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Abstract
Medical image analysis often requires developing elaborate algorithms that are im-

plemented as computational pipelines. A growing number of large medical imaging
studies necessitate development of robust and flexible pipelines. In this thesis, we
present contributions of two kinds: (1) an open source framework for building pipelines
to analyze large scale medical imaging data that addresses these challenges, and (2)
two case studies of large scale analyses of medical image collections using our tool.

Our medical image analysis pipeline construction tool, PipeBuilder, is designed for
constructing pipelines to analyze complex data where iterative refinement and develop-
ment are necessary. We provide a lightweight scripting framework that enables the use
of existing and novel algorithms in pipelines. We also provide a set of tools to visualize
the pipeline’s structure, data processing status, and intermediate and final outputs.
These visualizations enable interactive analysis and quality control, facilitating compu-
tation on large collections of heterogeneous images.

We employ PipeBuilder first to analyze white matter hyperintensity in stroke pa-
tients. Our study of this cerebrovascular pathology consists of three main components:
accurate registration to enable data fusion and population analysis, segmentation to
automatically delineate pathology from the images, and statistical analysis to extract
clinical insight using the images and the derived measures. Our analysis explores the
relationship between the spatial distribution, quantity, and growth of white matter
hyperintensity.

Our next application of PipeBuilder is to a neuroimaging study of Alzheimer’s pa-
tients, where we explicitly characterize changes over time using longitudinal data. As
with the previous application, we introduce a workflow that involves registration, seg-
mentation, and statistical analysis. Our registration pipeline aligns the large, heteroge-
neous group of populations while still accurately characterizing small changes in each
patient over time. The statistical analysis exploits this alignment to explore the change
in white matter hyperintensity over time.

Thesis Supervisor: Polina Golland
Associate Professor of Electrical Engineering and Computer
Science
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Chapter 1

Introduction

The field of medical image computing, or medical image analysis, is broadly concerned

with extracting insights from images of biological tissue using computational analysis.

Its aims are ambitious and varying in scope, from clinical analyses that seek to char-

acterize links between imaging and disease in patient cohorts to neuroscientific studies

that pursue scientific truths such as the structure and function of the human brain.

These analyses, while myriad in application, are largely built upon a core set of com-

putational methods from a range of fields, from signal processing to machine learning

to biophysics. As an inherently computational discipline, the foundation of medical

image analysis is in building computational structures that take in data—in the form of

both imaging data and auxiliary data ranging from demographic information to genetic

markers to the results of clinical tests—and produce insights about the task at hand.

A fundamental aim of these methods—indeed, a fundamental aim of most applica-

tions of statistics and data analysis—is to draw conclusions about populations of people,

whether they are healthy subjects or patients afflicted with some disease, based on a

representative sample. To better enable these conclusions, and fueled by increasingly

more affordable imaging technology and collaborative acquisition efforts (Bots et al.,

1997; Hubert et al., 1983; Paulsen et al, 2008; Regan et al, 2011; Weiner et al, 2012), a

growing trend has emerged of large collections of images. While some of these collec-

tions are the result of large, well funded research studies (Paulsen et al, 2008; Weiner

et al, 2012), others incorporate images acquired during standard clinical practice into

large scale research studies (Meschia et al., 2013; Regan et al, 2011; Rost et al, 2010b).

This trend toward larger image collections is also partially fueled by a rising interest in

genetics and its interaction with imaging (J. Liu and Calhoun, 2014). In these prob-

lems, the high complexity of systems under study, relatively small effect sizes, and high

intrinsic data dimensionality necessitate large sample sizes in order to draw meaningful

conclusions.

A related challenge in medical image computing is the analysis of data acquired in

clinical settings. Medical imaging is used predominantly in clinical rather than research

settings, and a large fraction of existing image acquisition efforts are geared toward

11



12 CHAPTER 1. INTRODUCTION

acquiring images to serve a particular clinical or diagnostic purpose. For example, fast

imaging may be essential to facilitate urgent followup treatment or to avoid artifacts

due to uncontrollable patient motion. In contrast, many medical images used in com-

putational research settings are acquired with the goal of image analysis in mind, and

are therefore acquired using imaging protocols that yield higher resolution and contrast

but take longer to acquire (Lu et al., 2005). When clinical images are brought into

the research setting, they typically present unique challenges due to lower resolution

and contrast. These challenges often translate to failures of many traditional analy-

sis techniques and algorithms, which are usually designed with high resolution, high

contrast research data in mind. Clinical images are often part of large collections that

include broad patient cross sections and hold great promise to provide answers to im-

portant questions about populations. While these challenges are nontrivial, so too are

the benefits of using this kind of data.

� 1.1 Contributions

This challenge motivates a primary focus of this thesis: robust and scalable analyses

of medical images. In particular, we solve these problems through the use of work-

flows/pipelines1, which compose a series of algorithmic steps to form a robust computa-

tional data processing structure. Indeed, medical image computing research frequently

involves elaborate analysis algorithms that are built in this fashion. These workflows

offer a superior alternative to ad hoc scripts for such analysis tasks, providing im-

proved scalability and robustness. Iterative refinement and adjustment are imperative

components of analytical research into method development and implementation. The

development of novel methods to solve problems is almost always preceded by a failure

of existing approaches to solve that problem. Thus, any method that can expedite this

process of experimentation has the potential to make research more efficient.

In this thesis, we provide contributions of two kinds: (1) software tools that enable

rapid iterative refinement for constructing pipelines for medical image computing, and

(2) applications of this tool to two studies of cerebrovascular pathology using magnetic

resonance (MR) images of the brain. Our first software tool is a system for constructing

pipelines for medical image computing. It is designed to enable analysis of low resolution

clinical data through convenient structures for refinement and quality control. Our

second tool is an integrated visualization system that produces a visualization of a

pipeline’s structure, outputs, and status from code. The applications include a study

of stroke and cerebrovascular pathology in stroke patients and a study of longitudinal

progression of similar pathologies in a large cohort of Alzheimer’s patients and healthy

controls.

1Throughout this thesis, we use the terms “pipeline” and “workflow” interchangeably.
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Figure 1.1: The main features of PipeBuilder. Pipelines are specified using scripts
(center), and enable rapid iteration and refinement (right). PipeBuilder also provides
automatic visualization of pipelines and output data (left).

� 1.2 PipeBuilder: a pipeline construction tool

We present PipeBuilder, a tool for the construction of pipelines to analyze large medical

image collections. Our tool offers a flexible scripting interface for the use of novel

algorithms in pipelines. This environment provides scalability and the ability to easily

analyze and debug the resulting computational pipeline. Our design choices enable

the use of pipelines to process not only well structured, high quality data, but also

heterogeneous low quality data. To ensure ease of adoption and compatibility, our open

source tool is freely available.

PipeBuilder provides a scripting interface that enables developers and researchers

to build and iteratively refine computational pipelines. Users construct pipelines as

a series of computational steps whose interconnections are determined automatically.

Our interface also provides a simple mechanism for extensions through creation of novel

computational nodes. This framework enables rapid iteration and the ability to inves-

tigate many approaches to a problem.

We also provide a powerful browser-based visualization tool that automatically com-

putes a visualization of the underlying computational pipeline. Given the code, we

determine the connections between computational steps and produce a graph that rep-

resents the pipeline. This visualization provides the ability to inspect the status of an

active or completed task, as well as an interactive viewer for image-valued intermediate
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Figure 1.2: Results of our analysis of WMH in stroke patients, showing the relation-
ship between WMH and patient age with two subgroups of patients and their disease
trajectories.

and final results, enabling visual verification of the results. Additionally, aggregated

values can be inspected directly from our interface to find outliers in numerical outputs.

� 1.3 Study of cerebrovascular pathology in stroke patients

We demonstrate the strengths of our framework by using it for analysis of white mat-

ter hyperintensity in a large cohort of stroke patients. White matter hyperintensity

(WMH) is a range of pathologies that manifests as bright areas on T2-FLAIR MR im-

ages of the brain and has been linked to a number of other diseases (Rost et al, 2010b;

Thanprasertsuk et al., 2014). Segmentation and statistical analysis of WMH pathology

promises to provide better understanding of the clinical underpinnings of cerebrovascu-

lar health. In this thesis, we present a set of insights for analysis of large clinical image

collections such as this one, and employ these insights to construct a robust pipeline

for analyzing this data.

The computational pipeline we present consists of three main components: regis-

tration, segmentation, and statistical analysis. Our ultimate goal is in-depth study

of disease progression in the clinical population, which will deliver insights into the
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structural and functional changes associated with the disorder from noisy, low resolu-

tion images. Accurate registration is a critical prerequisite for such an investigation,

as it brings all imaging modalities into a common coordinate frame and enables data

fusion across subjects and modalities. Quantifying regions of interest such as WMH re-

quires accurate segmentation. Manual segmentation is infeasible for larger datasets with

thousands of images, motivating the development of automatic methods. Population

analysis of heterogeneous data requires improved models to capture trends, variability,

and statistics.

We present two methods for large scale multimodal registration. The first uses an

indirect registration technique that is useful when several modalities may be available,

but the modality of the template (i.e., the image in the common coordinate frame)

differs from the modality of the images being analyzed. The second requires only a

single modality and includes a technique for template synthesis to enable this.

Given accurate alignment, we present an algorithm for multimodal segmentation of

WMH and stroke lesions, as well as an in-depth analysis of WMH development as a

function of age. Our segmentation algorithm employs a MAP framework for segmen-

tation using image intensities. Our analysis of WMH identifies patterns in the disease

progression as a function of patient age. This development is characterized both by its

amount and by its spatial distribution across the brain. Our exploratory analysis of the

spatial extent of WMH in this cohort indicates distinct patterns across patient groups.

Figure 1.2 previews the results of our pipeline.

� 1.4 Study of cerebrovascular pathology in Alzheimer’s disease patients

We continue our exploration of large medical image collections using PipeBuilder with

an application to quantifying WMH in a longitudinal cohort of Alzheimer’s patients

and healthy controls, where multiple images are acquired over time for each subject.

Longitudinal data promises to provide information about the change in anatomy and

disease over time. However, data fusion of this information requires not only alignment

of the images, but also alignment of a measure of change as well.

We present a pipeline for registration that enables such an analysis. In particu-

lar, we align the first acquired scan for each patient to a template to account for the

large variability in populations. Then, to take advantage of smaller variability within

multiple images of the same patient, we align subsequent scans to the first one. By

composing different components of these transformations, we can compute transforma-

tions between initial scans and subsequent scans in a common coordinate frame across

subjects, enabling data fusion. We apply this method to study WMH changes in this

cohort. In particular, we examine not only the quantity and distribution across the

population, but also the change within a particular patient. This registration frame-
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Figure 1.3: Results of our longitudinal analysis of WMH in a large cohort, showing the
change (as a function of patient age) in healthy tissue (left) and WMH tissue (right).

work also enables prediction of subsequent images from a single initial scan. Figure 1.3

previews the results of our analysis of longitudinal change.

� 1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews existing ap-

proaches to pipeline construction. Chapter 3 describes PipeBuilder, our tool for con-

structing medical image computing pipelines. Chapter 4 provides a necessary back-

ground on the disease under study and existing approaches to analyzing the pathology

we seek to understand. Chapter 5 and Chapter 6 present our analyses of cerebrovascular

pathology in stroke and Alzheimer’s patient cohorts, respectively. Chapter 7 concludes

the thesis and discusses directions for future work. Appendix A presents a collaborative

study enabled by the methods developed in Chapter 6.

Chapter 3 contains material previously presented in Sridharan et al., n.d. This chap-

ter, as well as Chapter 5, contains material from a publication currently under review.

The material in Chapter 6 is part of a publication currently under review. Chapter 5

also contains material previously presented in Sridharan et al., 2013.



Chapter 2

Background on pipelines and

workflow tools

In this chapter, we review prior work relevant to PipeBuilder. We describe exist-

ing pipeline/workflow construction systems, discussing both general-purpose tools and

domain-specific tools for medical image analysis and other domains.

� 2.1 Workflow and visualization systems

Workflow construction tools are typically built on an explicit or implicit graph structure.

Within such a graph, nodes or vertices represent actions, computational steps, or data

input/output, and edges represent the flow of data from one step to the next. Figure 2.1

illustrates the graph structure used by several common workflow systems. Building

a workflow using any of these frameworks entails the construction of such a graph.

Beyond this underlying commonality, the tools vary across many dimensions, such as

what nodes (computational steps) they provide, the user interface, the mechanics of

connecting various computational steps, the pipeline construction mechanism, and the

auxiliary features for pipeline execution and data integration.

Workflow and visualization tools fall broadly into two groups: general-purpose sys-

tems designed to work across a range of application areas, and domain-specific systems

that are tailored toward a particular application area. In this section, we review general-

purpose systems, and then focus on domain-specific systems related to our work. In

particular, we examine pipeline tools for image processing, visualization, and analysis

for their relevance to the work in this thesis.

� 2.1.1 General-purpose workflows

General-purpose pipeline construction tools are typically highly extensible and flexible

so that they can be used across a range of domains. In order to achieve this univer-

sality, they often provide a common pipeline format that can be understood across

domains. One of the earliest examples of such a system provided for the construc-
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Figure 2.1: Four sample workflows from systems described in this section: Taverna
(top left), Kepler (top right), VisTrails using VTK (bottom right), and LONI Pipeline
(bottom right).

tion of simple arithmetic operations using a graphical interface (Sutherland, 1966). A

precursor to most modern tools is IBM Data Explorer (Lucas et al., 1992), which in-

troduced the notion of a graphical workflow framework with interoperable nodes whose

inputs and outputs shared a common format. Recent general-purpose tools such as

Kepler (Ludäscher et al., 2006), Taverna (Oinn et al., 2004), and VisTrails (Callahan

et al., 2006) provide similar graphical interfaces for constructing a broad range of sci-

entific computing workflows, and remain in widespread use. The building blocks for

these workflows can come from a wide range of sources, ranging from simple arithmetic

operations to pre-built executables to web services that process data remotely. Indeed,

some general-purpose tools such as Triana (Taylor et al., 2007) are dedicated to pro-

viding access to services that run on middleware such as remote servers or computing

grids.

Modern workflow tools often provide a number of useful and beneficial features that

make them superior to the simplest alternative of using ad hoc scripts. The features

typically fall into the category of supporting infrastructure, and include the ability to

share workflows, track provenance of data, provide fault tolerance, and easily distribute

computation of a predefined workflow across a computational cluster. While each sys-
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tem typically presents its own set of strengths and weaknesses (Barker and Van Hemert,

2008; Curcin and Ghanem, 2008; Yu and Buyya, 2005), these features are commonly

found across a range of modern tools, and are a key factor differentiating them from

their predecessors (G. Fox and Gannon, 2006).

While the primary interface to most of these tools is graphical, many of them,

including Kepler (Ludäscher et al., 2006) and Taverna (Oinn et al., 2004), provide hybrid

interfaces that also allow workflows to be specified using a script. Graphical interfaces

can be simpler and more interpretable, but scripting approaches typically provide a

finer level of control. This is especially true when a broad range of building blocks or

complex set of operations is available, since designing usable interfaces becomes more

difficult as more complex operations are supported by the system.

� 2.1.2 Domain-specific tools

The general-purpose tools described above provide a powerful abstraction. However,

they may not take domain-specific considerations into account. For example, within a

particular research domain, there is typically a set of common algorithms or software

packages that are widely used within that community. Because convenient access to such

computational building blocks is an important component of a workflow construction

framework, many domain-specific systems have been developed. We note that this

distinction between domain-specific and general-purpose is not a dichotomy, but rather

a spectrum. Many of the domain-specific tools described here typically aim to provide

an interface for using custom components in the computational process, just like their

general-purpose counterparts.

Domain-specific systems typically aim to provide general, extensible interfaces while

making common tasks within a domain as simple and straightforward as possible.

An early example is Khoros and its accompanying visual programming language Can-

tata (Konstantinides and Rasure, 1994), which focus on signal and image processing

applications. They therefore provide built-in support for signal processing tasks such

as computing FFTs and filtering, and image processing tasks such as texture extraction

and medial axis transformations. In a different domain, the Application Visualization

System (AVS) (Upson et al., 1989) focuses on applications involving computer graphics,

rendering, and data visualization.

Many modern domain-specific tools exist to enable construction of tailored work-

flows in a wide range of domains including machine learning (Berthold et al., 2008;

Mierswa et al., 2006; Patel et al., 2010; RapidMiner 2012), astronomy (Berriman et al.,

2004), cell modeling (Lloyd et al., 2004), and seismology (Maechling et al., 2005). As

with their earlier counterparts, these frameworks typically make specific considerations

for particular domains. For example, systems such as RapidMiner (RapidMiner 2012)
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and Knime (Berthold et al., 2008) provide specialized interfaces for machine learning

tasks, featuring specialized interfaces to commonly used algorithms such as k-means

and support vector machines. In addition, the idea of extracting a workflow from a set

of operations has been explored in domains from spreadsheet processing (Fisher et al.,

2006) to commercial image editing software such as Adobe Lightroom.

While most of these methods provide detailed views of workflows, they typically

do so using monolithic interfaces that make strong assumptions about how the data is

distributed (or not) across computer systems and institutions. In particular, they are

targeted toward research applications with open data that is freely available, at least to

all who can access the workflow system. However, interdisciplinary collaborative fields

such as medical image computing often require sharing of data between two distinct

types of researchers: domain experts such as clinicians, who provide data, motivation,

interpretation, and domain expertise; and technical experts, who develop algorithms

and process data. This data is often subject to restrictions and controls. Additionally,

the results should be accessible to users with and without technological expertise. Such

interdisciplinary collaboration is frequently facilitated by boundary objects (Star, 1989;

Star, 2010; Walenstein, 2003), or tools that bridge an interdisciplinary gap and enable

communication between groups. Most workflow construction and visualization frame-

works are not designed to be boundary objects. In contrast, we argue that this is a

critical role for such systems to fill within medical image computing research due to its

interdisciplinary nature. This motivates the design and accessibility goals of our contri-

butions. In particular, we argue that many of the visualization and interaction features

would be most useful if available in a lightweight, cross-platform manner. This moti-

vates our development in this thesis of a browser-based visualization of pipelines that

can be accessed outside the computer system where the data is stored and processed

with the appropriate protections for sensitive data.

� 2.1.3 Visualization

As part of the graphical interface, workflow construction tools typically provide several

different kinds of visualization. First, they often support visualization of the data flow

via the graph representation. For graphical interfaces such as the ones provided by the

systems discussed earlier, the visualization and pipeline construction occur simultane-

ously. Workflow construction frameworks sometimes also include mechanisms dedicated

to visualization of pipeline outputs. In fact, systems such as VTK (Schroeder et al.,

2000) provide scripted interfaces for visualization and pipeline rendering of images and

other graphics. Additionally, a central feature of VisTrails (Callahan et al., 2006) is its

ability to construct pipelines for data transformation for the purpose of visualization

using a graphical interface, typically using VTK. Finally, workflow systems can also
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visualize the version history of the workflow being developed (Callahan et al., 2006):

sometimes referred to as design provenance, this enables the evolution of the pipeline

itself to be tracked and evaluated.

� 2.1.4 Medical image computing workflows

Medical image computing shares a great deal in common with the specialized domains

described above. Analysis of the images requires the use of signal processing and im-

age analysis blocks as provided by frameworks such as Khoros (Konstantinides and

Rasure, 1994). It also requires visualization and rendering of data that is often three-

dimensional, as provided by libraries such as VTK (Schroeder et al., 2000) and AVS (Up-

son et al., 1989). It also often requires the use of machine learning algorithms, as pro-

vided by systems like Knime (Berthold et al., 2008) and RapidMiner (RapidMiner 2012).

But beyond these, it also requires interfacing with a range of special-purpose algorithms

and software packages, which we discuss in this section.

In medical image computing, researchers and engineers approaching an algorithm

design or a problem involving pipeline construction can often choose the algorithmic

components from a wide assortment of toolkits for solving individual steps. Some

toolkits such as 3D Slicer (Pieper et al., 2004) and GIMIAS (Larrabide et al., 2009)

enable interactive application of algorithms on a single image or small collection of

images. While excellent for iterative refinement or small scale studies, such toolkits

are not designed for use with large multi-subject studies, where once an algorithm has

been developed, it must be applied and tested across a large dataset. Many other

toolkits provide simple building blocks that must be combined into an application-

specific solution (Avants et al., 2011a; Fischl, 2012; Jenkinson et al., 2012; T. Yoo et al.,

2002). These building blocks enable a wide range of capabilities, from broadly applicable

tasks such as image registration and image segmentation to important domain-specific

preprocessing tasks such as motion correction. Such software is typically modular and

flexible, but must be integrated in order to perform meaningful tasks.

Pipeline systems for composing individual computational components in medical

image computing can be grouped into two broad categories: monolithic frameworks

and flexible platforms for designing custom pipelines. Monolithic tools are typically

designed for a particular task (Ashburner et al., 2008; Fischl, 2012), and impose rigid

requirements on data organization and the task being performed to avoid the chal-

lenges presented by heterogeneous data and computation structures. For example,

FreeSurfer (Fischl, 2012) provides both a modular set of programs for processing MRI

data and a pipeline for surface-based and volumetric analysis of T1-weighted brain MRI.

That is, the pipeline is a rigid structure that conducts a particular set of analyses on a

specific type of data. While these analyses address a common use case within medical
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image research, they are not suited for every application. For example, a study that

acquires images of a different modality or aims to conduct a different analysis would

require a different algorithmic pipeline.

In contrast, flexible platforms are more similar to the workflow systems described

earlier, and typically enable users to construct custom pipelines for a specific task at

hand, providing an alternative to ad hoc scripts. These methods typically either provide

a graphical interface a developer can use to construct a pipeline visually by combining

building blocks (Parker and Johnson, 1995; Rex et al., 2003; Koenig et al., 2006) as with

the general-purpose tools discussed above, or allow the construction to be programmed

as a script within a software environment (Bellec et al., 2012; Gorgolewski et al., 2011).

Graphical interfaces provide a natural visualization of the underlying pipeline as a

graph, but are more difficult to scale to complex analyses and lack the expressive power

of scripting approaches. As described earlier, general-purpose workflow frameworks

such as Taverna and Kepler allow hybrid approaches, integrating scripting capabilities

within the graphical platform. While both types of systems offer a more scalable and

feature-rich alternative to ad hoc scripts, they often do so at the cost of requiring more

overhead both in learning how to use the tool and in developing a pipeline.

In contrast, the work presented in this thesis aims to combine the best of both

visual and scripting methods. In particular, we present a twofold contribution in this

regard. First, we present PipeBuilder, a lightweight tool for medical image analysis

workflow construction that focuses on enabling algorithm development using iterative

refinement. Second, we present a visualization and interaction system that enables

better understanding of workflows for large scale image analysis. PipeBuilder aims to

visualize any pipeline represented by an underlying graph and data structure, further

enabling iterative refinement.

We also provide several integrations of PipeBuilder into Nipype, an existing frame-

work for scripting medical image analysis pipelines (Gorgolewski et al., 2011). Moti-

vated by its existing user base and collection of auxiliary features, we provide both a

mechanism to import PipeBuilder pipelines into Nipype. In addition, our visualiza-

tion tool aims to be general-purpose, providing visual representations of computational

structures and input and output data for both PipeBuilder and Nipype pipelines.

� 2.1.5 Databases and storage

Pipeline systems typically interact with input and output data, and many methods

have been proposed for organization and structure of such data. They address a set

of challenges related to a different aspect of the same underlying problem addressed

in this thesis, namely, handling large collections of medical imaging data. As most

pipelines must interact with this data, we briefly review the current state of medical
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image storage architecture.

Medical images are acquired and stored in picture archiving and communication

systems (PACS), which provide access to medical imaging data to clinicians for medical

practice (Huang, 2011). However, these platforms are designed for clinical practice, not

for large scale image analysis. Toward this end, many solutions have been proposed to

address the problem of storing and providing convenient access to medical imaging data

for computational research. Many publicly available large medical collections employ

ad hoc solutions to distribute their data (Van Horn and Toga, 2009). These include

sophisticated systems employed by large, widely used repositories such as the Human

Connectome Project (Van Essen et al., 2012) and the Alzheimer’s Disease Neuroimaging

Initiative (Jack et al., 2008), as well as simpler systems employed by a range of smaller

studies. Many methods arise as publicly available versions of these ad hoc solutions. All

of these methods provide separation of data storage and processing. Each emphasizes a

different aspect of data storage and distribution, such as data entry and quality control

as in the eXtensible Neuroimaging Archive Toolkit, or XNAT (Marcus et al., 2007);

multi-site longitudinal studies as in Longitudinal Online Research and Imaging System,

or LORIS (Das et al., 2011); or ease of integration with workflows using the DICOM

format, as in Chronicle (Pieper, 2014). In the domain of neuroimaging, specifically

functional neuroimaging, many platforms exist for aggregating and publishing data in

raw and processed forms (Gorgolewski et al., 2013; Laird et al., 2005).

In the next chapter, we present PipeBuilder, our solution for constructing medical

image analysis pipelines, and detail its design goals and salient features.
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Chapter 3

PipeBuilder: A tool for medical

image computing workflows

As discussed in Chapter 1, pipeline development is an important component of medical

image computing research. In this chapter, we describe the PipeBuilder framework,

its key features and design choices, and their relation to key challenges and issues

facing medical image computing researchers. We explain how PipeBuilder provides the

scalability and robustness necessary for large datasets.

The remainder of this chapter is structured as follows. Section 3.1 describes our

design goals and motivations for PipeBuilder. Section 3.2 describes the main features

of PipeBuilder and provides several examples illustrating them. Section 3.3 describes

the relationship between PipeBuilder and several other tools for medical image analysis

pipeline construction, including comparisons and a discussion of our integration with

one of these tools. Section 3.4 discusses how various kinds of user feedback influenced

the design of PipeBuilder. Finally, Section 3.5 summarizes the design goals and main

contributions.

� 3.1 Design goals

Iterative refinement

Analysis of low resolution clinical quality data often requires the use of novel steps

and algorithms as part of the computational pipeline. In choosing and adapting these

algorithms, substantial refinement and iteration is often necessary to obtain clinically

relevant results. This process of attempting various methods, examining their outcome,

and trying new methods is a key component of successful research, and PipeBuilder is

designed to enable this.

Adaptability and robustness

Large collections of low resolution data are often heterogeneous and present high vari-

ability. Algorithms to analyze and extract insights from such data must be robust to
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both variations in quality and to variations in other intrinsic properties of interest in

the data. For example, in a multi-site imaging study of a disease, patients from one

site may exhibit variability requiring a different pipeline. One of PipeBuilder’s design

goals is to enable the construction of such robust and adaptable pipelines.

Visualization

Visualization and interaction are an important component of algorithm design, espe-

cially for large imaging datasets. Flexible visualization of a pipeline’s numerous in-

termediate results and possible failure modes during the development process makes it

easier to perform careful examination and subsequent refinement. In addition, providing

a lightweight visualization interface that is easily accessible to both pipeline developers

and collaborators with medical or other domain expertise can facilitate collaboration

and sharing of results and algorithmic design. These factors motivate the inclusion of

a visualization component in PipeBuilder.

Quality control

Closely related to these three goals is our focus on making it easy to perform extensive

quality control (QC), which is often required at each computational step while process-

ing large scale clinical quality data. While iterative refinement and development can

produce a robust pipeline that can be adapted to handle variation at a large scale, the

reality of such image collections is that some images will inevitably fail to be processed.

The ability to identify such outliers and exclude them from subsequent analysis is an

important component that we emphasize in the design of PipeBuilder.

� 3.2 Overview

PipeBuilder pipelines are constructed by users as Python scripts, where commands rep-

resenting algorithmic tools operate on data represented by filenames. These commands

are specified according to their command line interface, and PipeBuilder produces a

shell script or series of shell scripts that, when executed, will carry out the computa-

tional process. PipeBuilder automatically infers the underlying workflow structure from

the Python script. As is conventional for workflow construction systems, we represent

a pipeline as a directed graph whose nodes correspond to data processing steps and

algorithms, and whose edges correspond to flow of data between different steps. In

particular, a directed edge between two nodes indicates that an output of the parent

node is used as the input to the child node. Figure 3.1 illustrates a simple pipeline con-

structed in PipeBuilder, with each section highlighted to improve readability, as well as

the automatically constructed visualization. The remainder of this section describes in

detail the various components of this pipeline and their relationship to PipeBuilder.
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Shell script
# Extract brain (skull strip) from subject image

runROBEX.sh \

/home/miccai/subj.nii.gz \

/home/miccai/subj_brain.nii.gz

# Register atlas image to subject

ANTS \

3 \

-m CC[/home/miccai/atlas.nii.gz,\

/home/miccai/subj_brain.nii.gz] \

-i 30x50x20 \

-o /home/miccai/atlas_to_subj_brain

# Warp atlas seg. to subject image

WarpImageMultiTransform \

3 \

/home/miccai/atlas_seg.nii.gz \

/home/miccai/subj_brain.nii.gz \

/home/miccai/atlas_to_subj_brainWarp.nii.gz \

/home/miccai/atlas_to_subj_brainAffine.txt \

PipeBuilder script
atlas = pb.Dataset(’atlas’, ’/home/miccai/’,

extension=’.nii.gz’)

dataset = pb.Dataset(’/home/miccai’, atlas,

’{subj}{feature}’,

default_extension=’.nii.gz’)

subj = ’subj1’

extract = pb.ROBEXCommand(

’Extract brain from subject image’,

input = dataset.get(subj),

output = dataset.get(subj, ’_brain’))

reg = pb.ANTSCommand(

’Register atlas image to subject’,

dimension = 3,

moving = atlas.get(’image’),

fixed = dataset.get(subj, ’_brain’),

metric = ’CC’,

nonlinear_iterations = ’30x50x20’)

warp = pb.ANTSWarpCommand.make_from_registration(

’Warp atlas seg. to subject image’,

dimension = 3,

moving = atlas.get(’_seg’),

reference = dataset.get(subj, ’_brain’),

registration = reg)

PipeBuilder visualization

Figure 3.1: Example application: simple brain MRI atlas-based segmentation that
involves three steps: skull removal (blue), registration to an atlas (orange), and de-
formation of the atlas labels to the new image (green). Top left: shell script for this
pipeline with colored boxes added to visually separate the three components. Top right:
PipeBuilder pipeline with similar boxes added. The small additional overhead (gray)
enables the features described in the text, in particular the automatic browser-based
visualization of the pipeline (bottom left).

� 3.2.1 Data input and output

The primary method for data flow in PipeBuilder is through interaction with files in

a filesystem. Data input and output are managed by a Dataset object, which maps

application-specific identifiers to filenames. For example, in a multimodal imaging

study, files might be parametrized by subject identifier, modality (T1, T2-FLAIR, DWI,

etc.), and image feature (image, manually segmented regions of interest, etc.). The

Dataset abstraction would in this case then require users to specify a mapping between

(subject,modality, feature) tuples and filenames using a template. An example of a

Dataset specification is shown in Figure 3.2.

This construct uses templates to map between filenames and named tuples repre-

senting the abstract data. PipeBuilder can therefore store, for every node, both (1)
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dataset = pb.Dataset(

base_dir = ’/path/to/data’,

# How are the inputs to the pipeline stored?

input_template = ’inputs/{subj}_{modality}_{feature}.{extension}’),

# How should intermediate/output files be stored?

processing_template = ’results/{subj}_{modality}_{feature}_{description}.{extension}’,

log_prefix = ’logs/’)

dataset.get_input(subj = 1, modality = ’T1’, feature = ’image’, extension = ’nii.gz’)

dataset.get(subj = 1, modality = ’T1’, feature = ’image’, description = ’preproc’, extension = ’nii.gz’)

Figure 3.2: Example Dataset for PipeBuilder that represents input and output
data. The input template argument provides a template for data used as input to
the pipeline. In this example, the fields are subject, modality, and feature. Each
must be provided when accessing data, as illustrated in the lines of code at the bottom.
If the templates do not have any ambiguity, then PipeBuilder will automatically infer
the fields from the resulting filenames, inverting the filename construction.

class ROBEXCommand(Command):

def __init__(self, desc, **keyword_args):

self.cmd = ’/path/to/ROBEX/runROBEX.sh %(input)s %(output)s’

Command.__init__(self, desc, **keyword_args)

Figure 3.3: Example code for specifying a new computational node that corresponds to
the skull removal step in Figure 3.1 using ROBEX (Iglesias et al., 2011). The third line
specifies the details of the interface: a sample command line usage with templates for
the argument files suffices to enable the use of this tool in PipeBuilder. The remaining
lines are Python object-oriented boilerplate.

information about the input and output files for ease of visualization and quality con-

trol as well as (2) a more abstract representation for understanding the structure of

the pipeline. Additionally, while a specification of the Dataset enables PipeBuilder to

produce an executable script for a command, a pipeline can easily be adapted to new

underlying data by modifying the Dataset or creating a new one.

class ComplexCommand(Command):

def __init__(self, desc, cond_val, **keyword_args):

# Handle argument differently if negative/positive

if cond_val >= 0:

keyword_args[’val’] = str(cond_val)

else:

keyword_args[’val’] = ’--negate ’ + str(cond_val)

self.cmd = ’/path/to/command’

’%(input)s %(output)s %(val)’

Command.__init__(self, desc, **keyword_args)

Figure 3.4: Example code for specifying a more complex interface. As with the
simpler example, the core of the interface is a specification of the command line with
templates filled in using input arguments, but here the arguments are determined based
on tool-specific logic for constructing the command line.
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� 3.2.2 Construction of new nodes

Workflows are constructed using a series of Command objects, each of which provides

access to an underlying tool or algorithm. Each of these objects is constructed using a

lightweight interface as illustrated in Figure 3.3. In particular, a single line specifying

a template for the command line interface to the tool is enough to facilitate the use of

that tool in PipeBuilder. This simple lightweight interface facilitates iterative refine-

ment, which is critical to finding robust solutions to processing of large, heterogeneous

image collections. Keyword arguments provided to the Command are used to fill in the

corresponding entries of the template command line. These command line arguments

can either be passed in directly according to the template, as shown in Figure 3.3,

or computed dynamically based on other arguments, as shown in the more complex

example in Figure 3.4.

In an attempt to provide a flexible interface with as few restrictions as possible, the

only constraint on the specification of a Command is that the outputs must be annotated

as such. In most cases, where the underlying command line tool produces only a single

output, this requirement is easy to satisfy, as any template argument named output

is inferred to be the output. In cases where the command line tool produces multiple

outputs, a single extra line should be added to enable the automatic visualization.

Similarly, in cases where a command line tool takes a template or prefix as input,

PipeBuilder cannot automatically infer the resulting filenames from the template or

prefix; these can be specified manually in a similar fashion.

Once a tool’s usefulness has been verified through application and quality control,

the Command interface to that tool can be refined to include type checking and other

more complex features that are easily available in the underlying scripting language. In

addition, while many tools such as the one in Figure 3.3 allow for a simple command

line specification, others may feature idiosyncrasies that require special handling. The

interface provided by PipeBuilder facilitates such special handling as an easy extension,

again facilitated by the ability to use arbitrary features of the underlying language.

� 3.2.3 Workflow construction and execution

After specification of a pipeline in this fashion, PipeBuilder produces a shell script or

series of shell scripts. These can either be executed directly in an interactive session for

ease of debugging, or can be distributed across a computational cluster for scalability.

PipeBuilder provides an interface to Oracle Grid Engine to parallelize across a particular

parameter of interest, which is typically the subject index.

PipeBuilder can also be robust to partial or incomplete data, as is common with

large imaging studies. In particular, a Dataset can specify that certain partial input

formats are mandatory, which causes any attempt to access a missing file to fail fast.
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For example, in the example given in Figure 3.2, the entire processing may depend on

the existence of a specific modality. In this case, the following line of code would mark

the “image” feature of the modality “T1” as being mandatory:

dataset.add_mandatory_input(modality = ’T1’, feature = ’image’)

If subsequent data access for any particular subject encounters a missing instance of

such a file, the pipeline will not be run for that subject. In contrast, if a non-mandatory

missing input is detected, only the steps of the pipeline that depend on that input (as

well as their descendants) are skipped. PipeBuilder also avoids rerunning steps whose

inputs are the same and whose outputs already exist.

� 3.2.4 Visualization

We provide a visualization in PipeBuilder that is constructed automatically from the

pipeline code, offering a rich set of features for interacting with the pipeline and its

results. Its use requires no additional software download or installation beyond a mod-

ern web browser, and can be viewed not only on the computer where the pipeline is

executed, but from any computer that is able to successfully authenticate. In addition

to the improved ability to understand and debug a pipeline, this enables sharing of

pipeline results between collaborators.

Our tool enables visualization of the pipeline itself in addition to detailed infor-

mation about the nodes and edges of the underlying workflow graph. As illustrated in

Figure 3.5, clicking on a node in the graphical representation provides access to informa-

tion about the underlying process, including standard output, standard error, command

line arguments, and return status. In addition to text, image-valued outputs can be

shown using browser-based viewers for medical imaging data, such as Slice:Drop (Haehn,

2013), as shown in Figure 3.5, and Papaya (Lancaster and Martinez, n.d.). These visu-

alizations facilitate quality control and pave the way to constructing robust, adaptable

pipelines. This visualization tool is not constrained to the system where the computa-

tion is being performed. PipeBuilder enables visualization of pipelines in the browser,

so that both the structure of the computational pipeline as well as its results can easily

be communicated. This is particularly useful for medical imaging applications, where

results, both individual and aggregate, can be shared with collaborators who may be

unfamiliar with the technical details of implementation of the computational pipeline.

The visualization provided by PipeBuilder also facilitates easy quality control for

each step of the data processing. In addition to the visualization of text and image-

valued data described above, PipeBuilder also provides an aggregation mode for the

common case where the same pipeline is applied across a large image collection. While

the figures and examples in this section all aggregate by subject, this can be applied to
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Figure 3.5: Illustration of PipeBuilder’s visualization features. Top: visualization of
a complex pipeline (see Chapter 5 for details on the underlying computational process).
Mousing over a single node in the graph highlights that node, focusing on its parents
and children. Middle: clicking on a node reveals a menu that can be used to display
status information about a node as well as visualize image outputs in the same window.
Bottom: in PipeBuilder’s aggregation mode, clicking on a node with scalar output
collects the data across a population, producing a histogram visualization of the data.
Both the image viewer and the histogram are displayed in the browser, overlaid on the
pipeline diagram.
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any variable for which the pipeline iterates over many values, such as parameter values

in parameter sweeps. The user need only annotate this variable as being iterated over

in this fashion.

Many QC steps involve the computation and evaluation of quantitative measures for

each image relative to the rest of the data. This is often a laborious and time-consuming

procedure that requires substantial back-and-forth between loading image files from disk

into viewers and matching them to QC output values. To streamline this process, the

aggregation feature in PipeBuilder automatically detects scalar-valued outputs at each

pipeline step, and displays these values in a histogram for in-depth analysis of failure

modes, as illustrated in Figure 3.5. This feature also displays a list of outlier parameter

values (e.g., subjects) in the browser console to enable special handling or exclusion as

needed, reducing the researcher time needed for analyzing data. In addition, our tool

is open source, inviting the development of even more visualization plugins for efficient

summarization and analysis of large medical image collections.

Implementation details

The visualization is computed automatically from the code. Each Command has its out-

puts and inputs inferred by the program based on command line inputs and potentially

on auxiliary information as described in Section 3.2.2. A directed edge is inferred be-

tween two nodes if the output of the parent is used as an input to the child. Auxiliary

information about each execution is written to disk at the same time as the shell script

corresponding to workflow execution, and each computational step is wrapped by an

auxiliary script that stores standard input and output appropriately. This information

is retrieved by the server as needed as the user interacts with the corresponding display

element.

The visualization itself is implemented using a server-client architecture. The server,

implemented using CherryPy (Delon, 2014), interacts with the workflow and underlying

data. The underlying data, represented by JSON, is served to the client, which then

visualizes it using d3.js (Bostock et al., 2011), relying on the server to retrieve data

such as images or aggregate statistics.

� 3.3 Relation and integration to other workflow tools

� 3.3.1 Comparison to existing tools

PipeBuilder stands apart from other medical image computing workflow construc-

tion tools in large part due to the focus on the design goals described in Section 3.1. Of

the existing pipeline construction systems for medical image computing described in de-

tail in Chapter 2, Nipype (Gorgolewski et al., 2011) and the LONI Pipeline (Rex et al.,
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Nipype
import nipype.interfaces.utility as util

import nipype.interfaces.ants as ants

import nipype.pipeline.engine as pe

data_src = pe.Node(

nio.DataGrabber(infields=[’subj’, ’feature’]),

name=’Subject data source’)

data_src.inputs.base_directory = ’/home/miccai’

data_src.inputs.template = ’%s%s.nii.gz’

atlas_src = pe.Node(

util.IdentityInterface(

fields=[’atlas’, ’atlas_seg’]),

name=’Atlas data source’)

atlas_src.inputs.atlas = ’/home/miccai/atlas.nii.gz’

atlas_src.inputs.atlas_seg = ’/home/miccai/atlas_seg.nii.gz’

workflow = pe.Workflow(

name=’Registration workflow’)

workflow.base_dir=’/home/miccai’

extract = pe.Node(

interface=ROBEXTask(),

name=’Extract brain from subject image’)

reg = pe.Node(

ants.ANTS(dimension=3),

’Register atlas image to subject’)

reg.inputs.metric = [’CC’]

reg.inputs.metric_weight = [1]

reg.inputs.radius = [4]

combiner = pe.Node(

interface=util.Merge(numinputs=2),

name=’Combine warp + affine’)

warp = pe.Node(

ants.WarpImageMultiTransform(dimension=3),

name=’Warp atlas segmentation to subject image’)

workflow.connect(data_src, ’outfiles’, extract, ’input’)

workflow.connect(extract, ’output’, reg, ’fixed_image’)

workflow.connect(atlas_src, ’atlas’, reg, ’moving_image’)

workflow.connect(reg, ’affine_transform’, combiner, ’in1’)

workflow.connect(reg, ’warp_transform’, combiner, ’in2’)

workflow.connect(combiner,’out’, warp,’transformation_series’)

workflow.connect(atlas_src, ’atlas_seg’, warp, ’input_image’)

workflow.connect(extract, ’output’, warp, ’reference_image’)

Figure 3.6: Example code for Nipype
that implements the same atlas-based
brain MRI segmentation pipeline from
Fig. 3.1. While Nipype provides a similar
interface for pipeline construction (col-
ored), it requires substantially more over-
head (gray).

class ROBEXInputSpec(CommandLineInputSpec):

input = File(exists = True, desc = ’input file’,

argstr = ’%s’, position = 0, mandatory = True)

output = File(name_source = [’input’], hash_files = False,

name_template = ’%s_brain’, position = 3,

argstr = ’%s’)

class ROBEXOutputSpec(TraitedSpec):

output = File(exists=True, desc=’Name of output file’)

class ROBEXTask(CommandLine):

input_spec = ROBEXInputSpec

output_spec = ROBEXOutputSpec

cmd = ’/path/to/ROBEX/runROBEX.sh’

Figure 3.7: A new node specification for skull stripping In contrast to the PipeBuilder
interface in Figure 3.1, the Nipype interface requires a detailed specification of all the
inputs and outputs to provide more error checking.
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2003) represent two broad categories of tools within medical image workflow construc-

tion: scripting interfaces and graphical interfaces, respectively. Similar to PipeBuilder,

Nipype provides a scripting environment, while LONI Pipeline provides a graphical

environment.

Due to the focus on the design goals described above, PipeBuilder provides sev-

eral important contributions beyond what is available in existing work. For example,

the specification for building a new interface in PipeBuilder is simpler than the corre-

sponding interface one would provide in Nipype. Figure 3.7 demonstrates this contrast:

Nipype requires significantly more overhead. PipeBuilder provides an extensible in-

terface that enables both the minimal interface shown in Figure 3.3 as well as more

sophisticated input verification of the kind available in Nipype.

Figure 3.6 provides code using Nipype for the atlas-based segmentation example

from Figure 3.1. Compared to the PipeBuilder pipeline in Figure 3.1, this pipeline

requires substantially more overhead. While each step is only slightly longer in the

Nipype version, the relationships between them require more overhead, both directly

through the flow of data and also through the initial setup.

Additionally, most pipeline construction tools provide references to the data pri-

marily through the steps that produce it. This is especially true of graphical tools,

where visually, the edges serve to connect nodes. An example of this can be seen in

Figure 3.6, where the intermediate values are never explicitly instantiated in the code,

but are rather constructed implicitly through the connections between steps. This is in

contrast to a typical program, which names intermediate outputs or assigns temporary

variables. To facilitate this direct interaction with the data at the time of pipeline

construction as well as when interacting with the data after pipeline completion, the

Dataset abstraction in PipeBuilder effectively provides a second way to access the data

as it flows through the processing pipeline.

The graphical interface provided by our tool resembles GUI-based medical image

analysis pipeline building environments such as the LONI Pipeline (Rex et al., 2003).

We emphasize that PipeBuilder computes this visualization automatically from the

underlying code, enabling developers to use an expressive and flexible scripting envi-

ronment for specifying pipelines and a rich visual interface for interacting with them.

In addition, our tool’s visualization of data and capacity to enable easy-to-use quality

control set it apart from existing workflow visualizations.

� 3.3.2 Integration with Nipype

Nipype is a well-established open source software project with a large user base and

a rich collection of auxiliary features, including integration with medical image data

storage systems such as XNAT (Marcus et al., 2007), the ability to distribute computa-
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tion across different cluster systems, and a broader set of interfaces to commonly used

medical image analysis tools. To take advantage of these features, we provide several

components to integrate PipeBuilder and its visualization with Nipype.

Importing PipeBuilder pipelines into Nipype

The first such feature is the ability to import PipeBuilder pipelines into Nipype to take

advantage of the feature set. Nipype provides a mechanism for constructing computa-

tional nodes that execute arbitrary Python functions. We construct a Python function

that executes the command line associated with a Command. This dynamically con-

structed Python function can then be associated with the correct inputs and outputs

using the metadata associated with the PipeBuilder Command. The command can then

be used with Nipype just like any other node such as the ones in Figure 3.6. As the

experimental research pipelines facilitated by PipeBuilder mature to stable algorithms,

they can then be imported into Nipype using this mechanism to better take advantage

of Nipype’s additional features.

Interactive visualization for Nipype pipelines

The second such feature is the application of the visualization described in Section 3.2.4

to Nipype pipelines. While Nipype pipelines are constructed in code explicitly as graphs

and represented in the same way, Nipype provides only a static visualization of the

pipeline (Ellson et al., 2002). However, we provide a dynamic visualization based on

the same client-server architecture as the PipeBuilder visualization. The client is largely

the same, while the server accounts for the relevant differences between the structuring

of the pipeline and intermediate data between PipeBuilder and Nipype. At the time

of writing of this thesis, the interactive visualization will appear in the next release of

Nipype, and has already been used by several users.

� 3.4 User feedback and development

The development of PipeBuilder has been influenced by a range of user feedback, in-

cluding a heuristic evaluation with human-computer interaction experts and some small

usability studies with small scale usage by target users. A full user study to quantita-

tively and qualitatively evaluate the performance of users using PipeBuilder would be

difficult, as proper evaluation would ideally measure the performance of users as they

complete a full research project.

The usability studies and heuristic evaluation guided several decisions. In particular,

the focus on enabling iterative improvement was driven by a need identified in early

usability studies. These studies also identified a need for example-based documentation,

as full documentation may not be readily available as the pipeline is being written.
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Instead, reference pipelines with good usage patterns were helpful in constructing new

ones. Finally, the visualization was heavily influenced by feedback. Most notably, the

ability to aggregate information and perform quality control was driven by feedback.

� 3.5 Summary

To enable the creation of computational pipelines for medical image analysis, we present

PipeBuilder. Our work is driven by several key needs in this domain. First, experimen-

tation and iteration are critical to developing pipelines, especially when working with

clinical quality data. Second, large image collections require solutions that are both

adaptable to account for heterogeneity in the data and robust to variations in quality.

Third, visualization of a pipeline’s computational structure, as well as data inputs and

outputs, is invaluable in understanding both high-level organization of the system and

the details of its results. Finally, while iterative development can produce pipelines

that are fairly robust and adaptable, large collections of images, especially from clinical

settings, will often present outliers that require some degree of manual intervention to

identify and remove.

These needs inform the design and creation of PipeBuilder. We provide a range

of features to enable the construction of robust pipelines. These include an intuitive

interface for interacting with data, a simple interface to construct novel pipeline steps, a

browser-based visualization that is computed automatically from code, and integration

with existing pipeline creation tools to enable interoperability of both our visualization

tool and PipeBuilder pipelines.



Chapter 4

Background on medical image

analysis and white matter

hyperintensity

In this chapter, we provide a necessary background for each of the applications described

in the remainder of the thesis. We also briefly review each of the algorithmic components

used in the applications.

� 4.1 Cerebrovascular Pathology

We now turn to providing a background for the stroke and Alzheimer’s applications

presented in the thesis. In particular, we focus on cerebrovascular pathologies, as these

motivate our analysis of the images.

� 4.1.1 White matter hyperintensity

Magnetic resonance imaging (MRI) provides a means for imaging the brain in research

and clinical settings, revealing a variety of different pathologies. In particular, white

matter hyperintensity (WMH) is a broad category of pathology visible as bright (hyper-

intense) regions in T2-weighted FLuid-Attenuated Inversion Recovery (FLAIR or T2-

FLAIR) MR images, as illustrated in Figures 4.1 and 4.2. While the precise cause and

mechanism of WMH development is not fully understood, a great deal is known about

its links to other clinical and demographic factors. For example, WMH has been shown

to increase with age, as well as be linked to tissue damage, decline in cognitive func-

tion, structural brain changes, stroke, dementia, genetic markers linked to dementia and

Alzheimer’s, and indicators of vascular health such as hypertension (Debette, Markus,

et al., 2010; Fazekas et al., 1993; Jeerakathil et al., 2004; Raz et al., 2012). Additionally,

among patient cohorts afflicted with pathology, WMH burden has been shown to be

linked to worsened clinical outcomes in diseases including stroke, Alzheimer’s disease,

and cerebral amyloid angiopathy (Rost et al, 2010a; Rost et al, 2010b; E. Smith et al.,

37
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Figure 4.1: Sample two-dimensional axial slices of T2-FLAIR brain MRI showing
white matter hyperintensity (highlighted by blue arrows) in varying degrees.

2002; Thanprasertsuk et al., 2014). In addition to quantity, the spatial distribution of

WMH has been shown to differ in healthy and diseased patients (Gootjes et al., 2004).

These factors motivate the explorations presented in Chapter 5 and Chapter 6 of this

thesis.

White matter hyperintensity segmentation

Segmentation of white matter hyperintensity is a well-studied problem. It also presents

several challenges: while WMH is characterized by high intensity, so are other brain

structures such as ependymal tissue (ventricle lining) and the skull. Stroke lesions and

other pathologies can sometimes appear bright in T2-FLAIR as well. This presents

challenges in segmentation, as simple thresholding of normalized intensities will include

these undesired structures.

Most segmentation techniques for WMH are either semiautomatic or automatic.

Both categories typically involve preprocessing steps, particularly intensity normaliza-

tion to ensure consistent segmentations. Bias field correction (Van Leemput et al.,

1999; Tustison and Gee, 2009) is also often used to correct inhomogeneities in the

image caused by acquisition artifacts.

Semiautomatic techniques vary in the degree of expert interaction required; fully

manual approaches are rare. Many semiautomatic methods involve an automatic thresh-

old within a expert-defined region of interest followed by adjustment and correction (Gurol

et al., 2006; Y. Chen et al., 2006; Nandigam et al., 2007; Rost et al., 2010; Tanabe et

al., 1997). Semiautomatic segmentation of WMH of this kind typically takes 10 to 30

minutes per patient scan. As the distinction between semiautomatic and automatic is a

spectrum rather than a dichotomy, several methods exist that require less interaction,

relying on expert input only for limited image-specific pre- and post-processing (Gibson

et al., 2010; Zijdenbos et al., 1994).

Automatic techniques vary in complexity, and this variation typically depends on the
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Figure 4.2: An average map of white matter hyperintensity (in color) overlaid on a
template brain in three axial slices.

resolution of the input images. While higher resolution scans can typically be segmented

using existing approaches (Admiraal-Behloul et al, 2005; P. Schmidt et al., 2012), lower

resolution data presents a challenge for such algorithms. Elaborate pipelines have shown

promise when applied to smaller sets of such low resolution data (Tsai et al., 2014; B.

Yoo et al., 2014), motivating our use of such a pipeline in Chapter 5. The scalability of

computational pipelines has also been demonstrated in large scale studies of segmenta-

tion of other pathologies (Zijdenbos et al., 2002).

� 4.1.2 Stroke

Stroke is an acute cerebrovascular affliction characterized by insufficient blood flow to

the brain leading to cell death. Strokes can be characterized into a number of sub-

types. These are linked to patient outcome. In the study motivating this thesis, there

are four classes of abnormal hyperintense regions we observe in the various modalities:

leukoariosis, a particular type of white matter hyperintensity found in the periventric-

ular (around the ventricles) region of the brain with a distinct spatial pattern; acute

stroke, which has occurred no more than 48 hours before scan acquisition; chronic stroke,

which has occurred in the past; and imaging artifacts, which appear hyperintense due

to idiosyncrasies of the imaging acquisition process. In neuroimaging studies of stroke

patients, several imaging modalities can be acquired; the analysis in this thesis focuses

on three modalities of MR imaging: T1 scans, T2-FLAIR scans, and diffusion-weighted

imaging (DWI) scans.

Each imaging modality measures different tissue properties and serves a different

purpose in the context of the clinical and research goals of the study. In DWI images,
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Figure 4.3: Illustration of various cerebrovascular pathologies in a T2-FLAIR
scan (left) and a DWI scan (right). On the left, WMH is outlined in blue, while
chronic stroke is outlined in red. Neither of these are visible on DWI. On the right,
acute stroke is labeled in red.

Bright on T2-FLAIR? Bright on DWI?

Healthy tissue No No
WMH Yes No

Acute stroke Yes Yes
Chronic stroke Yes No

Table 4.1: A description of the various cerebrovascular pathologies relevant to stroke
and their intensity profiles in T2-FLAIR and DWI scans.

stroke appears bright and, aside from miscellaneous artifacts, is the only such bright

region. In T2-FLAIR images, white matter hyperintensity, especially leukoariosis, ap-

pears bright, as do both acute and chronic stroke lesions. T1 images typically do not

provide high contrast for identifying any of the pathologies described above, but are of-

ten acquired initially as an anatomical localizer. Table 4.1 summarizes the relationship

between the different modalities acquired and the pathologies visible in those modal-

ities. Figure 4.3 illustrates these pathologies on representative T2-FLAIR and DWI

images.
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� 4.2 Medical image analysis algorithms for neuroimaging

In this section, we briefly review highlights from the relevant literature on the algorithms

used in this thesis, focusing on the aspects and prior work most relevant to our analyses

and derived insights.

� 4.2.1 Registration

Image registration is the process of aligning two different images in order to draw cor-

respondences between them. Image registration techniques have been widely studied,

and generally include a distance or similarity metric, a transformation model, and an

optimization procedure (Hartkens et al., 2002; Rueckert and Schnabel, 2011; Viola and

Wells III, 1997). Three of the most popular metrics used in registration are sum of

squared differences (SSD), cross correlation (CC), and mutual information (MI). SSD

and CC are used when the intensity distributions are directly comparable between the

two images. MI is typically used for multimodal registration when the intensity pro-

files differ between scans, e.g., when registering a T1-weighted image to a T2-weighted

image (Viola and Wells III, 1997). Optimizing over nonrigid transformations is usu-

ally only effective after an initialization based on simpler rigid or affine alignment. As

smaller deformations are easier to estimate accurately than large ones, registration be-

tween similar images (e.g., images of the same patient at different time points), tends

to be more robust. This motivates the strategy used in many popular registration algo-

rithms (Vercauteren et al., 2008; Avants et al., 2011a) of iterative registration performed

as a sequence of small deformations.

� 4.2.2 Atlases and atlas construction

A fundamental component of population analysis in medical image computing is the

use of deformable templates, or atlases. These, along with a technique for computing

deformations or correspondences between the template and images in the population,

are essential to population analysis, providing a common coordinate system across pa-

tients and modalities in a study and enabling data fusion across patients and modali-

ties (Fonov et al., 2009; Gee et al., 1993; Grenander and Miller, 1998; Mazziotta et al.,

1995; Talairach and Tournoux, 1988). While some approaches use a single brain as a

template (Warfield et al., 2002), atlases constructed from multiple brains can provide

a better representation of average anatomy (Bhatia et al., 2004; Fonov et al., 2011;

Guimond et al., 2000; Joshi et al., 2004).

The simplest algorithms for atlas construction are based on iterating between two

steps until convergence. In the first step, a collection of images is aligned to a common

coordinate frame using an image registration algorithm. In the second step, the aligned

images are combined to create a new template for a better-defined common coordinate
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frame. While the registration used is typically nonrigid, the degree of regularization

of this registration affects the resulting atlas quality: less regularized warps produce

sharper atlases whose anatomical regions are more precisely defined, while more regu-

larized (or even affine or rigid) registrations produce blurrier atlases that may capture

a broader range of anatomy at the cost of less precisely defined anatomical boundaries

to which to align images (Yeo et al., 2008).

� 4.2.3 Longitudinal analysis

Longitudinal analysis is a well-studied area in medical image computing that aims to

characterize a population both in terms of inter-subject variability across a cohort, and

in terms of within-subject variability over time using longitudinal data. Typically, at

least two scans per patient are available. As with most population analysis studies,

accurate registration is also a prerequisite here. Many approaches exist that find corre-

spondences between an atlas and each template image by aligning each scan to the atlas

separately (L. Wang et al., 2003). Others note that the changes between the first longi-

tudinal scan and subsequent scans of the same patient are likely to be small, and model

these explicitly (Ehrhardt et al., 2008; Qiu et al., 2009). Many methods are designed

for the case of registering exactly two scans per subject (Gerig et al., 2006; Aljabar

et al., 2008). Most closely related to the analysis in this thesis is work by Durrleman

et al., 2013, which models both a low-dimensional correspondence between subsequent

scans from the same subject as well as a more complex correspondence between pairs

of different subjects and subjects and an atlas.

In the next chapter we present a case study that employs PipeBuilder to create a

computational pipeline for WMH analysis and to apply this pipeline to a large cohort

of stroke patients.



Chapter 5

Case study 1: WMH burden in

stroke patients

In this chapter, we demonstrate the application of PipeBuilder to analysis of pathology

in a large cohort of stroke patients. We present a study of white matter hyperintensity

analysis in this multi-site cohort. The analysis is enabled by our processing pipeline

constructed using PipeBuilder. In particular, we demonstrate two registration pipelines

with different goals, and describe our algorithm to automatically segment WMH. This

enables our analysis of the relationship between WMH and age in this population.

This chapter is organized as follows. Section 5.1 provides two approaches to regis-

tration of large, multimodal collections of clinical quality images. Section 5.2 describes

our framework for analysis and segmentation of white matter hyperintensity in scans

that have been aligned to a common coordinate frame. Section 5.3 details the role of

PipeBuilder in constructing pipelines for our analysis. Section 5.4 describes the data

from a multi-site neuroimaging study of stroke patients. Section 5.5 demonstrates our

methods on this study.1

� 5.1 Registration

Registration of low resolution clinical images of the brain presents several challenges.

For example, patient images contain many irrelevant structures: our goal is brain anal-

ysis, but the images include the skull and large portions of the neck, and may even

crop structures of interest, as illustrated in Fig. 5.1. The optimization procedure in

typical registration algorithms treats all regions uniformly, and aligning these bright,

highly variable structures may drive the registration and may result in an inaccurate

transformation of the brain. Another concern is caused by the fact that images in large

studies are acquired at multiple sites with different scanners and different acquisition

parameters, both within sites and across sites in multi-site studies. Therefore, the range

1The work presented in this chapter has been conducted in collaboration with Adrian Dalca from
the Computer Science and Artificial Intelligence Laboratory at MIT.
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Figure 5.1: A sagittal slice of a representative low resolution T2-FLAIR scan (left)
compared to the sagittal slice of a representative high resolution T1 scan (right). The
top of the T2-FLAIR image is cropped, and due to the thick slices, there is no clear
intensity boundary between the brain and the skull.

of values and the intensity distributions of specific tissue can vary greatly even within

images of the same modality. While these challenges have been studied extensively in

the context of high resolution consistent research scans, in this section we address these

challenges by proposing general strategies applicable to low resolution clinical images.

� 5.1.1 Multimodal registration using a T1 template

In this section, we present a registration pipeline that aligns multimodal patient im-

ages to a template of a particular modality. This work is motivated by the fact that

although the analysis we wish to perform is on T2-FLAIR images, commonly used tem-

plates such as the Talairach average template (Talairach and Tournoux, 1988) and the

FreeSurfer brain atlas (Fischl, 2012) are only available in one modality, T1-weighted.

Another commonly used template, the MNI152 brain atlas (Mazziotta et al., 1995), is

available in multiple modalities but not in T2-FLAIR, which is our modality of interest

in this work. Using one of these templates or a similar one provides distinct advan-

tages, as they are well-annotated with anatomical labels. More generally, the specific

registration techniques, as well as the underlying insights in this section, are relevant

to any analysis of multimodal data in which the modality of the data being analyzed

and the modality of an existing template differ. The work presented in this section was

published in Sridharan et al., 2013.

Atlas construction

We use an atlas constructed from 39 T1-weighted brain MRI scans and corresponding

manual delineations that are part of the FreeSurfer brain atlas (Daly et al, 2000; Johnson

et al, 1998; Killiany et al, 2000). The 39 subjects span a wide age range, reflect



Sec. 5.1. Registration 45

Figure 5.2: The T1-weighted atlas used by the registration pipeline in Section 5.1.1.
The top row shows the atlas including the skull, which is useful for affine alignment of
images that have not been skull stripped; the bottom row shows the same image with
manual segmentations of the brain used to remove the skull, enabling more accurate
registration in the brain.

significant anatomical variation, and include some Alzheimer’s patients. Figure 5.2

presents the atlas.

Intra-modal initialization with MI

When registering images of the same modality, the standard practice of first computing

an initial rigid registration (i.e., rotation and translation only) is relatively insensitive

to the problem of extraneous structures. Inconsistent intensity distributions in images

of the same modality in clinical datasets render the usual intra-modality metrics such

as cross-correlation (CC) and sum of squared differences (SSD) ineffective for align-

ment since the assumption of direct intensity matching for the same tissue type across

different images is violated. Standard methods for matching intensity profiles, such as

histogram equalization, cannot be used either, since they would be dominated by highly

variable non-brain regions such as the neck. We employ mutual information (MI) in



46 CHAPTER 5. CASE STUDY 1: WMH BURDEN IN STROKE PATIENTS

performing this rigid registration since the difference of tissue intensities between these

images is more similar to the difference of tissue intensities between images of different

modalities. We build on this initial registration to solve the problems of inconsistent

field of view and intensity profiles.

Skull stripping and brain masking

Since Neuroimaging analysis typically focuses on the brain, we seek an accurate trans-

formation in the brain, and restrict the region where the registration metric is evalu-

ated accordingly. In research-quality images, skull stripping or brain mask extraction is

achieved via any number of available techniques, including registration to a template,

deformable balloon models, watershed-based methods that assume that the brain con-

sists of a single connected component, and graph-based segmentation algorithms (Boe-

sen et al., 2004; Iglesias et al., 2011; S. M. Smith, 2002). Most of these methods only

work on T1-weighted MR images. Additionally, many model-based algorithms that

assume a particular shape or spatial model fail on low resolution data, where the low

resolution of the image may result in unintended spatial contiguity effects. The reg-

istration method described in this section employs a simple rigid registration to the

atlas, which we use to propagate a brain mask from the atlas via the estimated rigid

transformation. While not a perfect brain mask, it enables intensity correction and con-

strains the subsequent nonrigid registration to a region that reasonably approximates

the brain.

Intensity correction

In our experiments with clinical images of stroke patients, MI failed when used in non-

rigid registration, resulting in inconsistent deformations that did not match the images.

Differences in intensity profiles of patient images prevent us from using intensity-based

measures such as CC and SSD directly. Using the approximate brain mask, we adjust

the intensity separately for each image to solve this problem. Histogram equaliza-

tion (Hummel, 1977) still cannot be used due to the approximate nature of the brain

mask and variable intensity profiles, illustrated in Fig. 5.3. We choose to restrict our

intensity correction to global scaling. Specifically, we match the intensity of the white

matter while not altering the shape of the intensity profiles. As one of the largest struc-

tures in the brain, the white matter is important to match well between the two images

in registration. We estimate the mode of white matter intensity for each patient as the

mode of the component with higher intensity in a two-component mixture model for

intensity values within the brain mask.
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Figure 5.3: Voxel intensity histograms of T1-weighted images from three different
patients (shown in three different colors), illustrating typical differences in intensity
distributions within the approximate brain mask obtained via rigid registration from
the atlas. Left: intensity histograms. Right: difference at the high end of intensity
values (see axes).

Non-rigid registration

Once the image intensity distribution of the patient image has been matched to that of

the atlas image, non-rigid registration can then be performed with CC as a metric. In

order to prevent non-brain structures from dominating the optimization, we continue to

use the approximate brain mask in computing this registration. Once the registration is

concluded, we propagate a more accurate mask of the brain to be used for multimodal

registration within each patient.

Intra-patient multimodal registration

In order to align other modalities (such as T2-FLAIR and DWI in the stroke study)

into the atlas coordinate system, we first estimate the rigid transformation to the atlas-

modality image (in our case, this is T1) using MI, and compose it with the final nonrigid

transformation between the patient and the atlas.

� 5.1.2 Multimodal registration using a T2-FLAIR template

In this section, we present an alternative method for registration based on synthesis of

an atlas from low resolution data. The pipeline described in this section is more broadly

applicable, as it provides for a method for construction of the atlas from data. The

work presented in this section was used in Dalca et al., 2014 as well as in subsequent

analysis. We present a pipeline for registration to a common coordinate frame using

an atlas constructed from that modality, as well as a description of our atlas synthesis
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Figure 5.4: The initial T2-FLAIR atlas constructed from low resolution stroke patient
images. Note the white matter hyperintensity and interpolation artifacts visible near
and in the ventricles.

Figure 5.5: The synthesized T2-FLAIR template used for the registration pipeline of
Section 5.1.2.

technique.

Construction of T2-FLAIR atlas

Due to the low resolution of our data, applying a simple atlas construction as described

in Section 4.2.2 to the clinical scans in this data result in atlases that are blurrier in

one direction than the others. In particular, the typical ratio of 7 between the in-

plane resolution and the slice thickness of the T2-FLAIR images in the stroke study

led to atlases with interpolation artifacts, as illustrated in Figure 5.4. In contrast

to the atlases constructed from high resolution data shown earlier in Figure 5.2, the

anatomical structure of the atlas is incorrect. Additionally, we have no manual labels of

the anatomical structures are available for the low resolution images used to construct

the atlas. In order to solve these two problems, we computed a registration to the
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T1 atlas created earlier. Due to the differing modalities between the two images, we

used MI. To counteract the inaccuracies due to the metric, since this was only a single

registration, we swept over a broad range of parameters and chose the parameter that

produced the registration we determined to have the best appearance visually. Given

this mapping, we used the fact that within each anatomical region, image intensities are

fairly homogeneous. Motivated by this, we computed a new image in the coordinates

of the T1 atlas, where for each anatomical label, we used the intensities of the warped

rough T2-FLAIR atlas, but blurred the values within each label while not blurring

across label boundaries. The blur kernel was chosen by qualitatively evaluating its

performance on registration to 10 randomly chosen images. The resulting atlas is shown

in Figure 5.5: while visually somewhat smoother than a typical image, this image

still maintains sharp gradients. We found in our experiments that this produced more

accurate registrations, likely achieving a better tradeoff between registration smoothness

and image sharpness (Yeo et al., 2008).

Preprocessing

As with the pipeline described in Section 5.1.1, accurate registration depends on skull

removal and intensity correction.

Most of the T2-FLAIR images in our data have higher contrast than the correspond-

ing T1-weighted localizer images. Motivated by this, and driven by further exploration

of existing algorithms, we can successfully skull strip the majority of the T2-FLAIR

images in our collection using ROBEX (Iglesias et al., 2011). As the majority of skull

stripping algorithms are only designed to work with T1-weighted images, this algorithm

performed the best among the few that work with images of other modalities.

As with the first registration pipeline, variable amounts of pathology in the images

presented additional challenges for intensity normalization, a critical step to ensure

robust registration with intensity-based metrics. After investigating a variety of algo-

rithms, we normalized the intensities using global scaling as before, this time using

mean shift clustering to align the modes of intensity (Mayer and Greenspan, 2009). We

could not reliably correct the bias field due to the presence of WMH, stroke, and other

pathologies.

� 5.1.3 Evaluation of registration

Verifying registration quality is an important prerequisite to further analysis, as images

that fail to register should be excluded from further analysis. Since visual inspection

is difficult to perform for thousands of patients, we employ automatically computed

measures of registration quality to detect when registration failed. We construct a

(voxelwise) median image of registered patients for each modality in the atlas space,
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compute SSD of each patient from this median image within the brain mask, and isolate

patients whose measures are substantially higher than the rest using the Tukey fence

(more than 1.5 times the interquartile range above the third quartile) (Tukey, 1977).

This threshold was chosen based primarily on visual inspection: most images above

the threshold were misaligned, while most images below the threshold were reasonably

well-aligned.

� 5.2 Segmentation and analysis of white matter hyperintensity

� 5.2.1 Segmentation

We employ MAP classification to label hyperintense voxels within a region of interest.

In particular, we use the same framework to automatically segment WMH in T2-FLAIR

images and stroke in DWI images, as described in Section 4.1.2.

Given intensity I(x) at voxel x, we choose label L(x) ∈ {H, H̄} (where H repre-

sents hyperintense regions and H̄ represents healthy tissue) to maximize the posterior

probability of the label p(L(x)|I(x)):

L∗(x) = arg max
L∈{H,H̄}

p(L | I(x)) (5.2.1)

= arg max
L∈{H,H̄}

p(I(x) | L) p(L). (5.2.2)

We use intensity-corrected T2-FLAIR images as described in Section 5.1.2 to avoid

inconsistent intensities. As discussed in Section 4.1.2, other pathology such as stroke

can also appear as hyperintense on T2-FLAIR images. In order to compensate for this

effect, we first segment stroke and other artifacts using hyperintense voxels in DWI

using Equation (5.2.1). This provides an exclusionary mask of voxels to remove from

the analysis of WMH in T2-FLAIR images. We note that due to the presence of artifacts

in these images, the automatic segmentations of DWI scans contain both stroke and

artifacts. As WMH is the quantity of greater clinical interest, here we focus our analysis

on WMH rather than analyzing both stroke volume and WMH volume.

We use 50 patient images to construct the likelihood models p(I|L = H) and p(I|L =

H̄) as histograms of intensity for WMH in T2-FLAIR and stroke in DWI. These training

images were visually inspected to have accurate manual segmentations, and intensity

normalized as described earlier.

� 5.2.2 Analysis

While the overall WMH volume of each patient can be compared and analyzed from

just the manual segmentations for each patient, we use the registration framework to
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evaluate and visually inspect the spatial distribution of WMH and to understand its

evolution across the brain as a function of age. Since WMH volume varies dramatically

across different patients, we choose to first cluster the patients into more homogeneous

sub-populations and then investigate the change of WMH distribution with age sepa-

rately in each sub-population.

We use a two-component regression mixture model to capture variability in WMH

volume growth (Jacobs et al., 1991; Quandt and Ramsey, 1978). Each mixture compo-

nent is characterized by a different dependency of WMH burden on age. To determine

the assignment of patients to sub-populations associated with components, we alter-

nate between (1) assigning the cluster membership of each patient and (2) estimating

the regression coefficients for WMH volume as a function of age in each cluster, until

convergence.

Formally, let vi and zi be the scalar total WMH volume and cluster assignment of

patient i (i ∈ {1, . . . , N}) respectively. We let Xi be a p-dimensional feature vector

associated with patient i. Specifically, we use age and a constant to account for the

intercept (i.e., p = 2). Let v be the vector of all volume values and X be the N × p
matrix of features. We assume i.i.d. multinomial priors for cluster membership. Given

p-dimensional regression coefficient vectors βc for each cluster c and fixed variance σ2,

we assume that WMH volume vi in patient i is normally distributed with mean Xiβc
and fixed variance σ2:

vi = Xiβc + εi, where εi ∼ N (0, σ2).

In order to estimate the parameters β, we use a hard-assignment EM variant, alternating

until convergence between the E-step that computes the cluster assignments:

zi = arg min
c
||vi −Xiβc||

2
2 , (5.2.3)

and the M-step that solves for each βc using standard least-squares linear regression:

βc = (XTZcX)−1XTZcv, (5.2.4)

where Zc is a diagonal binary matrix; Zc(i, i) = 1 if zi = c. The resulting algorithm is

similar to k-means clustering.

Within each cluster, we use Nadaraya-Watson kernel regression (B. Davis et al.,

2007; Nadaraya, 1964; Watson, 1964) on the WMH label maps to visualize representa-
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Figure 5.6: Automatic visualization of the pipeline for registration and segmentation
of T2-FLAIR scans. This pipeline uses the registration strategy with a T2-FLAIR
template as described in Section 5.1.2. Note the DWI segmentation steps (top center)
and the stroke segmentation steps (bottom right).

tive images Ic(t) for each cluster c:

Ic(t) =

∑N
i=1 Zc(i, i)Kh(t− ti)Ii∑N
i=1 Zc(i, i)Kh(t− ti)

, (5.2.5)

where t is the age of interest, N is the number of patients, Ii is the WMH label map of

patient i warped into atlas space, and Kh(·) is a Gaussian kernel function with standard

deviation h and mean 0. The standard deviation of the kernel is determined assuming

approximate normality of the underlying distribution, with a robust median absolute

deviation used instead of the standard deviation (Bowman and Azzalini, 2004).

Intuitively, a representative WMH image is a weighted average of all WMH label

maps, with patients close to age t contributing more to the average. Visualizing rep-

resentative images helps understand the progression of the disease with age across the

two clusters and across sites.

� 5.3 Application to multi-site study and facilitation by PipeBuilder

Figure 5.6 presents the visualization of the pipeline created by PipeBuilder. The vi-

sualization shows the parallel structures that register and segment both T2-FLAIR

and DWI scans. In addition, the visualization highlights the role of preprocessing, as

the output of the intensity correction step (red) is used extensively throughout the

remainder of the pipeline.
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Figure 5.7: Age distributions for each site in the stroke study. Most of the sites follow
the same distribution, while site 7 (teal) and site 13 (purple) have younger and older
populations respectively.

In the course of our analysis, we examined the histograms of white matter hyper-

intensity volume for each site separately and detected that site 7 had noticeably lower

volumes due to a younger population. To address this variability, we constructed a sep-

arate atlas from this population. The modular nature of our proposed pipeline system

made this change easy to implement, requiring minor adaptation of the atlas construc-

tion step and the segmentation pipeline to use the new template for this specific site.

Additionally, the ability to easily identify outliers using PipeBuilder, particularly

during the registration evaluation step, greatly simplified the exclusion of those subjects

from further analysis. In particular, identification of outliers was immediately followed

by visual inspection of several subjects to ensure the validity of our registration quality

measure.

� 5.4 Stroke data

In this section we outline the acquisition protocol used to collect the data used in this

study, and describe in detail the imaging data available across each site for the multi-

site study. The data described in this section are provided by the International Stroke

Genetics Consortium (ISGC) Stroke Genetics Network (SiGN) study (Meschia et al.,

2013).
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Figure 5.8: Registration quality results for the T1-based pipeline applied to site 4.
Outliers, which were removed from further analysis, are shown in red. Here, the differ-
ence is measured only within the mask of the brain from the atlas image.

Each patient in the study has one to three images depending on modalities acquired.

The available modalities are a T1 localizer scan (0.8594 × 0.8594mm in-plane, slice

thickness 5–7mm, sagittal slices), a T2-FLAIR scan (1× 1mm in-plane, slice thickness

5–7mm, PROPELLER sequence sometimes used if the patient moved, axial slices), and

a diffusion-weighted imaging (DWI) scan (at least 6 directions, b-value 1000 s/mm2,

1× 1mm in-plane, slice thickness 5–7mm, axial slices).

We analyze the images provided by nine sites. Figure 5.7 illustrates the age distri-

bution for each site. While most of the sites exhibit similar distributions, site 7 has a

substantially younger population than the rest of the sites, while site 13 has a slightly

older population than the rest of the sites.

For site 4, manual segmentations are available for WMH in T2-FLAIR and for stroke

in DWI for 825 and 432 patients respectively.

� 5.5 Results

� 5.5.1 Registration evaluation

Figure 5.8 shows the registration quality results for the first registration pipeline applied

to data from one site (site 4). Our procedure identifies 86 of 819 manually segmented

T2-FLAIR scans as outliers, leading us to exclude them from further analysis.

Figure 5.9 shows the registration quality results on T2-FLAIR images for the second

pipeline applied to all sites. We see that the results are consistent across sites. Com-
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Figure 5.9: Registration quality results for the T2-FLAIR pipeline applied to all sites.
Outliers, which were removed from further analysis, are shown in red. The difference
is measured across the entire image.

paring the first graph of this figure to Figure 5.8 shows that the second registration

strategy, which works directly with the T2-FLAIR images, achieves better performance

in registering T2-FLAIR images than the initially proposed method, which is based

on alignment of T1 localizer scans. This is primarily due to two factors. First, the

slightly higher contrast of the T2-FLAIR images in this dataset compared to the T1

images leads to more accurate registrations when these images are used as the input.

Second, this strategy requires only one registration rather than two. This prevents error
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Figure 5.10: (Left) Agreement between manual and automatic segmentations of WMH
in site 4. Each point represents one patient, and the dashed line (y = x) corresponds to
perfect agreement. (Right) An example of strong disagreement between the automatic
and the manual segmentations. The large high intensity region in the frontal lobes bi-
laterally represents chronic territorial strokes that, although hyperintense, are excluded
by the expert since they are not of interest in WMH volume calculations.

from compounding across multiple registrations and warps. This is a particularly useful

feature of the second registration pipeline, as our goal is segmentation and analysis of

pathology visible primarily on T2-FLAIR images.

� 5.5.2 Segmentation evaluation

Figure 5.10 illustrates the results of the agreement of the manual and automatic WMH

segmentation for site 4. We observe that the automatic segmentation is close to the

manual one. In some cases, our algorithm oversegments relative to the manual seg-

mentation. Investigating these patients reveals cases like the one shown in Figure 5.10,

where during manual segmentation experts excluded large regions determined to be

attributable to chronic stroke lesions, as described in Section 4.1.2. The registration

methods described in this thesis have enabled new lines of work that address this prob-

lem (Dalca et al., 2014).

� 5.5.3 Multi-site segmentation

Figure 5.11 shows the distribution of WMH for all of the sites in the study. As expected

from the age distributions in Figure 5.7 and the positive relationship between WMH

burden and age, the distribution for site 7 is shifted noticeably to the left. As discussed

in Section 5.3, this motivated our use of a separate atlas due to increased registration
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Figure 5.11: Computed volumes of WMH from the automatic segmentation algorithm.
While most of the sites follow a similar distribution of WMH burden, patients from site
7 tend to have less. Volumes shown for site 7 are based on the site-specific atlas.

error relative to the atlas.

This confounding effect of age on WMH volume also motivates our analysis of the

relationship between the two across the sites. Figure 5.12 shows the distributions for

each site within a particular set of age ranges. We see that within each age group,

site 7 is no longer an outlier. While its distribution of WMH in the 15–40-year-old

group and the 40–50-year-old group are slightly lower than the other distributions, the

degree of difference is not as pronounced as in the overall distribution. Indeed, there

are no patients over the age of 45 within this site. Within each age group, the WMH

distributions across the different sites are fairly consistent.

Figure 5.13 shows the spatial distributions of WMH across the different sites. While

the overall pattern remains similar across sites, the shape varies considerably. As ex-

pected from their heavier-tailed distributions above, sites 3 and 18 present a noticeably

greater spread of average distribution across the brain despite having a similar age

distribution to the rest of the sites. This is particularly true in the posterior regions

behind the ventricles (center slice, bottom of image), where these two sites show no-

ticeably more pathology compared to the other sites. In contrast, the other sites show

a slightly greater concentration of WMH near the front of the ventricles (center slice,

top of image). Finally, as expected, the distribution of WMH in patients from site 7 is

very small due to the younger age of patients from this site.

We can more directly analyze the relationship between WMH volume and age by
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using the kernel regression procedure described above. Figure 5.14 illustrates the overall

relationship between these two. The lines are the result of applying kernel regression

as described in Section 5.2.2 to each site’s full data. As before, we see that the sites are

largely similar. Site 7 has a slightly lower amount of WMH among younger patients,

and has no older patients.

Figure 5.15 shows the result of applying the two-component regression mixture

model to the data from all sites. The method identifies a large group of patients for

whom there is little dependence of WMH on age, and a larger group for which it starts

higher and grows substantially. This larger group exhibits many of the spatial patterns

seen in Figure 5.13, with larger growth through the posterior regions of the brain.

Registration enables direct comparison of the segmentations across patients and sites,

confirming the spatial distribution seen in the average maps. While these groups have

distinct spatial patterns, the boundary between them is not well-defined. We believe

detailed investigation into clinical and genetic factors can provide further insight into

these patterns.

� 5.6 Summary

We presented an application of PipeBuilder to a study of WMH in stroke patients.

PipeBuilder facilitated the experimentation and refinement necessary to successfully

process this large clinical image collection. In addition, the adaptability of our PipeBuilder

pipeline facilitated the extension of our method to a multi-site study of thousands of pa-

tients. We adapted the pipeline to successfully register images from all sites, including

one substantially different from the rest. We also demonstrated a visualization of the

pipeline as well as its results, highlighting the structure of the computational process.

This pipeline enabled us to study the relationship between WMH and age in a large

cohort, where we found broadly similar trends across the subpopulations.

In the next chapter, we take the analysis of WMH and age one step further by

applying PipeBuilder to study longitudinal changes in a group of Alzheimer’s patients

and healthy controls.
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Figure 5.12: WMH burden distributions for each site within different age groups. The
overall distributions shift to the right consistently with age, and within a particular age
group, the sites are fairly consistent. Sites 3 and 18 (blue and red, respectively) tend
to have heavier-tailed distributions than the other sites.
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Figure 5.13: Average maps of WMH for each site. Regions where 10% (red) to at
least 60% (yellow) are shown in color overlaid on the atlas. For site 7, where a different
atlas was used, the resulting segmentations are then mapped back into the common
atlas using the atlas-atlas registration for comparison across sites.
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Figure 5.14: Relationship between age and WMH burden on a linear scale (left) and
on a log scale (right) for all sites. The overall distributions are fairly similar, and
generally show an increasing amount of WMH and increasing variability with age. The
solid lines correspond to kernel regression curves for each site.
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Figure 5.15: Two-component regression mixture model applied to age and WMH bur-
den for both original data (left) and log-transformed data (right). The linear regression
lines for each component are shown in gray, while the kernel regression lines are shown
in black.
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Chapter 6

Case study 2: Longitudinal changes

in WMH in an Alzheimer’s disease

cohort

In this chapter, we describe our work on analysis of multimodal data in a cohort of

Alzheimer’s patients and healthy controls. We present an analysis pipeline for the

study of longitudinal changes in anatomy and pathology. Our pipeline enables analysis

of multimodal longitudinal brain MRI data, including high resolution T1-weighted scans

and FLAIR scans similar to the ones explored in the stroke study in Chapter 5. For

each subject in the study, several scans of varying modalities are acquired over time.

The work in this chapter was motivated by the goal of predicting anatomical changes

in longitudinal data; Appendix A includes a paper under review that employs the

registration framework described in this chapter to produce anatomical predictions of

image change in longitudinal cohorts.

We first describe our pipeline for registration of the longitudinal cohort to an at-

las, aligning all images from all subjects to a common coordinate frame. We then

demonstrate an analysis of white matter hyperintensity and discuss further research

directions.1

� 6.1 Methods

We describe our method for registration of longitudinal scans in the study into a com-

mon coordinate frame.

� 6.1.1 Longitudinal registration

Registration of a longitudinal cohort presents a set of challenges and promises significant

advantages. Accurate data fusion in our application requires alignment of all scans from

1The work presented in this chapter has been conducted in collaboration with Adrian Dalca from
the Computer Science and Artificial Intelligence Laboratory at MIT.
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Figure 6.1: An illustration of the different coordinate systems and the relationships
between them. Solid boxes and roman subscripts (Ωa, Ωb, and Ωf ) denote coordinates
frames in which input images exist, while dotted boxes and Greek subscripts (Ωα, Ωβ ,
and Ωγ) denote coordinate frames which we define for convenience. These transforma-
tions are replicated for each followup for a subject, and again for each subject.

all subjects to a common template. However, as described in Section 4.2.3, nonlinear

transformations between scans from different subjects are larger and more difficult to

estimate than nonlinear transformations between different scans from the same subject.

Motivated by this, we align the first longitudinal scan, which we refer to as the baseline

scan, to the atlas and align each subsequent, or followup, scan to the first one. Such

alignment enables comparison of the segmented regions of interest and the estimated

nonlinear transformations measuring change in volume of these structures. For the

transformations to serve as relevant measures of anatomical differences, we must con-

strain the algorithm to compute all transformations from a common coordinate system.

In particular, transformations from this coordinate system should capture anatomical

information rather than irrelevant differences in orientation or scale (Rohlfing et al.,

2009a; Rueckert et al., 2003). We construct a registration pipeline that aligns all im-

ages affinely to the atlas coordinate system and provides computed transformations

between images in this coordinate space.

Let Ia, Ib, and If denote the atlas image and baseline image and followup images

for a particular subject respectively. Similarly, let Ωa, Ωb, and Ωf denote the respective

coordinate systems of these images. We define the coordinate system Ωα such that

the affine transformation between Ωa and Ωα is negligibly small, and the nonlinear

transformation between these two coordinate systems captures the relevant anatomical



Sec. 6.1. Methods 65

⌦a ⌦↵

⌦b

⌦f

Atlas FollowupBaseline

⌦�

⌦�
�↵�

T�1
↵b

�b�

T↵b

Figure 6.2: An illustration of the transformation Φαγ expressed as the composition of
the affine transformation Tαb, the nonlinear transformation Φbβ , and the inverse affine
transformation T−1

αb .

information for this subject. Let Φ denote nonlinear transformations, T denote affine

transformations, and T̄ denote rigid transformations.

Figure 6.1 illustrates the different coordinate systems described above and the re-

lationships between them. The overall transformation from the atlas image Ia to the

baseline image Ib is described by the composition Φaα ◦ Tαb. Similarly, the overall

transformation from the baseline image Ib to the followup image If is described by the

composition Φbβ ◦ T̄βf . These transformations can be computed using any registration

algorithm.

The transformation of interest is the nonlinear transformation between the images

in the coordinates Ωα and Ωγ , or Φαγ . The affine transformation between coordinate

systems Ωγ and Ωβ is identical to the affine transformation Tαb, assuming that this

transformation captures all the change in orientation, scale, and skew between coordi-

nate systems Ωα and Ωb, and that the nonlinear transformation Φbβ is small. However,

the same is not true of the nonlinear transformations Φbβ and Φαγ , since not only are

they applied to different coordinate spaces, but the degree of deformation caused by the

transformation must scale with the affine transformation as well. Unfortunately, direct

computation of the transformation of interest Φαγ would involve instantiation of images

in coordinate systems Ωα and Ωγ , requiring interpolation of the input images into these

coordinates. As the input data can be of very low resolution, such interpolation would

introduce significant error compared to the equivalent registration between the native
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image coordinates Ωb and Ωf . Thus, we instead compute the transformation Φαγ using

a composition of transformations, illustrated in Figure 6.2. That is,

Φαγ = Tαb ◦ Φbβ ◦ T−1
αb .

Given the input images Ia, Ib, and If , we can directly compute the transformations

Tαb and Φbβ. As the former is directly invertible, we can compute Φαγ without using

interpolated images in registration, leading to more accurate results.

In order to enable accurate registration, we remove the skull from the input images

using ROBEX (Iglesias et al., 2011), and correct for field inhomogeneities using bias

field correction (Tustison and Gee, 2009). Finally, we adjust the intensities using the

same global strategy described in Section 5.1.2.

� 6.1.2 Segmentation

As in Chapter 5, accurate alignment of all images enables segmentation and analysis

in a common coordinate frame. We segment white matter hyperintensity using the

same approach as described in Section 5.2, using the same threshold learned from the

manually segmented images of stroke patients.

� 6.1.3 Growth of WMH

Our registration framework enables detailed spatial analysis of each set of longitudinal

images. In particular, we take advantage of the computed warps Φαγ that are defined in

a common coordinate frame and describe the transformation between a baseline image

and a followup image. In particular, the determinant of the Jacobian of this transfor-

mation at every voxel is a measure of the growth or shrinkage of that voxel under the

warp. A voxelwise variant of this approach is referred to as tensor-based morphome-

try (Ashburner and Friston, 2000). Formally, let J(·) be the Jacobian operator, and

Φi
αγ(x), x ∈ Ωγ , indicate the warp for subject i at voxel x. We construct a map

ψi(x) = log
∣∣J(Φi

αγ)(x)
∣∣

such that negative values of the map ψi(x) indicate shrinkage and positive values indi-

cate growth across time in subject i. We emphasize that due to the low resolution of

the underlying images and the increased error in registration, the methods described

here are exploratory in nature (Ashburner and Friston, 2001; Bookstein, 2001).

Maps of deformation of these regions, specifically within regions of white matter

hyperintensity, can provide information about expansion of those regions. We con-

struct two maps within the region of possible white matter hyperintensity, ΨH and ΨH̄ ,

where H and H̄ correspond to hyperintense and healthy regions respectively. As in
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Section 5.2.1, let Li(x) ∈ {H, H̄} represent the tissue label at each voxel for subject i.

Then the affine alignment facilitates the construction of the maps as follows:

ΨH(x) =

∑
i ψ

i(x)1(L(x) = H)

1(L(x) = H)

ΨH̄(x) =

∑
i ψ

i(x)1(L(x) = H̄)

1(L(x) = H̄)

For each voxel, the maps ΨH and ΨH̄ provide the average change across subjects in

healthy tissue and WMH respectively in that voxel. Comparing the two can provide

insight into the spatial pattern of WMH growth.

� 6.2 Facilitation by PipeBuilder

Figure 6.3 demonstrates the automatic visualization of the pipeline described above.

As with the pipeline of Chapter 5, the result of preprocessing is used extensively for

the remainder of the pipeline. The visualization highlights the parallelizability of the

pipeline, as the top portion which processes the baseline scan is roughly parallel to the

bottom portion which processes one followup scan.

The development of the registration pipeline described above required substantial

iteration. In particular, the correct composition of warps as shown in Figure 6.2 was

preceded by several incorrect attempts. Applying these involved the use of several

auxiliary tools provided by ANTS, as well as a number of custom scripts. PipeBuilder’s

ability to provide this allowed rapid iteration through unsuccessful attempts before

achieving the method described in Section 6.1.1.

� 6.3 Data

The data used in this section were provided by the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) (Weiner et al, 2012). In particular, we use images from the MR

imaging core as described in Jack et al., 2008 and Jack et al., 2010. The data in-

clude T2-FLAIR (0.8594 × 0.8594mm in-plane resolution, slice thickness 5 mm), and

T1-weighted (1× 1× 1mm resolution) images, acquired at varying time points. In par-

ticular, for each patient, the acquisition of images of different modalities does not occur

at the same time. Each subject has been diagnosed as either a healthy control sub-

ject, an Alzheimer’s patient (AD), or as being afflicted with mild cognitive impairment

(MCI), an intermediate level of impairment that is not severe enough to be classified as

Alzheimer’s or other dementia. Patients ranged in age from 55 to 95, and each patient

had between zero and five followup scans.
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Figure 6.3: Top: automatic visualization of the pipeline for registration of baseline and
one followup scan. The upper area of the graph mostly contains steps for registration
and segmentation of the baseline scan, while the lower area of the graph mostly contains
nodes for registration and segmentation of the followup scan. While most of the pipeline
is clearly visualized in this graph, the many warp operations (purple) make it difficult
to understand the last stages at a glance. Bottom: an alternate view of the pipeline
visualized in Figure 6.3. Mousing over one node (teal) near the end of the pipeline
highlights it and its inputs and outputs. While the overall structure at the right of the
visualization is complex, this enables us to focus on a particular portion of it.
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Figure 6.4: Registration quality results for baseline scans. Outliers, which were re-
moved from further analysis, are shown in red.

� 6.4 Results

� 6.4.1 Registration

Figure 6.4 reports the registration quality evaluation metric from Section 5.1.3. As both

the registration process for the baseline scans and the quality of the scans themselves

are very similar to those described in Section 5.1.2, it is unsurprising that these results

closely resemble the results from the multi-site evaluation shown in Figure 5.9. As

the registrations between scans from the same subject are not as subject to error, we

exclude images based only the quality of registration of the baseline image. As before,

we use a similar threshold, since visual inspection of images near the threshold indicates

that this separates well registered images from poorly registered ones.

� 6.4.2 Segmentation and analysis

Figure 6.5 reports WMH volumes for each baseline scan as a function of age, derived

from the automatic segmentations using T2-FLAIR images. Figure 6.6 shows the dis-

tributions of subpopulations grouped by age. We observe that this population exhibits

notably less volume of pathology than the stroke patient cohort described in the pre-

vious chapter, but shows a similar progression with age. This is consistent with prior

literature indicating that white matter hyperintensity is a risk factor for stroke (Kuller

et al., 2004; R. Schmidt et al., 1992). this dataset and our longitudinal registration

framework enable longitudinal analysis to better explore the change in white matter

over time. Figure 6.7 illustrates the progression of each patient’s WMH volume over

time. We see that while a large fraction of the cohort maintains a relatively constant
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Figure 6.5: Automatic WMH segmentation results as a function of age. Only baseline
values are shown in this plot.
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Figure 6.6: Cumulative density of white matter hyperintensity for patients in four
different age groups. The distribution shifts to the right as age increases.
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Figure 6.7: Longitudinal data for WMH progression. Each trajectory represents a
single subject, and colors denote diagnosis: blue indicates healthy controls, red indicates
Alzheimer’s, and orange indicates MCI.

WMH burden over time, some patients exhibit substantial growth. However, there

appears to be no strong link between WMH burden and clinical diagnosis.

Motivated by the noticeable difference between the majority of patients who ex-

hibit little to no change and those who exhibit substantial growth over the period of

observation, we apply a two-component analysis to the patient cohort. Each group is

characterized by a different fitted slope within a patient’s trajectory; the threshold of

1.1cc/year was chosen by applying k-means clustering to the scalar slopes computed

using linear regression for each subject. The average baseline images from each cluster

in this analysis are shown in Figure 6.8. While the correlation between initial volume

and average slope is relatively weak (r2 = 0.16), we see that images with substantial

growth still often start out with a higher burden of WMH.

Figure 6.9 shows the two maps ΨH and ΨH̄ , restricted to the mask in which WMH is

found. We see that throughout the regions of white matter hyperintensity, the values are

positive, indicating average growth of WMH from baseline to followup. In particular,

the growth seems greatest in the occipital lobe (near the back of the brain). While the

difference across the brain is relatively small, this finding, along with the results from

Chapter 5 suggests that more severe WMH may develop not only in the back of the
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Figure 6.8: Average WMH at baseline for patients in the high slope cluster (top) and
low slope cluster (bottom). Subjects were chosen for inclusion based on fitting a slope
for their trajectory, while the image shows the average value in the baseline scans.

brain, but also near the lower portions of the occipital lobe.

� 6.5 Summary

We presented a pipeline for analysis of longitudinal data. Enabled by PipeBuilder,

our pipeline was constructed through experimentation and iterative development. We

adapted portions of the registration and segmentation framework from Chapter 5 to

analyze WMH and change in WMH in this cohort.
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Figure 6.9: Average shrinkage (blue) or growth (red) of each voxel over time for
subjects with voxels labeled WMH (left) and healthy (right). Light blue values indicate
greater shrinkage, while yellow values indicate greater growth.
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Chapter 7

Conclusions and Discussion

In this thesis we introduced PipeBuilder, a powerful system for building computational

pipelines to analyze medical imaging data. PipeBuilder is particularly well suited for

analysis of large collections of potentially low resolution or noisy data, where a lot of

methodological experimentation. We presented analyses in two such applications that

were enabled by PipeBuilder. In a neuroimaging study of stroke patients, we studied

white matter hyperintensity burden in a large cohort. In a large longitudinal cohort of

Alzheimer’s patients, we studied longitudinal change in these patients.

The studies were facilitated by PipeBuilder, which was created with three primary

design goals in mind: enabling iterative method refinement, supporting adaptability

and robustness, and providing visualization of the analysis pipeline as well as the data

itself. Iterative refinement is a critical component of research, especially when analyzing

low resolution data for which many traditional analysis methods fail. Large collections

of such data also require the design of robust and adaptable processing methods: vari-

ations in quality and in the populations under study necessitate adaptable methods

that can work despite such variability. Finally, visualization of a pipeline’s structure

facilitates a better understanding of complex computational structures, and easily ac-

cessible visualization of the intermediate results enables not only rapid iteration and

refinement, but also quality control. Motivated by these goals, PipeBuilder provides a

framework for building and visualizing robust, adaptable pipelines that can be easily

refined and iterated on.

We demonstrated the strengths of this framework in two different investigations of

WMH in large neuroimaging studies. In a study of stroke patients, we used a three-step

approach that included registration to a template for data fusion, automatic segmen-

tation of WMH using multimodal MRI, and analysis of WMH volumes and spatial

distributions. We exploited the adaptability of our PipeBuilder workflow to expand

our method to a multi-site study, where we demonstrated consistency in the amount

of WMH in several patient populations. PipeBuilder enabled straightforward adap-

tation of the pipeline to these sites, including one site where a site-specific template

was required due to younger patients in that site. This paves the way for future work

75
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examining the relationship between templates and quality of the resulting registrations:

age-specific (rather than site-specific) templates have shown promise (Fonov et al., 2009;

Fonov et al., 2011) in previous work, and the combination of a large patient cohort and

the adaptability provided by PipeBuilder holds promise in applying similar analyses to

this data.

We also demonstrated PipeBuilder on a longitudinal study, where we examined

subject-specific changes in members of a population over time. We constructed a reg-

istration pipeline that accounted for longitudinal change within patients and for vari-

ability across patients, and adapted our analysis of WMH to this pipeline. We explored

the change in volume and spatial distribution of white matter hyperintensity over time

per patient, pooling not only the data about each patient’s WMH but also the change

in WMH as well.

Beyond several interesting extensions to the work in this thesis, including a more

robust method of detecting outliers, visualization of large image collections, and ac-

cess to a broader range of tools, PipeBuilder enables a range of further research into

analysis of large collections of low quality images that previously would have been

difficult. Another important future direction of work for PipeBuilder is more robust

user evaluation and feedback. While a full user study would be difficult as discussed

in Section 3.4, some recent work in workflow systems for other domains (Patel et al.,

2010) has involved smaller scale user studies; similar studies for PipeBuilder, however

informal, could provide invaluable feedback and guide future directions of research and

development.

One important direction of work that PipeBuilder enables is a better understand-

ing of the performance of various widely used algorithms for medical image computing

tasks. A broad range of work exists quantifying and benchmarking the performance

of such algorithms (Klein et al, 2009; Iglesias et al., 2011). However, with its focus

on iterative refinement, PipeBuilder is well suited to facilitating automatic evaluation

of this nature, as algorithms can be measured and evaluated as part of the iterative

design process. This could facilitate a deeper understanding of the strengths and weak-

nesses of different algorithms with respect to different properties of the underlying data.

Aggregation of such information across multiple users of PipeBuilder using different al-

gorithms across a range of image collections could enable such evaluation on a broader

scale than previously conducted.

Within the application domain of the study of WMH, the work in this thesis moti-

vates further analysis. Beyond important extensions and improvements such as investi-

gating ways to improve quality of registration and detection of outliers, the large scale

registration and segmentation pipelines in this thesis make richer analyses possible.

Combining the information extracted in this manner with clinical and genetic factors
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has potential to unlock exciting new directions in understanding patient outcomes and

risk profiles. For example, combining the information available in both Chapter 5 and

Chapter 6 could enable case-control studies that might provide insights into stroke risk

profiles given WMH level.

In summary, PipeBuilder is a novel framework for building and refining robust and

adaptable pipelines for analysis of large scale medical imaging data. The applications

provided in the thesis are just the start demonstrate its capabilities in two real clinical

studies. We believe that PipeBuilder has the potential to empower researchers to tackle

new problems and seek new insights from medical imaging data.
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Appendix A

Predictive Modeling of Anatomy

with Genetic and Clinical Data

Here we present our work under review that motivates the longitudinal registration

pipeline described in Chapter 6. In particular, longitudinal registration of a large co-

hort enables prediction of images using existing images for training and incorporating

external information such as genetic and clinical factors.

� A.1 Introduction

We present a method for predicting anatomy based on other available information, in-

cluding genetic and clinical indicators. Specifically, given the baseline scan of a subject

in a longitudinal study, our model predicts anatomical changes and generates a sub-

sequent image using subject-specific genetic and clinical information. Such voxel-wise

prediction opens up several new areas of analysis, enabling novel investigations both

at the voxel-level and at the level of derivative biomarker measures. For example, we

show that voxel-level differences are observed between the true progression of a patient

with dementia and their predicted anatomy under a healthy model, highlighting spatial

patterns of disease. We validate our method by comparing measurements of volumes of

anatomical structures based on predicted images to those extracted from the acquired

scans.

Our model describes the change from a baseline image explained by population

trends and by subject-specific information. The first scan of a subject in a longitudi-

nal study serves as the baseline for the purposes of prediction. First, we model how

anatomical appearance changes with age across a population. We then model devia-

tions from the population average using a person’s health profile, which we characterize

non-parametrically based on the genotype, clinical information, and the baseline image.

Subject-specific change is learned from the similarity of health profiles in the cohort,

which are incorporated into our predictions using a Gaussian process parametrized by

a population health covariance. Given the predicted change, we synthesize a new image

79
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through an appearance model.

Statistical population analysis is one of the central topics in medical image comput-

ing. The classical correlation-based analysis has yielded important characterization of

relationships within imaging data and with independent clinical variables (B. C. Davis

et al., 2010; Misra et al., 2009; Pfefferbaum et al., 2013; Risacher et al., 2010; Rohlfing et

al., 2009b). Regression models of object appearance have been previously used for atlas

construction and population analysis (B. C. Davis et al., 2010; Rohlfing et al., 2009b).

These methods characterize population trends with respect to external variables, such

as age or gender, and construct clinically relevant population averages. Longitudinal

analyses also characterize subject-specific temporal effects, usually in terms of changes

in the biomarkers of interest. Longitudinal cohorts and studies promise to provide

crucial insights into aging and disease (Misra et al., 2009; Pfefferbaum et al., 2013;

Risacher et al., 2010). Mixed effects models have been shown to improve estimation of

subject-specific longitudinal trends by using inter-population similarity of a biomarker

of interest (Datar et al., 2012; Sadeghi et al., 2013). While these approaches offer a

powerful basis for analysis of biomarkers or images across populations, they do not aim

to provide subject-specific predictions. The parameters of the models are examined

for potential scientific insight, but they are not tested for predictive power. In con-

trast, we define the problem of population analysis as predicting anatomical changes

for individual subjects. Our generative model incorporates a population trend and uses

subject-specific genetic and clinical information, along with baseline images, to generate

subsequent anatomical images. This approach provides avenues for novel analysis, as

illustrated by our experimental results.

� A.2 Prediction Model

Given a dataset of patients with longitudinal data and a baseline image for a new

patient, we predict a follow-up anatomical state for a patient. We model anatomy as

phenotype y that captures the underlying structure of interest. For example, y can

be a low-dimensional descriptor of the anatomy at each voxel. We assume we have

a measurement of our phenotype at baseline yb for a new subject. Our goal is to

predict the phenotype yt at a later time t. We let xt be the subject age at time t, and

define ∆xt = xt − xb and ∆yt = yt − yb. We model the change in phenotype yt using

linear regression:

∆yt = ∆xtβ + ε, (A.1)

where β is the subject-specific regression coefficient, and ε ∼ N (0, σ2) is sampled from

zero-mean Gaussian distribution with variance σ2.
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In the remainder of this section, we first describe the core of our model that captures

the changes in anatomical appearance using the population trend and patient specific

information, and then outline the resulting prediction algorithm. In the next section, we

describe our particular choice of appearance model for phenotype y to enable prediction

of follow-up scans, and describe the subject-specific health profiles.

� A.2.1 Subject-Specific Longitudinal Change

To model subject-specific effects, we define β = β̄ + H(g, c, fb), where β̄ is a global

regression coefficient shared across the entire population and H captures a deviation

from this coefficient based on the subject’s genetic variants g, clinical information c,

and baseline image features fb.

We assume that patients’ genetic variants and clinical indicators affect the anatomi-

cal appearance, and that subjects with similar health profiles exhibit similar patterns of

anatomical change. We define hG(·), hC(·), hI(·) to be functions that capture genetic,

clinical and imaging effects on the regression coefficients:

H(g, c, Ib) = hG(g) + hC(c) + hI(fb). (A.2)

Combining with (A.1), we arrive at the full model

∆yt = ∆xtβ̄ + ∆xt (hG(g) + hC(c) + hI(fb)) + ε, (A.3)

which captures the population trend through β̄, and the subject-specific deviations from

that trend through the subject-specific health [hG(·), hC(·), hI(·)].
For a longitudinal cohort of N subjects, we group all observations ∆yt for sub-

ject i to form ∆yi = [yi1 , yi2 , ...yiTi ], where Ti is the number of scans for patient i.

We then form the global vector ∆y = [∆y1,∆y2, ...,∆yN ]. We similarly form vec-

tors ∆x, hG, hC , hI , g, c, fb and ε, and obtain:

∆y = ∆xβ̄ + ∆x� (hG(g) + hC(c) + hI(f b)) + ε. (A.4)

where � is the Hadamard, or element-wise product. This formulation is mathematically

equivalent to a General Linear Model (GLM) (McCullagh, 1984) in terms of the health

profile predictors [hG,hC ,hI ].

We employ Gaussian process priors to model the predictor functions:

hD(·) ∼ GP (0, τ2
DKD(·, ·)), (A.5)
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where covariance kernel function τ2
DKD(zi, zj) captures the similarity between subjects i

and j using feature vectors zi and zj for D ∈ {G,C, I}. We discuss the particular forms

of K(·, ·) used in the experiments later in the paper.

� A.2.2 Learning

The Bayesian formulation (A.4) can be interpreted as a linear mixed effects model

(LMM) (McCulloch and Neuhaus, 2001) or a least squares kernel machine (LSKM)

regression model (Ge et al., 2015; D. Liu et al., 2007). Linear mixed models have been

recently used in population genetics to account for confounding structure. Here, we use

the linear mixed effects model interpretation to learn the parameters of our model, and

the LSKM interpretation to perform final predictions of phenotypes y.

Under the linear mixed effects model interpretation, β̄ is the coefficient vector of

fixed effects and hG,hC , and hI are independent random effects. We seek the maximum

likelihood estimates of parameters β̄ and θ = (τ2
G, τ

2
C , τ

2
I , σ

2), by adapting standard

procedures for LMMs (Ge et al., 2015; D. Liu et al., 2007). As standard LMM solutions

become computationally expensive for thousands of observations, we take advantage of

the fact that while the age and phenotype data is large, the kernels only operate on

baseline data. We obtain intuitive iterative updates that project the residuals at each

step onto the expected rate of change in likelihood, and update β̄ using the best linear

unbiased predictor.

� A.2.3 Prediction

Under the LSKM interpretation, the terms h(·) are estimated by minimizing a penal-

ized squared-error loss function, which leads to the following solution (Ge et al., 2015;

Kimeldorf and Wahba, 1971; D. Liu et al., 2007; Wahba, 1990):

h(zi) =

N∑
j=1

αjK(zi, zj) or h = αTK (A.6)

for some vector α. Combining with the definitions of the LMM, we estimate coefficients

vectors αG,αC and αI from the following linear system of equations:


1
T
1 1

TKG 1
TKC 1

TKI

KT
G1 KT

GKG +
τ2G
σ2K

T
G1 KT

GKC KT
GKI

KT
C1 KT

G1 KT
CKC +

τ2C
σ2K

T
C1 KT

CKI

KT
I 1 KT

IKG KT
I 1 KT

IKI +
τ2I
σ2K

T
I 1




β̄
αG
αC
αI

 =


1
Ty′

KT
Gy
′

KT
Cy
′

KT
I y
′

 ,
(A.7)
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where y′ = ∆y �
[

1
∆x1

... 1
∆xT

]
. We can then re-write (A.4) as

∆y = ∆xβ̄ + ∆x
(
αTGKG +αTCKC +αTIKI

)
(A.8)

and predict a phenotype at time t for a new subject:

yt = yb + ∆xt

β̄ +

N∑
j=1

αG,jKG(gi, gj) + αC,jKC(ci, cj) + αI,jKI(fi, fj)

 . (A.9)

� A.3 Model Instantiation for Anatomical Predictions

The full model (A.3) can be used with many reasonable definitions of phenotype y. In

this section, we describe the phenotype model we use for anatomical predictions and

specify the similarity kernels for each component of the health profile.

� A.3.1 Anatomical Phenotype

We define a voxel-wise phenotype that enables us to predict entire anatomical images.

Let Ω be the set of all spatial locations v (voxels) in an image, and Ib = {Ib(v)}v∈Ω be

the acquired baseline image. We similarly define A = {A(v)}v∈Ω, the population atlas

template. We assume each image I is generated through a deformation field Φ−1
AI =

{u(v)}v∈Ω from the common atlas to the subject-specific coordinate frame (Rohlfing

et al., 2009b), such that I(v) = A(v+u(v)). We further define a follow-up image It as a

deformation ΦBt from the baseline image Ib, which can be composed to yield an overall

deformation from the atlas to the follow-up scan via Φ−1
At = Φ−1

AB ◦ Φ−1
Bt = {u′(v)}v∈Ω:

It(v) = A(v + u′(v)). (A.1)

Using deformation u′(v) as the phenotype of interest in (A.1) captures the necessary

information for predicting new images, but leads to very high dimensional descriptors.

To regularize the transformation and to improve efficiency, we define a low-dimensional

embedding of u′(v). Specifically, we assume that the atlas provides a parcellation of

the space into L anatomical labels L = {Ψ}Ll=1. We build a low-dimensional embedding

of the transformation vectors u(v) within each label using PCA. We define the relevant

phenotypes yl,c as the coefficients associated with the first C principal components of

the model that capture 95% of the variance, for l = 1 . . . L, c = 1 . . . C.

We predict the phenotypes using (A.9). To construct a follow-up image It given
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the phenotype yt, we first form a transformation field Φ̂−1
At by reconstruction from the

estimated phenotype yt, and use Φ̂At assuming an invertible transformation. Using the

baseline image, we predict a subsequent image via ΦBt = Φ̂At ◦ Φ−1
AB. Note that we

do not directly model changes in image intensity. While population models necessitate

capturing such changes, we predict changes from a baseline image. We also assume that

affine transformations are not part of deformations of interest, and thus all baseline

images are affinely registered to the atlas.

� A.3.2 Health Similarities

To fully define the health similarity term H(·, ·, ·), we need to specify the forms of the

kernel functions KG(·, ·), KC(·, ·), and KI(·, ·).
For genetic data, we employ the identical by state (IBS) kernel often used in genetic

literature, which captures the similarity between two individuals in terms of their geno-

types (Queller and Goodnight, 1989). Given a vector of genetic variants g of length S,

each genetic locus is encoded as g(s) ∈ [0, 2], and

KG(gi, gj) =
1

2S

S∑
s=1

(2− |gi(s)− gj(s)|). (A.2)

To capture similarity of clinical indicators c, we define the diagonal weight matrixW

that captures the effect size of each clinical indicator on the phenotype and form the

kernel function

KC(ci, cj) = exp

(
− 1

σ2
C

(ci − cj)TW (ci − cj)
)
, (A.3)

where σ2
C is the variance of the clinical factors.

We define the image feature vectors fb as the set of all PCA coefficients defined

above for the baseline image. We define the image kernel matrix as

KI(fb,i, fb,j) = exp

(
− 1

σ2
I

||fb,i − fb,j ||22
)
, (A.4)

where σ2
I is the variance of the image features.

� A.4 Experiments

We illustrate our approach by predicting image-based phenotypes based on genetic,

clinical and imaging data in the ADNI longitudinal dataset (Jack et al., 2008)1 that

includes two to ten follow-up scans acquired 0.5−−7 years after the baseline scan. We

1This data was released as part of the Alzheimer’s Disease Big Data DREAM Challenge at
https://www.synapse.org/#!Synapse:syn2290704



Sec. A.4. Experiments 85

ICV Whole Brain Ventricles Hippocampus Entorhinal Fusiform Middle Temp.

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
E

rr
o

r

 

 

Baseline

Linear model

Full Model

Figure A.1: Relative error (lower is better) of volume prediction for seven structures
for high-change subjects (top decile of volume change). For the intracranial volume,
whole brain volume, ventricles, hippocampus, entorhinal cortex, fusiform gyrus, and
middle temporal gyrus, we report relative change between the baseline and the follow-
up measurement (red), relative error in prediction using a linear model (green), and
relative error in prediction using our complete model (blue).

use affine registration to align all subjects to a template constructed from 145 randomly

chosen subjects. We then compute non-linear registration warps ΦAI for each image

using ANTs (Avants et al., 2011b). We include a list of 21 genetic loci associated

with Alzheimer’s disease (AD) as the genetic vector g, and standard clinical factors

including age, gender, marital status, education, disease diagnostic, and cognitive tests,

as the clinical indicator vector c. We learn the model parameters from 341 randomly

chosen subjects and predict follow-up volumes on a separate set of 100 subjects. To

evaluate the advantages of the proposed predictive model, we compare its performance

to a population-wide linear regression model that ignores subject-specific health profiles

(i.e., H = 0).

� A.4.1 Volumetric Predictions

In the first simplified experiment, we define phenotype y to be a vector of several

scalar volume measurements obtained using FreeSurfer (Fischl, 2012). These include

intracranial volume, whole brain volume, ventricles, hippocampus, entorhinal cortex,

fusiform gyrus, and middle temporal gyrus. In addition to the population-wide linear

regression model, we include a simple approach of using the volume measurements at

baseline as a predictor of the phenotype at the follow-up time, effectively assuming

no volume change between the two time points. Since in most subjects, the volume

differences are small, all three methods perform comparably when evaluated on the

whole test set. To evaluate the differences between the methods, we focus on the subset

of subjects with substantial volume changes, reported in Fig. A.1. We observe that our

method consistently achieves smaller relative errors than the two baseline approaches.
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Figure A.2: Prediction results. Left: The Dice scores of labels propagated through
three methods for several AD-relevant structures in subjects with the most volume
change for each structure. We report the prediction based on the registration of the
actual follow-up scan to the atlas as an upper bound for warp-based prediction accuracy
(red), predictions based on the population-wide linear regression model (green), and the
full model (blue). Right: A predicted anatomical image for a patient diagnosed with
AD using a healthy model. The color overlay shows the squared magnitude of the
difference in predicted versus observed deformations, indicating a significantly different
expansion trajectory of the ventricles.

� A.4.2 Anatomical Prediction

We also evaluate the model for full anatomical scan prediction. To quantify prediction

accuracy, we propagate segmentation labels of relevant anatomical structures from the

baseline scan to the predicted scan using the predicted warps. We then compare the

predicted segmentation label maps with the actual segmentations of the follow-up scans.

In this case, the warps computed based on the actual follow-up scans through the atlas

provide an indication of the best accuracy the predictive model could achieve when

using warps to represent images. Similar to the volumetric predictions, the full model

offers modest improvements when evaluated on the entire test set, and substantial

improvements in the segmentation accuracy when evaluated in the subjects who exhibit

large volume changes between the baseline scan and the follow-up scan, as reported in

Fig. A.2. In both experiments, we found that all components hg, hc and hI contributed

significantly to the improved predictions.

Our experimental results suggest that the anatomical model depends on registration

accuracy. In particular, we observe that directly registering the follow-up scan to the

baseline scan leads to better alignment of segmentation labels than when transferring

the labels through a composition of the transformations from the scans to the atlas

space. This suggests that a different choice of appearance model may improve prediction

accuracy, a promising direction for future work.

To demonstrate the potential of the anatomical prediction, we predict the follow-up
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scan of a patient diagnosed with dementia as if the patient were healthy. Specifically,

we train our model using healthy subjects, and predict follow-up scans for AD patients.

In Fig. A.2 we illustrate an example result, comparing the areas of brain anatomy that

differ from the observed follow-up in the predicted healthy brain of this AD patient.

Our prediction indicates that ventricle expansion would be different if this patient had

a healthy trajectory.

� A.5 Conclusions

We present a model to predict the anatomy in patient follow-up images using pop-

ulation trends and subject-specific genetic and clinical information. We validate our

prediction method on scalar volumes and anatomical images, and show that it can be

used as a powerful tool to illustrate how a subject-specific brain might differ if it were

healthy. Through this and other new applications, our prediction method presents a

novel opportunity for the study of disease and anatomical development.
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Ehrhardt, Jan, René Werner, Alexander Schmidt-Richberg, Benny Schulz, and Heinz

Handels (2008). “Generation of a Mean Motion Model of the Lung Using 4D-CT

Image Data.” In: VCBM, pp. 69–76.

Ellson, John, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon

Woodhull (2002). “Graphviz-open source graph drawing tools”. In: Graph Draw-

ing. Springer, pp. 483–484.

Fazekas, F, R Kleinert, H Offenbacher, Rea Schmidt, G Kleinert, F Payer, H Radner,

and H Lechner (1993). “Pathologic correlates of incidental MRI white matter signal

hyperintensities”. In: Neurology 43.9, pp. 1683–1683.

Fischl, B. (2012). “FreeSurfer”. In: NeuroImage 62.2, pp. 774–781.

Fisher, M, Gregg Rothermel, Tyler Creelan, and Margaret Burnett (2006). “Scaling a

Dataflow Testing Methodology to the Multiparadigm World of Commercial Spread-

sheets”. In: Software Reliability Engineering, 2006. ISSRE’06. 17th International

Symposium on. IEEE, pp. 13–22.

Fonov, V.S., AC Evans, RC McKinstry, CR Almli, and DL Collins (2009). “Unbiased

nonlinear average age-appropriate brain templates from birth to adulthood”. In:

NeuroImage 47.

Fonov, V.S., Alan C Evans, Kelly Botteron, C Robert Almli, Robert C McKinstry,

D Louis Collins, Brain Development Cooperative Group, et al. (2011). “Unbiased

average age-appropriate atlases for pediatric studies”. In: NeuroImage 54.1, pp. 313–

327.



92 BIBLIOGRAPHY

Fox, G.C. and Dennis Gannon (2006). “Special issue: Workflow in grid systems”. In:

Concurrency and Computation: Practice and Experience 18.10, pp. 1009–1019.

Ge, Tian, Thomas E Nichols, Debashis Ghosh, Elizabeth C Mormino, Jordan W Smoller,

Mert R Sabuncu, et al. (2015). “A Kernel Machine Method for Detecting Effects of

Interaction Between Multidimensional Variable Sets: An Imaging Genetics Applica-

tion”. In: NeuroImage.

Gee, J.C., Martin Reivich, and Ruzena Bajcsy (1993). “Elastically deforming 3D atlas

to match anatomical brain images.” In: Journal of computer assisted tomography

17.2, pp. 225–236.

Gerig, Guido, Brad Davis, Peter Lorenzen, Shun Xu, Matthieu Jomier, Joseph Piven,

and S Joshi (2006). “Computational anatomy to assess longitudinal trajectory of

brain growth”. In: 3D data processing, visualization, and transmission, Third Inter-

national Symposium on. IEEE, pp. 1041–1047.

Gibson, Erin, Fuqiang Gao, Sandra E Black, and Nancy J Lobaugh (2010). “Automatic

segmentation of white matter hyperintensities in the elderly using FLAIR images

at 3T”. In: Journal of Magnetic Resonance Imaging 31.6, pp. 1311–1322.

Gootjes, L, SJ Teipel, Y Zebuhr, R Schwarz, G Leinsinger, Ph Scheltens, Hans-Jürgen
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