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Abstract. We present an image segmentation method that transfers
label maps of entire organs from the training images to the novel image to
be segmented. The transfer is based on sparse correspondences between
keypoints that represent automatically identified distinctive image loca-
tions. Our segmentation algorithm consists of three steps: (i) keypoint
matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based
probabilistic transfer of organ label maps. We introduce generative mod-
els for the inference of keypoint labels and for image segmentation, where
keypoint matches are treated as a latent random variable and are mar-
ginalized out as part of the algorithm. We report segmentation results
for abdominal organs in whole-body CT and in contrast-enhanced CT
images. The accuracy of our method compares favorably to common
multi-atlas segmentation while offering a speed-up of about three orders
of magnitude. Furthermore, keypoint transfer requires no training phase
or registration to an atlas. The algorithm’s robustness enables the seg-
mentation of scans with highly variable field-of-view.

1 Introduction

Is atlas-based segmentation without dense correspondences possible? Typical
registration- and patch-based segmentation methods [3,7,15,16] compute corre-
spondences for each location in the novel image to be segmented to the training
images. These correspondences are either obtained from dense deformation fields
or from the retrieval of similar patches. For scans with a large field-of-view, such
approaches become computationally intense. We propose a segmentation method
based on distinctive locations in the image - keypoints. In contrast to manually
selected landmarks [14], keypoints are automatically extracted as local optima of
a saliency function [12]. Matches between keypoints in test and training images
provide correspondences for a sparse set of image locations, which we use to
transfer entire organ segmentations. Working with sparse correspondences and
transferring whole organ maps makes our method computationally efficient. The
probabilistic fusion of organ maps yields a segmentation accuracy comparable to
that of state-of-the-art methods, while offering orders of magnitude of speed-up.
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Fig. 1. Illustration of keypoint transfer segmentation. First, keypoints (white circles)
in training and test images are matched (arrow). Second, voting assigns an organ label
to the test keypoint (r.Kidney). Third, matches from the training images with r.Kidney
as labels are transferred to the test image, creating a probabilistic segmentation. We
show the manual segmentation for comparison.

Keypoint matching offers the additional advantage of robustness in establish-
ing correspondences between images with varying field-of-view. This property is
important when using manually annotated whole-body scans to segment clini-
cal scans with a limited field-of-view. In clinical practice, the diagnostic focus
is commonly on a specific anatomical region. To minimize radiation dose to the
patient and scanning time, only the region of interest is scanned. The align-
ment of scans with a limited field-of-view to full abdominal scans is challenging
with intensity-based registration, especially when the initial transformation does
not roughly align anatomical structures. The efficient and robust segmentation
through keypoint transfer offers a practical tool to handle the growing number
of clinical scans.

Figure 1 illustrates the keypoint transfer segmentation. Keypoints are iden-
tified at salient image regions invariant to scale. Each keypoint is characterized
by its geometry and a descriptor based on a local gradient histogram. After key-
point extraction, we obtain the segmentation in three steps. First, keypoints in
the test image are matched to keypoints in the training images based on the
geometry and the descriptor. Second, reliable matches vote on the organ label
of the keypoint in the test image. In the example, two matches vote for right
kidney and one for liver, resulting in a majority vote for right kidney. Third,
we transfer the segmentation mask for the entire organ for each match that is
consistent with the majority label vote; this potentially transfers the organ map
from one training image multiple times if more than one match is identified for
this training image. The algorithm also considers the confidence of the match in
the keypoint label voting. Keypoint transfer does not require a training stage.
Its ability to approximate the organ shape improves as the number of manually
labeled images grows.

1.1 Related Work

Several methods have been previously demonstrated for segmenting large field-
of-view scans. Entangled decision forests [13] and a combination of discriminative
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and generative models [8] have been proposed for the segmentation of CT scans.
A combination of local and global context for simultaneous segmentation of
multiple organs has been explored [11]. Organ detection based on marginal space
learning was proposed in [20]. The application of regression forests for efficient
anatomy detection and localization was described in [4]. In contrast to previously
demonstrated methods, our algorithm does not require extensive training on a
set of manually labeled images.

We evaluate our method on the publicly available Visceral dataset [10,19].
Multi-atlas segmentation on the Visceral data was proposed in [6,9], which we
use as a baseline method in our experiments. Our work builds on the identifica-
tion of keypoints, defined as a 3D extension [18] of the popular scale invariant
feature transform (SIFT) [12]. In addition to image alignment, 3D SIFT features
were also applied to study questions related to neuroimaging [17]. In contrast to
previous uses of the 3D SIFT descriptor, we use it to transfer information across
images.

2 Method

In atlas-based segmentation, the training set includes images I = {I1, . . . , In}
and corresponding segmentations S = {S1, . . . , Sn}, where Si(x) ∈ {1, . . . , η}
for η labels. The objective is to infer segmentation S for test image I. Instead
of aligning training images to the test image with deformable registration, we
automatically extract anatomical features from the images and use them to
establish sparse correspondences. We identify keypoints that locally maximize a
saliency function. In the case of SIFT, it is the difference-of-Gaussians [12]

{(xi, σi)} = local arg max
x,σ

|f(x, κσ) − f(x, σ)|, (1)

where xi and σi are the location and scale of keypoint i, f(·, σ) is the convolution
of the image I with a Gaussian kernel of variance σ2, and κ is a multiplicative
scale sampling rate. The identified local extrema in scale-space correspond to
distinctive spherical image regions. We characterize the keypoint by a descrip-
tor FD computed in a local neighborhood whose size depends on the scale of
the keypoint. We work with a 3D extension of the image gradient orientation
histogram [18] with 8 orientation and 8 spatial bins. This description is scale
and rotation invariant and further robust to small deformations. Constructing
the descriptors from image gradients instead of intensity values facilitates com-
parisons across subjects.

We combine the 64-dimensional histogram FD with the location F x ∈ R
3

and scale F σ ∈ R to create a compact 68-dimensional representation F for each
salient image region. We let FI denote the set of keypoints extracted from the
test image I and FI = {FI1 , . . . ,FIn} denote the set of keypoints extracted from
the training images I. We assign a label to each keypoint in FIi according to
the organ that contains it, L = Si(Fx) for F ∈ FIi . We only keep keypoints
within the segmented organs and discard those in the background. The organ
label L is unknown for the keypoints in the test image and is inferred with a
voting algorithm as described later in this section.



236 C. Wachinger et al.

2.1 Keypoint Matching

The first step in the keypoint-based segmentation is to match each keypoint
in the test image with keypoints in the training images. Some of these initial
matches might be incorrect. We employ a two-stage matching procedure with
additional constraints to improve the reliability of the matches. First, we com-
pute a match M(F )i for a test keypoint F ∈ FI to keypoints in a training
image FIi by identifying the nearest neighbor based on the descriptor and scale
constraints

M(F )i = arg min
F∈FIi

‖FD − FD‖, s.t. ε−1
σ ≤ F σ

Fσ
≤ εσ, (2)

where we set a loose threshold on the scale allowing for variations up to a factor
of εσ = 2. We use the distance ratio test to discard keypoint matches that are
not reliable [12]. The distance ratio is computed between the descriptors of the
closest and second-closest neighbor. We reject all matches with a distance ratio
of greater than 0.9.

To further improve the matches, we impose loose spatial constraints on the
matches, which requires a rough alignment. For our dataset, accounting for trans-
lation was sufficient at this stage; alternatively a keypoint-based pre-alignment
could be performed [18]. We estimate the mode of the translations ti proposed
by the matches Mi from training image Ii with the Hough transform [2]. Map-
ping the training keypoints with ti yields a rough alignment of the keypoints
and enables an updated set of matches with an additional spatial constraint

M(F )i = arg min
F∈FIi

‖FD − FD‖, s.t. ε−1
σ ≤ F σ

Fσ
≤ εσ, ‖F x − Fx+ti‖2 < εx,

where we set the spatial threshold εx to keep 10 % of the closest matches. As
before, we discard matches that do not fulfill the distance ratio test.

F

m

FL

L

We define a distribution p(m) over matches, where a
match m associates keypoints in the test image I and training
images Ii. We use kernel density estimation on translations
proposed by all matches Mi between keypoints in the test
image and those in the i-th training image. For a match m ∈
Mi, the probability p(m) expresses the translational consis-
tency of the match m with respect to all other matches in Mi.
This non-parametric representation accepts multi-modal dis-
tributions, where the keypoints in the upper abdomen may
suggest a different transformation than those in the lower abdomen.

2.2 Keypoint Voting

After establishing matches for keypoints in the test image, we estimate an organ
label L for each keypoint in the test image based on the generative model illus-
trated above. The latent variable m represents the keypoint matches found in the
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previous step. Keypoint labeling is helpful to obtain a coarse representation of
the image, including rough location of organs. Additionally, we use the keypoint
labels to guide the image segmentation as described in the next section. For
inference of keypoint labels, we marginalize over the latent random variable m
and use the factorization from the graphical model to obtain

p(L,F,L,F) =
∑

m∈M(F )

p(L,F,L,F ,m) (3)

=
∑

m∈M(F )

p(L|L,m) · p(F |F ,m) · p(m), (4)

where M(F ) contains matches for keypoint F across all training images. The
marginalization is computationally efficient, since we only compute and evaluate
a sparse set of matches. We define the label likelihood

p(L = l|L,m) =
{

1 if Lm(F ) = l,
0 otherwise, (5)

where Lm(F ) is the label of a training keypoint that the match m assigns to
the test keypoint F . The keypoint likelihood is based on the descriptor of the
keypoint

p(F |F ,m) =
1√

2πτ2
exp

(
−

‖FD − FD
m(F )‖22

2τ2

)
, (6)

where we set τ2 = maxm ‖FD − FD
m(F )‖22. We assign the most likely organ label

to the keypoint

L̂ = arg max
l∈{1,...,η}

p(L = l|F,L,F) = arg max
l∈{1,...,η}

p(L = l, F,L,F). (7)

2.3 Keypoint Segmentation

S

S
I

I

m

L

Here, we introduce a generative model for image segmen-
tation based on keypoint matches and keypoint voting.
The latent image segmentation S depends on the key-
point label L and the training segmentations S. A fur-
ther dependency exists between the test image I and the
training images I. All relations between test and training
images or keypoints depend on the matches, which bring
them into correspondence. We let Im denote the training
image identified with match m after the transformation
implied by the match has been applied. Sm is similarly
defined to be the selected and transformed segmentation
map. We infer the segmentation S by marginalizing over
the latent random variables and using the factorization from the graphical model
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p(S, I,S, I,L) =
∑

m∈M

∑
L

p(S, I,S, I,L, L,m) (8)

=
∑

m∈M

∑
L

p(S|L,S,m) · p(I|I,m) · p(L|m) · p(m). (9)

The likelihood of image segmentation causes keypoints to transfer entire
organ label maps

p(S|L,S,m) ∝
{

1 if SL = SL
m,

0 otherwise, (10)

where SL and SL
m are the regions with label L in the test and training segmen-

tations, respectively. This likelihood further restricts keypoints to only transfer
segmentations with the same label. We also investigate the transfer of organ
segmentations that are different from the keypoint labels in our experimental
evaluation.

For the label likelihood we consider p(L|m) ∝ p(L) ·δ(Lm, L̂). The Kronecker
delta δ only allows training keypoints to transfer their votes that are consistent
with the majority vote in Eq. (7). This improves the robustness of the method
because even if single matches propose to assign the wrong label to the test
keypoint, such matches are discarded for the segmentation, as long as they do
not reach the majority. The probability p(L) models the certainty of the label
voting for the keypoint in Eq. (7).

The image likelihood assumes conditional independence of the locations x
on the image grid Ω and models the local similarity between test and training
image

p(I(x)|I,m) =
1√
2πν

exp
(

− (I(x) − Im(x))2

2ν2

)
, (11)

where ν2 is the intensity noise variance. We obtain the final segmentation Ŝ(x)
by selecting the most likely label

Ŝ(x) = arg max
l∈{1,...,η}

p(S(x) = l|I(x),S, I,L) = arg max
l∈{1,...,η}

p(S(x) = l, I(x),S, I,L).

We account for not transferring the background surrounding the organ by assign-
ing Ŝ(x) to the background label if the maximal probability in the voting is
below 15 %.

We illustrate the mechanism for computing the
segmentation likelihood p(S(x) = liver) on an
example of liver. We sum across all matches to
all the training images. Only matches that involve
training keypoints with the label of liver are con-
sidered, identified by δ(Lm, L̂). Further, the label
of liver must be assigned to the test keypoint L.
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If the match satisfies these requirements, the entire liver label map is trans-
ferred with the transformation proposed by the match m; this step is modeled
by P (S|L,S,m). The transfer affects the segmentation likelihood p(S(x)) only
if location x is within the spatial extent of the transferred liver label map. To
increase the robustness and accuracy of the segmentation, we weigh the trans-
ferred segmentation according to the certainty in the keypoint label voting p(L),
in the match p(m), and in the local intensity similarity of the test and training
image p(I(x)|I,m).

We also investigate the potential improvement of the segmentation by account-
ing for affine organ variations across subjects. If there are at least three matches
for an organ between one training image and the test image, we estimate an organ-
specific affine transformation. We apply the random sample consensus (RANSAC)
algorithm [5] to determine the transformation parameters with the highest num-
ber of inliers. In our experimental evaluation, the organ-wide affine transformation
did not achieve a robust improvement of segmentation accuracy and is therefore
not reported in the results. The affine transformation may not improve results
because we transfer organ labels multiple times per scan for different translations,
which already accounts for organ variability in combination with the weighted vot-
ing across subjects.

Table 1. Keypoint voting statistics per organ for ceCT (top) and wbCT (bottom):
the average number of keypoints per organ, the average fraction of keypoints that
get labeled, and the average fraction of correct keypoints labels. Keypoints are not
assigned labels if there exists no reliable match. We omit background keypoints from
the training images. Only about one third of the background keypoints are labeled.

Organs Liver Spleen Aorta Trachea R.Lung l.Lung r.Kid l.Kid r.PM l.PM Bckgrnd

# Keypts 13.6 4.0 7.6 3.0 29.7 24.7 12.1 12.2 2.5 3.0 526.0

% Labeled 0.73 0.89 0.98 1.00 0.95 0.92 0.98 0.99 0.94 0.92 0.33

% Correct 0.87 0.91 0.97 0.99 1.00 1.00 0.98 1.00 0.99 0.93 0.00

# Keypts 6.0 2.6 5.6 4.4 28.2 24.0 6.7 9.0 2.5 2.5 637.2

% Labeled 0.93 0.98 1.00 1.00 0.98 0.98 0.98 0.99 0.98 1.00 0.35

% Correct 0.82 0.87 0.92 1.00 0.99 0.99 0.98 0.96 1.00 0.93 0.00

3 Results

We perform experiments on 20 contrast-enhanced CT (ceCT) scans and on 20
whole-body CT (wbCT) scans from the Visceral dataset re-sampled to 2 mm
isotropic voxels [10]. We segment 10 anatomical structures (liver, spleen, aorta,
trachea, left/right lung, left/right kidney, left/right psoas major muscle (PM)).
Image dimensions are roughly 217×217×695 for wbCT and 200×200×349 for
ceCT. We set ν = 300 for lungs and trachea and ν = 50 for all other organs. We
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perform leave-one-out experiments by using one image as test and the remaining
19 images as training images. We compare our method to multi-atlas segmenta-
tion with majority voting (MV) [7,15] and locally-weighted label fusion (LW) [16]
using ANTS [1] for deformable registration. We quantify the segmentation accu-
racy with the Dice volume overlap between manual and automatic segmentation.

Liver Spleen Aorta Trachea r.Lung l.Lung r.Kid l.Kid r.PM l.PM
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Fig. 2. Segmentation accuracy for ten organs on ceCT images for majority voting,
locally-weighted voting, and keypoint transfer. Bars indicate the mean Dice and error
bars correspond to standard error.
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Fig. 3. Segmentation accuracy for ten organs on wbCT images for majority voting,
locally-weighted voting, and keypoint transfer. Bars indicate the mean Dice and error
bars correspond to standard error.

Table 1 reports statistics for the voting on keypoint labels. The average num-
ber of keypoints varies across organs. Keypoints are not labeled if they do not
receive reliable matches that pass the spatial constraint and the distance ratio
test. Focusing on reliable keypoints improves the performance of the algorithm
because it is possible that certain keypoints in the test image do not appear in
the training set. For the keypoints that are labeled, the voting accuracy is high.
All of the votes on background keypoints in the test image are incorrect, since
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we do not include background keypoints in the training set. However, only about
one third of the background keypoints receives labels. The remaining background
keypoints have limited impact on the segmentation as long as there is no bias in
transferring organ maps to a specific location.

Manual Keypoint Atlas Manual Keypoint Atlas 

Fig. 4. Coronal views of example segmentation results for ceCT (left) and wbCT (right)
overlaid on the intensity images. Each series reports segmentations in the following
order: manual, keypoint transfer, locally-weighted multi-atlas.

Figures 2 and 3 report segmentation results for ceCT and wbCT scans,
respectively, comparing keypoint transfer to multi-atlas segmentation. Locally-
weighted voting outperforms majority voting for all anatomical structures. Key-
point transfer segmentation yields segmentation accuracy comparable to that
of locally-weighted voting for most structures and better accuracy for the seg-
mentation of kidneys; the increase in Dice for kidneys is about 0.15 on ceCT
and about 0.2 on wbCT. In these experiments, the transfer of segmentations
that are different from the keypoint label did not achieve a robust improvement
and are therefore not reported. Figure 4 illustrates segmentation results for ceCT
and wbCT.

Figure 5 reports the average segmentation result for ceCT scans when varying
the number of training scans from 5 to 15; the evaluation is on the five images
not included in the training set. The segmentation accuracy generally increases
with the number of training scans. This result suggests that averaging over
segmentations of a larger number of subjects helps in recovering the true shape
of the organ. The availability of larger datasets in the future may therefore
further improve the segmentation results. An atlas selection scheme that only
transfers organs from overall similar subjects may be helpful, which could be
efficiently implemented based on keypoints.

Figure 6 reports the runtime of keypoint transfer segmentation and multi-
atlas label fusion. The segmentation with keypoint transfer is about three orders
of magnitude faster. On ceCT scans, the extraction of keypoints takes about
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Fig. 5. Segmentation accuracy for ten organs on ceCT images with keypoint transfer
with the number of training images ranging from 5 to 15. Bars indicate the mean Dice
over five test images and error bars correspond to standard error.

Fig. 6. Average runtimes (in minutes) of the segmentation of ten organs in one image
with keypoint transfer and multi-atlas label fusion for ceCT and wbCT. The time is
displayed on the logarithmic scale.

30 s and the segmentation transfer takes 16 s, yielding a segmentation time for
ten organs that is below one minute. The segmentation transfer is implemented
in Matlab without parallelization. For multi-atlas segmentation, the pairwise
deformable registration consumes most of the runtime. We also experimented
with creating a probabilistic atlas, which reduces computational costs. However,
the iterative estimation of the atlas is also expensive and the high anatomical
variability of the abdomen makes the summarization challenging.

In addition to the segmentation of abdominal and whole-body scans, we also
evaluated the segmentation of scans with limited field-of-view. In clinical prac-
tice, such partial scans frequently occur because of a specific diagnostic focus. To
test the performance of the algorithm, we crop ceCT and wbCT images around
the kidneys and the spleen, as shown in Fig. 7. For spleen images, we found
a substantial improvement by transferring organ segmentations that are differ-
ent from the keypoint label. Figure 7 reports results for segmenting the spleen
byonly using spleen keypoints and by also using lung and liver keypoints. In the
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partial scans, we notice a slight decrease in segmentation accuracy, compared
to working on the full scans. However, the keypoint transfer is overall robust to
variations in the field-of-view and enables segmentation without modifications
of the algorithm. We do not report results for the multi-atlas segmentation in
this experiment because the registration between the cropped images and the
training images failed. Since the initial alignment does not lead to a rough over-
lap of the target regions, it is a very challenging registration problem. While it
may be possible to develop initialization techniques that improve the alignment,
we consider it a major advantage of the keypoint transfer that no modification
is required to handle limited field-of-view scans.

0
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ceCT

wbCT 

ceCT 

r.Kidney l.Kidney Spleen Spleen 
Across

0

0.2

0.4
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r.Kidney l.Kidney Spleen Spleen 
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Fig. 7. Coronal views of scans with limited field-of-view showing the kidneys or the
spleen, illustrated for ceCT and wbCT, respectively. Bars indicate the mean Dice and
error bars correspond to standard error. ‘Spleen Across’ corresponds to using lung and
liver keypoints to transfer spleen segmentations.

4 Conclusion

We introduced an image segmentation method based on keypoints that trans-
fers label maps of entire organs. Relying on sparse correspondences between
keypoints in the test and training images increases the efficiency of the method.
Keypoint matches are further robust to variations in the field-of-view of the
images, which enables segmentation of partial scans. Our algorithms for the key-
point voting and the segmentation transfer were derived from generative models,
where latent random variables were marginalized out. The accuracy of our seg-
mentation compares favorably to multi-atlas segmentation, while requiring about
three orders of magnitude less computation time.
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