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Abstract D(z,y) is a function that for any point inside a shape is
equal to the distance from the point to the closest point on
In this paper, we present a novel approach to robust an outline [2, 15]. A skeleton of a shape can be defined as
skeleton extraction. We use undirected graphs to modelthe set of ridge points of the distance map. It can be proved
connectivity of the skeleton points. The graph topology that the two definitions are equivalent, and furthermore, a
remains unchanged throughout the skeleton computationyvalue of a distance map at any skeletal point is equal to the
which greatly reduces sensitivity of the skeleton to noise inradius of the inscribed circle associated with it.

the shape outline. Furthermore, this representation natu-  Numerous algorithms have been developed for skeleton
rally defines an ordering of the points along the skeleton. gyiraction [1, 3, 12, 13], using wavefront propagation or dis-
The process of skeleton extraction can be formulated as €nygnce transform. Another group of algorithms uses Voronoi
ergy minimization in this framework. We provide an itera- giagrams for skeleton computation [4, 16]. The main draw-
tive, snake-like algorithm for the skeleton estimation using pack of traditional skeletons is their high sensitivity to noise
distance transform. _ in the boundary: small errors in segmentation of the object
Fixed topology skeletons are useful if the global shape of .5, grastically change the structure of the subsequently de-
the object is known ahead of time, such as for people sil-fjyeq skeleton. This becomes a serious problem when the
houettes, hand outlines, medical structures, images of 'et'shapes are not defined by smooth curves or surfaces, but ex-

ters and digits. Small changes in the object outline should y4cted from digital images. Several methods have been pro-
be either ignored, or detected and analyzed, but they do nothoseq 1o stabilize the skeleton extraction, mostly by prun-

change the general structure of the underlying skeleton. Ex-jnq “fajse” branches that are believed to be caused by noise
ample applications include tracking, object recognition and i, the outline [4, 12, 13]. A different approach, based on

shape analysis. self-similarity of a smooth outline curve, was demonstrated
in [14].
. Skeletons provide an intuitive, compact representation of
1. Introduction a shape, which made them appealing for many applications

in computer vision. One of the important features of the me-
Skeletons, or medial axis transforms, have been used indial axis representation is separation of the shape’s topolog-
computer vision for several decades. As the name implies, acal properties (sub-parts and connectivity between them)
skeleton is a set of curves that approximates the local sym-from its geometric properties (the location of the curves
metry axis of the shape. Several definitions of skeletonsand the shape width at every skeletal point). If the object
have been proposed in the literature. One of the first [2] of interest undergoes non-rigid transformations, this prop-
was based on a “grass fire” model, i.e., a moving wave- erty becomes important for modeling the shape. Examples
front generated by an inward motion of an outline curve include articulated motion (e.g., people, non-rigid objects),
with constant speed along a normal vector at every pointas well as differences in shape between different instances
on the curve. The skeleton is the set of points at which the of the same object that cannot be explained by the simi-
wavefront crosses itself. It can be shown that each skele-larity transformation (for example, natural shape variabil-
tal point is the center of an inscribed circle that touches the ity of anatomical structures). Recent examples of applica-
outline in more that one point. tions using skeletons include modeling of articulated mo-
An alternative definition for skeletons is based on a tionin tracking (a human body was modeled using a simpli-
distance transform. Distance transform, or distance mapfied version of a skeleton for a tracking application in [8]),



shape modeling of anatomical structures for segmentatiorto create a graph-like representation of the segmented set
and registration (a modified version of skeletons, so calledof tubular structures, such as blood vessels, for therapeutic
coreswas used in [6] for this purpose) and statistical shape planning and surgical navigation. While traditional skele-
analysis (shape features were extracted using skeletons faions are too sensitive to noise to produce a satisfactory re-
corpus callosa and used for classification in [10]). sult, the algorithm proposed in this paper can be easily ex-

In this paper, we propose and develop an approach totended to handle 3D tubular structures (whose skeletons are
robust estimation of the geometrical properties of the shapecurves), and therefore can be used in those applications.
and its skeleton in cases when the topology of the skeleton

is knowna priori. 1.2. Active Contours

1.1. Fixed Topology Skeletons A graph representation of a skeleton lends itself naturally
to a snake-like algorithm. Snakes, or active contours, were
In many applications, the global shape of the object is introduced by Kass, Witkin and Terzopoulos [11] and have
known ahead of time, and one would like to either ignore been extensively used in computer vision for segmentation.
small changes in the shape (for example, in tracking of ar- This approach casts the problem of boundary localization
ticulated objects), or detect and study them (such as shapénto a curve evolution framework. The curve is evolved in a
analysis of anatomical structures). This information can potential energy field (intensity gradient in the case of seg-
help in extracting the skeleton more reliably. We propose a mentation) under a set of smoothness constraints. Fua and
new representatiofixed topology skeleton® be used asa  Brechbuhler [7] proposed a method for incorporating ge-
framework for incorporating constraints on shape topology ometric constraints (angle values, distances, etc.) into the
into the skeleton extraction algorithm. We model a skele- active contour algorithm.
ton using an undirected graph whose global structure does |f we use the distance transform as the potential en-
not change during the computation, while its location is ad- ergy function in this formulation, the snake algorithm can
justed to approximate the main ridges of the distance map.be used for skeleton extraction. In fact, Leymarie and
An important question is, “What are the situations when the | evine [13] used the active contour algorithm on the dis-
information on the topology of the skeleton is available and tance transform to simulate the grass fire wavefront propa-
can be used for robust estimation of its geometrical proper-gation and estimate the shape skeleton. The points where
ties?” We discuss several such examples in this section andhe wavefront crossed itself were identified as skeletal
provide the results for some of them in Section 5. points. A post-processing step of parsing the resulting snake
In tracking human motion, we know the general shape of and estimating the graph structure from the collapsed con-
the object and would like to estimate its location, size and tour was proposed, as well as a pruning technique that could
the position of the articulated parts relative to each other. pe incorporated into the algorithm.
By fixing the topology of the skeleton, we utilize informa-  The main difference of the algorithm used in this pa-
tion available to us besides the input image to improve the per for estimation of the skeleton location from other snake
accuracy of the skeleton estimation. Moreover, the consid-pased methods is that we operate on a graph of a general
erations of speed in real time applications force us to usestructure (as an opposite to a set of closed curves). In our
images of low resolution, which causes even greater quantiimplementation, the branches of the graph are driven in a
zation error and more noise in the outline extraction. There-snake-like fashion towards the ridges of the distance map,
fore the proposed approach can offer a significant improve-while the connectivity between the branchesiis fixed. Use of
ment by using additional information to stabilize the skele- prior information allows us to eliminate the steps of t0p0|_
ton. The resulting skeleton can be used to study the objeclogy estimation and pruning required in [13]. This points to
motion, e.g., measuring the angles between branches of then additional advantage of using a graph representation: it
skeleton and their change over time, or detecting periodicity defines a natural ordering of the points along the skeleton
of the motion. curves. This can be important if the skeletons are used to
Other examples are medical applications such as virtualestablish correspondence between similar shapes, or to ex-
endoscopy and vessel connectivity estimation. One of thetract shape features for further analysis. It can be difficult
tasks of virtual endoscopy [9, 17] is to generate a smoothto infer the connectivity structure in places where several
fly-through path between two points inside a tubular struc- skeleton branches merge together, as many points seem to
ture, such as bronchior a colon, that is as close to the middlebe good candidates for a junction node. In the proposed rep-
of the tube as possibleln the second example, the goal is resentation, the connectivity is fixed and we optimize for the

1 _ _ position of the junction.
Any contact of the path with the walls of the structure will cause poor . . .
visualization and will increase chances of tissue damage if the system is  1n€ remainder of the paper is organized as follows. In

used to drive an endoscope. the next section, we define the graph representation and in-




troduce necessary notation. Section 3 contains a review ofeaves and the junction nodes determine the skeleton topol-
the traditional active contours algorithm, followed by a de- ogy.

scription of a modified snake algorithm we developed for

skeleton extraction. Then the results of applying this tech- 3. Active Contours

nigue and testing of the algorithm’s sensitivity to initializa-

tion are presented, followed by concluding remarks. A common physical model used by active contours is an
) elastic band with mass densityand elasticityx moving
2. Graph Representation in the potential energy field. The band is parametrized by

arclength ax (&) = (x(£),y(£)),0 < ¢ < 1. The problem

We use undirected graphs to model skeletons. A nodeof ridge extraction of an image function can be formulated
in a graph corresponds to a point on the skeleton, an edgeas an energy minimization:
establishes a neighborhood relationship between two points L
of the skeleton. There are three types of nodes: leaves, junc- Erotal = / [pEp(x(€),y(€)) + Ea(E))] dE, ()
tion nodes and internal nodes. A leaf has exactly one neigh- 0
bor and is used to model an endpoint of a skeleton. A junc-\yheres (z,y) is the potential energy function, and
tion node has more than two neighbors and corresponds to a

merging point of several branches of a skeleton. An internal ox Oy

node has exactly two neighbors and is used to approximate Ea(§) = w (8_5) (3_£> ()

points on the branches of the skeleton. Formally, a skeleton

S = (V, E, X) is defined as following: is the energy of the elastic deformation. Using Euler-
V= {ill<i<N}, Lagrange equations, we arrive at the dynamics of the curve

(defined by two forces: the gradient of the potential energy

ECVxV, 1) and the elastic deformation force):
X = {Xi}iEVa 82X
whereV is the set of nodest is the set of edges of the x¢(€) = —pVEy(x) + 58—52' (6)

graph andX is the set of node positions; = (z;,y;) in ) . s . .
the image plane. We us¥, to denote a set of neighbors of Geodesic snakes algorithm [5] modifies this equation to

nodei restrict the evolution of the curve to the normal direction at
N2 (il 4) € B} ) every point on the curve:
A reductionoperation on an internal node is defined as 9°x
= ((—pVE —)-N N 7
removing the node, while adding a new edge between its xe(8) = ((=pVE(x) + K(%Q) (ENN(E), @

neighbors. If reduction is applied repeatedly to the graph
until there are no internal nodes left in the graph, we call
the resulting graph angraph (for “reduced graph”):

where(u - v) is an inner product of vectons andv, and
N(¢) is a unit length normal pointing inwards. This ap-
proach postulates that displacements along the tangent di-
RWV,E, X)=(V,, E., X,), rections affect the parameterization of the curve, but not its
V, = {i||N;| # 2}, shape, and should therefore be excluded from the evolution

there exists a path from dyrllamicsi' di i imation i d. and Eq. (7
E, = {(i,j)| itojinSpassingthru b, (3) n practice, a discrete approximation is used, and Eq. (7)

internal nodes only becomes
Xr = {xitiev,, Axt = xfo Xf (8)
We say that two undirected graphs have the same topology = ((—pV&(x;) + K Z x —x!) - NHNE,
if the corresponding-graphsare isomorphic. It is easy to JEN;

see that the topology of the skeleton is fully determined by . . - . .

- . e . wherex! is the location of point on the discrete approxi-
the connectivity between its leaves and its junction nodes. ‘-

mation of the snake at iteratiomndIN’. is the normal vector
Therefore, we can guarantee that the topology of the graph
at that location estimated using the pomts neighbors.
does not change if we restrict our modifications of the graph .
Since we are interested in extracting the ridges of the dis-

to reductions and insertions of internal nodes of the graph. tance map, we use the negated distance transffm y)
We observe that the nodes of the three types play differ- P. 9 ) my
as a potential energy function:

ent roles in the graph representation of the skeleton: the in-
ternal nodes are used to approximate the curves of the skele-  Ax! — ((p)VD(x!) + & Z xt —xt) - NYNL )
ton (which are not necessarily straight lines), and the the jen:



Curvature

The process is stopped when the curve starts oscillating N
around the ridge. We can see that this process essentially o
simulates a smoothed version of a wavefront propagation o2
process. i W
4, Skeleton Estimation point index
(a) (b) (©)
Now we are ready to describe an algorithm for skeleton
estimation that consists of three main steps. First, we esti- Figure 1. Skeleton extraction, example: (a) orig-
mate the positions of the leaf nodes along the outline and inal distance map; (b) initial skeleton graph; (c)
initialize the graph. Then we use a snake-like algorithm  curvature.
to “drive” the graph along the gradient of the distance map
while keeping the leaf nodes fixed. Once the graph has set-
tled onto the distance map ridges, the leaf node positions ar@ising one point on the left side of the shape and one point
adjusted to minimize the reconstruction error. This section on the right side of the shape. Since the skeleton structure

describes each of the three steps in details. is fairly simple, this was sufficient for reliable skeleton es-
timation.
4.1. Leaf Position Estimation Once the leaf node positions on the outline are estimated,

the junction nodes are assigned arbitrary locations along the
In order to initialize the skeleton graph, we first esti- outline. Then branches are constructed to follow the outline.
mate positions of all leaf nodes along the outline. Since the This constrains the graph to the inside of the shape, since we
leaf positions will be refined in the later steps of the algo- are using the gradient of the distance transform to “drive”
rithm, the precision of this step is not crucial, as long as the the graph.
initial estimates are in the “right segments” of the outline  The algorithm is quite insensitive to the initial position
(i.e., they can be off the optimal position, but not swapped of the junction nodes. We have tested the algorithm for dif-
with another leaf on the outline). Section 5 examines the ferent initialization points, and it converged to the same so-
method’s sensitivity to errors in initialization of the leaves. lution independently of the initial positions of the junction
It has been shown [12, 13, 15] that the endpoints of the nodes, while the number of iterations varied slightly de-
skeleton correspond to maxima of positive curvature alongpending on the initialization point. For example, we tested
the outline. This provides us with a way of estimating the 20 different initialization points for the junction nodes se-
leaf positions. Fig. 1 shows an example shape, an initiallected randomly along the outline for the shape in Fig. 1.
graph, and a plot of the outline curvature for that shape. TheThe number of iterations required for the skeleton to con-
five maximum points were used to initialize the skeleton.  verge varied between 405 and 440. Using the first skeleton
In some applications, the initialization can us@riori as reference, in all trials the distance between any point on
knowledge about the shape. For example, for people trackthe resulting skeleton and the closest point on the reference
ing, we can get a fairly accurate guess at the initial position skeleton was under 1 pixel. Fig. 2 shows the progress of the
and orientation of the skeleton based on the bounding boxalgorithm and the final solution for two different initializa-
of the silhouette. Section 5 contains an example of a track-tion points for that shape.
ing application and provides the details of the leaf position
estimation. In tracking in general, the results from the previ- 4.2. Graph Position Estimation
ous frames can be used to initialize the skeleton in the next
frame, so that only the first frame needs to be initialized us- The branches of the graph evolve using the standard
ing additional information. If the motion is estimated from snake update rule of Eq. (9) (we upe= 1,k = 0.5 in
a video sequence, some combination of the predicted posi-our experiments), while the leaf nodes remain fixed on the
tions for the leaf nodes in the next frame and the estimationoutline. This evolution allows us to update the positions
results from the previous frame can be used for initializa- of the internal nodes. For technical reasons, it is desirable
tion. to maintain close to uniform sampling along the curves, and
Medical images are another example where additionaltherefore the branches of the skeleton need to be re-sampled
information on the shape orientation might be available. In (re-parametrized) every few iterations. Note that this does
this case, we usually know an approximate position and ori- not change the topology of the correspondirgraph, as
entation of a body in the scanner, and this might be suffi- we only operate on internal nodes.
cient for initial estimation. Section 5 contains an example  The junction nodes serve as connectors between the
of corpus callosum, when the initialization was performed branches, their main purpose is to preserve the structure of



Figure 2. Skeleton location after 0, 5, 15, 200, 300 and 400 iterations for two different initializations of the junction
nodes. Stars indicate junction nodes. The skeleton is first folded along the outline with both junction nodes

placed at the same point. As the algorithm progresses, the skeleton unfolds and settles onto the ridges of the
distance map.

the skeleton. Thus the update rule for a junction node placesNote that we can bound the distandé¢a; ©’) ande, using

it in the center of the polygon defined by its neighbors: the points of the skeleton directly, without reconstructing
1 the outline (a triangle inequality):
t+1 L t
xS 2 X (10 1w 0) < min(lu—xl + Dx).  (13)
JEN; x; €S

This rule is somewhat similar to Eq. (9), except that the ~ We say that pointi on the original outline i®xplained
junction nodes are not affected by the distance map. by pointx; on the skeleton if the closest point toon the
The algorithm stops when no node is moving signifi- reconstructgd outline was generated by th'e c!rcle 'centered
cantly. Fig. 2 shows several snapshots of the skeleton duringﬁt x;. We will say that a segment of an outlinesisplained
this process. y a particular branch of the skeleton if every node in the
segment is explained by some node on the branch.
4.3. Leaf node position re-estimation Now we can describe the algorithm for estimating an
optimal position for each leaf node. First, we estimate a
In order understand how the optimal positions of the segment of t.he outline that is explained by the leaf branch
leaves are estimated, let's first consider reconstructing the(Which consists of nodes between the leaf and the closest
outline from its estimated skeleton. This can be achieved/unction node). This is achieved by scanning the outline
by creating a circle around each skeletal point with the ra- ffom the leaf node in each direction until we encounter a
dius equal to the value of the distance map at that point and?°de on the outline that is explained by the node on the
computing an envelope of all the circles. If the skeleton SKeléton that does not belong to the leaf branch. Then we
were precise, the reconstructed outline would be identical to@llow the leaf node to slide along the outline (first in the
the original one. But since we are computing a constrained¢/0ckwise and then in the counterclockwise direction), and
version of the skeleton, the reconstructed outline is only an0F €Very new leaf position, we re-estimate the position of
approximation of the original outline. We define a distance € 1€af branch using the update rule of Eq. (9). Since the
from pointu to outline® to be the shortest distance from POSition of the leaf node doesn’t change much in every step,

that point to any point on the outline: rg-estimation of the branph location takes only a few itera-
tions. For every new position of the leaf node, we compute
d(u; ©) = min ||ju — v/, (11) the reconstruction erre. for the outline segment explained
veO

by the current leaf branch. The process stops when a local
and the reconstruction error to be an average distance fronminimum is found, or when the leaf reaches the boundary of
the points on the original outlin® to the reconstructed out-  the explained outline segment. Fig. 3 shows the outline seg-

line O': ments explained by the corresponding leaf branches and the
(0,0') = 1 Z d(w; 0). (12) final positions of the leaf branches, as well as the resulting
0 skeleton and the reconstructed outline.

ucO
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> > >(\J7 Figure 4. Skeleton extraction, artificial example:
_ (a) original distance map; (b) traditional skeleton;

— —
S~ N & T~ (c) fixed topology skeleton.

ditional” skeletons shown for comparison in this paper were
computed by extracting local maxima of the distance trans-
form.

Real Images. Fig. 5 demonstrates application of fixed
topology skeletons to tracking data. We show the estimated
skeleton overlaid on top of the grayscale images X 64
pixels) of a walking person. The tracking software devel-
oped in our group [18] was used to segment the images,

(d) (€

) (h) @ then the largest connected component was extracted and the

resulting binary image was given as an input to the skele-

Figure 3. Final leaf positions: (a) fixed topology tonization algorithm. The leaves were initialized as follow-

skeleton before leaf position re-estimation; (b)-(f) ing:

leaf position re-estimation: the shaded area corre- e head: the highest point of the silhouette,

sponds to the part of the shape that is explained by ® arms:(Zmin,max; %(ymin + Ymax))s

the leaf branch, only that area is used in the final ¢ 1e0S: (Tmin,max, Ymin )

leaf position estimation; (g) fixed topology skele- where(zmin, Tmax, Ymin, Ymax) define the bounding box of

ton, the final result; (h) the final reconstruction the silhouette. For each of the five points above, the clos-

(gray) with the original outline (black), compare est point on the outline was found and used as the initial

the leaf node positions to (a); (i) compare to the position for the corresponding leaf.

traditional skeleton. We can see that the algorithm estimated well the features

that were present in the images and made reasonable inter-
polation for the occluded features (arms). Since we did not

Note that this procedure finds a leaf position that corre- introduce any knowledge on the geometry of the skeleton,
sponds to a local minimum of the reconstruction error. Ifthe the absence of the arms did not prevent the algorithm from
run time is not a concern, an exhaustive search can be per-detecting” themi. We do not expect the branches of the

formed for every leaf inside the outline segment explained Skeleton to exactly mimic the position of the limbs of the
by that leaf. person, since we have not incorporated such geometric in-

formation, but we do expect the leaf associated with each
extremum to be close to the appropriate contour bound-
ary point. As can be seen, this generally occurs for these
cases, even when the arm is not visible as a boundary point.
We have applied the algorithm to both artificial and real Thjs demonstrates that we can use fixed topology skeletons
images from different domains. Since it relies on the initial to model non-rigid|y moving bodies for such prob|ems as
positions of the leaf nodes, we have tested the algorithm’s
sensitivity to the initialization. The results are reported in  2if such behavior is undesirable, additional constraints have to be intro-
this section. duced. For example, if removing a particular branch of the skeleton does

; TSR not increase the reconstruction error significantly, we might want to con-
Fig. 4 shows an example of another artificial image clude that the corresponding feature is absent from the image. This has

Skeletoniz_ation- The initial leaf positions ha_Ve been esti- 15 pe done on per application basis, as requirements on the inference can
mated using the extrema of the curvature points. The “tra- change from problem to problem.

5. Experimental Results




Figure 5. Skeleton extraction for two sequences of five frames each.

gait recognition, detecting periodicity of the motion, mea- from the optimal position. Then we performed the skele-

suring motion parameters, etc. The method uses the resulttonization algorithm and measured the maximal distance
of tracking (segmentation) to produce a simple graph de-from any point on the original outline to the reconstructed

scription of the moving shape. If we further want to extract outline:

limb articulations, then adding geometric information to the , , )

skeleton would be necessary. emax(0, 0') = maxd(uw; O') = max min |lu—v]| (14)

Shape Analysis. We have used fixed topology skele- |, aqgition to distancemax (O, ©') between the outlines,
tons for feature extraction in shape analysis of corpus cal-We also report distanag,.x (S, S') between two skeletons:
. . ax b .

losum (a cross-section of the fiber tract that connects theye skeleton estimated using the optimal leaf positions and

two hemispheres in the brain). Fig. 6 shows an example ofy,o gne estimated after perturbing the leaves. These two
skeletonization of corpus callosum from a segmented MRI 1,0 5 res indicate how robust the algorithm is to the initial
slice of a brain. Once the skeleton was extracted, the CUr.onditions.

vature and the width of the shape were measured at a set of Fig. 7 shows the results of the experiment for the shape
discrete points along the skeleton and used as features foy, Fig. 1. Every data point in the graph corresponds to a
detecting statistical differences in shape between a group Okjngje run with all five leaves perturbed from the optimal
schizophrenia patients and a group of normal control pa- ,qiion: a total of 200 runs is reported. The first step of the
tients [10]. The algorithm was used to extract a skeleton for 5i0rithm is to place the leaves on the outline, thus it is rea-
66 differentimages of corpus callosum in the study. sonable to report the results based on the distance between
In this application, the skeleton was assumed to be a sim+he points along the outline (rather than the Euclidean dis-
ple string (no junction nodes), and the initialization was ob- tance between them). Furthermore, since different leaves
tained froma priori knowledge on the shape orientation: explain different portions of the outline, we normalize the
one point was “guessed” to be in the left half of the im- distance by the appropriate outline segment length. For ex-
age, and another leaf was assumed to be in the right halample, if a new leaf position is 50 pixel lengths away from
of the image. Then the closest points on the outline wereijts optimal position in the clockwise direction, we divide 50
automatically found and used as the initial positions of the py the distance (along the outline) between the optimal leaf
two leaves. We can see that the initialization is far from position and the last node on the outline in the clockwise di-
the optimal position of the leaf nodes found by the algo- rection that is explained by the corresponding leaf branch.
rithm. The corpus callosum case presents a serious chalThis normalization allows us to compare results from differ-
lenge to the conventional methods for skeleton extraction, ent branches of the skeleton. In Fig. 7, we show the maxi-
as the shape size is comparable to the pixel size, and usingnal distance,,.. between the outlines and the skeletons as
segmented images results in a highly noisy skeleton. By a function of the largest (among the five leaves) normalized
fixing the structure of the skeleton, we avoid the problem of displacement.
false branches. As we can see, the algorithm is quite robust if all the
Robustness. To test the algorithm’s sensitivity to ini-  leaves are initialized inside the corresponding outline seg-
tialization, we performed the following experiment: given ments (hormalized displacementis smaller than 1). The dis-
the shape and the optimal leaf positions (found by the algo-tance between the outlines is between 3 and 4 pixels for all
rithm and verified by the user), we moved every leaf away the runs and the distance between the skeletons is under 4
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Figure 6. Skeleton extraction, corpus callosum: Figure 7. Maximal distance epax (in logarithmic
(a) a slice of an MR scan with the corpus callo- scale) as a function of relative leaf displacement
sum outlined in white; (b) skeletonization results: (a) between the original and the reconstructed out-
traditional skeleton (top), fixed topology skeleton lines; (b) between the skeletons before and after
before leaf re-estimation (middle) fixed topology the initial leaf positions were perturbed. See text

skeleton, final result (bottom). for more details.
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