be incorporated in

to the 3D Slicer graphical interface. This enables the stochastic tractography system

to function as an easy to use extension in the 3D Slicer program as well as a stand

alone program suitable for processing a large numbers of data sets non-interactively.

Appendix A includes a detailed description of the options for the command line mod-

ule.
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Chapter 5

Analysis of Right Internal Capsule

Fibers

This chapter demonstrates the analysis of fibers originating from the right inter-

nal capsule in a single subject using the stochastic tractography system. We also

demonstrate that by using a second ROI placed in the frontal lobe, we can restrict

our analysis to tracts which start in the right internal capsule and progress towards

the frontal lobe. Each analysis is performed with and without a white matter map

to demonstrate differences in the results under these two conditions. Without the

white matter map, tracts are allowed to pass through regions of gray matter, which

may not have fiber bundles. Using the white matter map constrains the tracts to pass

through only white matter known to have fiber bundles. Finally results obtained using

stochastic tractography results are compared with those obtained under streamlining

tractography. The DWI data set was obtained using 6 gradient directions and one

B0 image obtained in the absence of diffusion weighted gradients. The voxels oc-

cupy 0.86mm x 0.86mm x 5mm sized cells. The right internal capsule was manually

segmented using the fractional anisotropy image as a reference1. The right internal

capsule segmentation is considered the first region of interest (ROI). A second region

of interest(ROI) is placed anterior or towards the front of the brain, in the frontal

lobe. Figure 5-1 displays the ROIs superimposed on the non-diffusion weighted b0

1ROIs created by Gudrun Rosenberger
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Figure 5-1: The non-diffusion weighted b0 image with superimposed right internal
capsule and frontal lobe ROIs.
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image of the DTI set.

In the results below, tractography was started in the right internal capsule ROI.

The stochastic tractography system was initialized to sample 100 tracts from every

voxel in the internal capsule. The actual number of samples collected may actually

be less due to the use of a white matter map, which may exclude portions of the

internal capsule ROI, or the rejection tracts which do not pass through a second

ROI. Without using the white matter map, the tract was terminated when it left

the brain or when it reached a maximum length of 500 mm. A whole brain mask

was generated by running the FSL BET program [10] on the B0 image. The brain

measures about 185 mm in diameter. Thus a 500 mm maximum tract length should

be long to enough to generate all anatomically plausible tracts. When using a white

matter map, tracts can only pass through regions of white matter and are terminated

when they leave white matter. As a result, seed points in the gray matter cannot be

used to initiate tractography. The white matter map was generated by running the

FSL FAST program on the B0 image [23].

5.1 Single ROI

In this analysis all possible tracts originating from the right internal capsule ROI were

sampled and included in the output.

Figure 5-2 presents connectivity maps generated using the stochastic tractography

system. The color of each voxel indicates the number of tracts which pass through that

voxel. Since seeding was initiated in the internal capsule, it appears highly connected

to itself in the connectivity map. Notice the strong connectivity of some voxels in the

frontal lobe using stochastic tractography with and without the white matter map.

Without the white matter map 5-2(a) connections are dispersed throughout the brain.

With the white matter map, the resulting spatial distribution of the fibers is more

concentrated because false tracts are not generated in gray matter. Additionally, the

number of sampled tracts when using the white matter map is reduced because the

right internal capsule ROI may include some gray matter which cannot produce any
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(a) Connectivity map generated without white matter map.

(b) Connectivity map generated with white matter map.

Figure 5-2: Connectivity maps generated using stochastic tractography overlaid on a
fractional anisotropy image of the data. The seed region is the right internal capsule.
The colors indicate the number of tracts originating from the seed region which pass
through that voxel. Highly connected regions are purple while weaker connections
are in red and yellow.

54



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 104 Tract−Averaged FA Histogram (No WM Map, one ROI)

Tract−Averaged FA

N
um

be
r 

of
 T

ra
ct

s

(a) Distribution without white matter map.
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(b) Distribution with white matter map.

Figure 5-3: Histogram showing distribution of tract-averaged fractional anisotropy
for tracts which originate in the right internal capsule.

tract samples.

We can also study statistics on individual sampled tracts. The distribution of

tract-averaged fractional anisotropy is graphed in figure 5-3. Notice that using the

white matter map predictably increases the mean of the distribution (Figure 5-3(a)),

since the sampled tracts no longer pass through gray matter which has low anisotropy.

Additionally, the number of sampled tracts also decreases when using the white matter

map because some of the voxels in the right internal capsule ROI were identified as

gray matter.

Figure 5-4 plots the distribution of lengths on the sampled tracts. Without the

white matter map many fibers reach the arbitrary maximum tract limit of 500 (Fig-

ure 5-4(a), providing little information about the actual distribution of tract lengths.

With the white matter posterior probability map, few sampled tracts reach 500mm

and the distribution of tract lengths may be more representative of the true distribu-

tion.

5.2 Two ROIs

In addition to sampling all possible fibers from a seed region, the stochastic tractog-

raphy system can optionally reject all sampled tracts which do not pass through a
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(a) Distribution without white matter map.
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(b) Distribution with white matter map.

Figure 5-4: Histogram showing distribution of fiber lengths for sampled frontal lobe
tracts.

second ROI. This method isolates fiber bundles which connect two ROIs.

The connectivity maps in Figure 5-5 show the probability that a voxel is connected

to the right internal capsule by a fiber originating in the right internal capsule which

passes through the second ROI located in the frontal lobe. Unsurprisingly, regions in

the frontal lobe are much more likely to be connected via these fibers than anywhere

else in the brain.

Although 100 tract samples were attempted by the algorithm, only a fraction pass

through the second ROI. Thus the histograms in figures 5-6 and 5-7 contain fewer

total tracts than those in figures 5-3 and 5-4. Notice that using the white matter

map again increases the mean of the tract-averaged fractional anisotropy distribution

(Figure 5-6(b)) by preventing tracts from passing through low anisotropy gray matter.

Figure 5-7 demonstrates that using the white matter map provides more mean-

ingful distributions of length than tracking without using one.

5.3 Comparison with streamlining tractography

In this section, we compare the results of streamlining tractography and stochastic

tractography from the same data using the same ROIs. The streamlining tractography

results are generated using the streamline tractography method in 3D Slicer. The
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(a) Connectivity map generated without white matter map.

(b) Connectivity map generated with white matter map.

Figure 5-5: Connectivity map overlaid on a fractional anisotropy image showing the
probability that a voxel is connected to the internal capsule by a fiber which passes
through a second ROI in the frontal lobe.
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(a) Distribution without white matter map.
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(b) Distribution with white matter map.

Figure 5-6: A histogram of tract-averaged fractional anisotropy for fibers which orig-
inate in the right internal capsule and pass through an ROI in the frontal lobe.
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(a) Distribution without white matter map.
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(b) Distribution with white matter map.

Figure 5-7: A histogram of lengths for sampled fibers which start in the right internal
capsule and pass through the ROI in the frontal lobe.
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streamline method used every voxel inside the segmented internal capsule as a seed

region. The generated streamline tracts were only accepted if they passed through the

second ROI in the frontal lobe. Tracking was terminated in the streamline method

when the current voxel’s anisotropy fell below a minimum threshold. The stochastic

tractography results were those reported in the previous section and depicted in figures

5-6 and 5-7.

Figures 5-8 and 5-9 visually compare the results of streamlining and stochastic

tractography results using the same input data and ROIs. Figure 5-9 overlays a

volume rendering of the connectivity map generated using stochastic tractography

on the tracts generated using the streamlining method. In this image the gray/black

cloud is a 3D rendering of the connectivity map. Although it is difficult to gauge

the degree of connectivity in the volume rendering, it is clear that there exist regions

which, according to stochastic tractography, have nonzero probability of connectivity

but do not have streamline tracts passing through them. Additionally, notice that

in the region of the most inferior, or downward, streamline tracts, the stochastic

tractography reports relatively weak connectivity. The streamline method generates

tracts in this improbable region because the anisotropy in this area is above the

minimum threshold. However since the stochastic tractography method takes into

account the uncertainty in fiber direction, it determines that these tracts are much

less likely to occur than a tract which is more superior, or upwards.

Figure 5-10 compares tract-average FA distributions of the same tracts of interest

under stochastic and streamlining tractography. The histograms are both approxi-

mately normal with some left skew under streamlining tractography. The distribu-

tion under stochastic tractography is very smooth because the sample size is much

larger than under streamlining tractography. In stochastic tractography many pos-

sible tracts can be sampled from a single seed voxel while only one tract per seed

voxel can be generated under streamlining tractography resulting in a maximum of

1,372 tracts. Additionally, the mean of the distribution under stochastic tractography

is higher than under streamlining tractography. Since FA is related to uncertainty,

stochastic tractography will generate more tracts which pass though regions of high
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Figure 5-8: A rendering of tracts generated using streamlining tractography for tracts
which originate in the right internal capsule and pass through a second ROI in the
frontal lobe.
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Figure 5-9: A volumetrically rendered connectivity map generated using stochastic
tractography overlaid on tracts generated using streamlining tractography. The re-
sults are generated using identical input data and ROIs.
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(a) streamlining tractography
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(b) stochastic tractography

Figure 5-10: A comparison of tract-averaged FA distributions under stochastic and
streamlining tractography. Only tracts which originate from the right internal capsule
and pass through a second ROI in the frontal lobe are included. Notice the y-axis for
the streamlining tractography histogram has been scaled up by a factor of 100 due
to the relatively few number of tracts generated using streamlining.

FA. As more tracts are sample they will tend to concentrate in regions of high FA.

Thus the mean of the tract-average FA distribution is increased in stochastic tractog-

raphy compared to streamlining tractography. This affect may not be as prominent

when tracking in predominantly isotropic regions as this concentrating effect is not

present.

Figure 5-11 compares the distribution of tract lengths under stochastic tractogra-

phy and streamlining cases. While the distributions look similar, increased sampling

in stochastic tractography eliminates the shorter tracts in favor of tracts around 50

mm in length. Again, this is due to stochastic tractography’s ability to take into

account tract probability. Also, the similarity in the distributions further suggests

that the stochastic tractography tract length distribution is informative only when a

white matter map is used.
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(a) streamlining tractography
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(b) stochastic tractography

Figure 5-11: A comparison of tract length distributions distributions under stochastic
and streamlining tractography. Only tracts which originate from the right internal
capsule and pass through a second ROI in the frontal lobe are included. Notice the
y-axis for the streamlining tractography histogram has been scaled up by a factor of
100 due to the relatively few number of tracts generated using streamlining.
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Chapter 6

Discussion and conclusions

In this project we implemented a system for analyzing white matter architecture

from DTI images. The multithreaded implementation of the system allows parallel

sampling of fiber tracts, reducing computation time on multi-processor systems. To

facilitate the algorithm’s use in clinical studies, an easy to use graphical interface

was created for the 3D Slicer visualization program. Furthermore, we demonstrate

the system’s characteristics through an analysis of fibers originating from the right

internal capsule. In this section, we will discuss some possible extensions to the

system and present an outline for a potential clinical study which investigates frontal

lobe fibers in schizophrenia using the stochastic tractography system developed in

this thesis.

6.1 Potential Extensions

The design of the stochastic tractography system is not tightly coupled and thus al-

lows the tensor parameter estimation engine to be replaced. In the presented work,

the stochastic tractography system estimates the log tensor model parameters through

weighted least squares estimation. More robust techniques of tensor model parameter

estimation have been proposed by Koay et al. [13]. We can refine the fiber orientation

likelihood function in our system using these improved tensor model parameter esti-

mates. Ideally, the DTI image and estimated B0 image should be calculated before
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the stochastic tractography system is run. The stochastic tractography system can

take this DTI image and B0 image as input in lieu of the DWI image. This approach

allows the researcher to use any arbitrary tensor model parameter estimation engine

and additionally makes stochastic tractography faster as the tensor parameters would

not need to be calculated at run time. The modifications required to implement this

feature is relatively minor, but the user interface must be designed thoughtfully to

minimize the added complexity of these new options.

Although DTI images can be illumination of changes in anisotropy, DTI data alone

is insufficient to determine the causes of changes in anisotropy. Reduced anisotropy

can stem from a decoherence in a fiber bundle’s structure, losses in myelin, and

other abnormalities. Kubicki et al. [14] attempted to clarify the cause of changes

in anisotropy by comparing information about nerve fiber integrity that are inferred

from DTI and MTR. MTR is an MR scanning technique that provides information

regarding the distribution of myelin in the brain. Anisotropy changes that are de-

tectable by both MTR and DTI suggest alterations to the myelin. Changes that are

detectable only by DTI suggest decoherence in the fiber’s structure. The algorithm

can be further extended by incorporating information from MTR measurements [14]

into the Bayesian framework.

6.2 Study of frontal lobe fibers in schizophrenia

We conclude by describing a potential group study of frontal lobe fiber differences

in Schizophrenia using the stochastic tractography system. This group study is an

extension of the single subject analysis of frontal lobe fibers presented in the previous

chapter. The study also provides an opportunity to compare findings using stochas-

tic tractography with those previously obtained from streamlining tractography on

identical data sets.
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6.2.1 Background

Schizophrenia is neurological disorder whose characteristic symptoms include hal-

lucinations and disorganized thinking. Scientists have suggested that the pathol-

ogy of schizophrenia may involve anatomical abnormalities including abnormal white

matter architecture. Clinical DTI studies have demonstrated differences in diffusion

anisotropy within fiber tracts in Schizophrenia patients compared with healthy pa-

tients [15],[14].

White matter architecture abnormalities related to schizophrenia may include a

reduction in the integrity or amount of the myelin, increased disorganization of fibers

which constitute certain fiber bundles, or a reduction in the number of fibers compris-

ing a fiber bundle. Myelin, the fatty insulator which surrounds the axons, is believed

to be a major barrier to water diffusion. Degradation of the myelin permits increased

diffusion perpendicular to the orientation of the fibers which can be observed as re-

duced anisotropy in DTI data. Also the orientation of axon fibers which comprise a

fiber bundle may be less directionally coherent in Schizophrenia. Since many fibers

pass through a single voxel and the resultant diffusion distribution is an average of

diffusion of all water molecules in that voxel, a voxel containing fibers which are less

coherent may have reduced anisotropy. The fiber bundles may also be less dense in

Schizophrenia. A reduction in axon density would result in reduced anisotropy since

water molecules are more free to diffuse perpendicularly to the tracts. These struc-

tural deficiencies result in poorer conduction of action potentials between different

regions of the brain leading to reduced functional connectivity. The fibers that connect

the thalamus and the frontal lobe are believed to be involved in memory formation.

These fibers are depicted in figure 6-1. Since Schizophrenia patients have difficulty

forming and organizing memory, deficiencies in these fibers may explain these symp-

toms. Additionally these fibers present an interesting tractography problem because

there are many other fibers which cross this set of fibers on their way to the frontal

cortex. In these regions of crossing, the diffusion is averaged with the crossing fibers

resulting in a diffusion profile with reduced anisotropy. This is precisely the situ-
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Figure 6-1: The Thalamus, the Internal Capsule and fibers. We wish to characterize
the fibers which originate in the thalamus, pass through the internal capsule and end
in the frontal cortex. This image is from Gray’s Anatomy.

ation that stochastic tractography can be useful since streamlining methods would

terminate in regions of low anisotropy possibly never reaching the frontal cortex. In

this future study, we will analyze these fibers in schizophrenia and control groups

to determine whether schizophrenia patients exhibit lower tract-averaged fractional

anisotropy than the control group. Additionally, we will compare results obtained

using stochastic tractography with previous streamline tractography results.

6.2.2 Method

We will first obtain DWI data sets for as many schizophrenia and control subjects as

possible. Each DWI data set will consist of at least six gradient weighted images and

one baseline image as this is the minimum required for the stochastic tractography

system. Additionally we will create a white matter map for each subject either by a

segmentation of an additional anatomical image obtained during the DWI acquisition

or through the segmentation of the B0 image. Label maps for the right and left

internal capsules for each subject are created through expert manual segmentation.

An additional ROI is placed in the frontal lobe to isolate fibers which originate in the
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internal capsules and proceed towards the frontal lobe.

The stochastic tractography system will then used to generate tract length and

tract-averaged FA statistics for tracts which originate in the right internal capsule

and pass through the frontal lobe ROI. The system will be run again for tracts

which originate in the left internal capsule and pass through frontal lobe ROI. These

analysis will be performed for all subjects. Tracts will be sampled until the mean of

the length and tract-averaged FA distributions show a degree of stability with respect

to the number of samples.

Assuming that the mean tract-averaged FA is normally distributed, a t-test can

be used to determine whether the mean of the mean tract-averaged FA differs signif-

icantly between schizophrenia subjects and normal subjects. The same is performed

for the distribution of tract lengths.

Finally, these results will be compared with the results of a streamline tractogra-

phy based study on the same data set by Rosenberger[20]. This study found signif-

icant differences in the mean of the mean tract-averaged FA between schizophrenia

and control groups.

6.3 Summary

The field of neuroscience has made great advances in recent years. Further under-

standing of how the brain functions and the diseases which affect it will depend on

our ability to study white matter architecture. In-vivo observation techniques such

as Diffusion Tensor MRI play a crucial role in the study of white matter architecture.

As observation methods become more sophisticated, our tools for inference must also

be sufficiently sophisticated to extract the valuable information hidden in these obser-

vations. The stochastic tractography system we have presented in this thesis provide

neuroscientists with an efficient and easy to use tool to characterize white matter

architecture.
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Appendix A

Command Line Module Interface

Below is the automatically generated output of the command line module when run-

ning the StochasticTractographyFilter program with the --help option.

USAGE:

StochasticTractographyFilter [--processinformationaddress

<std::string>] [--xml] [--echo] [-j <int>]

[-r] [-i] [-o <std::string>] [-c <int>]

[-s <int>] [-m <int>] [-t <int>] [-e

<int>] [-l <int>] [--] [--version] [-h]

<std::string> <std::string> <std::string>

Where:

--processinformationaddress <std::string>

Address of a structure to store process information (progress, abort,

etc.). (default: 0)

--xml
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Produce xml description of command line arguments (default: 0)

--echo

Echo the command line arguments (default: 0)

-j <int>, --totalthreads <int>

Total number of threads to use. Default value of zero sets number of

threads to number of CPUs (default: 0)

-r, --recenteroriginswitch

Ignore the origins of the ROI and WM mask and set it to be the same as

the DWI image origin (default: 0)

-i, --outputimageswitch

Output Tensor, FA maps and Connectivity Maps (default: 0)

-o <std::string>, --outputprefix <std::string>

Prefix for the output files (default: "Output")

-c <int>, --maxlikelihoodcachesize <int>

Maximum Size of Likelihood Cache (default: 100)

-s <int>, --stepsize <int>

The length of each segment of the tract in mm (default: 1)

-m <int>, --maxtractlength <int>

Maximum Length of Sample Tract (default: 100)

-t <int>, --totaltracts <int>

Number of Sample Tracts (default: 100)
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-e <int>, --endlabelnumber <int>

Label Number to use as end region (default: 1)

-l <int>, --labelnumber <int>

Label Number to use as seed points (default: 0)

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.

<std::string>

(required) Input DWI volume to be filtered

<std::string>

(required) Input Mask volume that provides the probability that the

voxel is white matter

<std::string>

(required) Input ROI volume used to seed algorithm

Description: Generates a map of connectivity probabilities from a DWI

volume.
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