Check for
Updates

A Holistic View of Al-driven Network Incident Management

Pouya Hamadanian®, Behnaz Arzani®, Sadjad Fouladi®, Siva Kesava Reddy Kakarla®,
Rodrigo Fonseca®, Denizcan Billor!, Ahmad Cheemall, Edet Nkposong!!, Ranveer Chandra®
TMIT, §Microsoft Research, # Azure Systems Research, || Microsoft

Abstract

We discuss the potential improvement large language models
(LLM) can provide in incident management and how they can
overhaul the ways operators conduct incident management to-
day. We propose a holistic framework for building an AT helper
for incident management and discuss the several avenues of
future research needed to achieve it.

We thoroughly analyze the fundamental requirements the
community should consider when designing such helpers. Our
work is based on discussions with operators of a large public
cloud provider and their prior experiences both in incident
management and with attempts to improve the incident man-
agement experience through various forms of automation.

CCS Concepts

* Networks — Network management.

Keywords
Large Language Models, Incident Management

ACM Reference Format:

Pouya Hamadanian, Behnaz Arzani, Sadjad Fouladi, Siva Kesava
Reddy Kakarla, Rodrigo Fonseca, Denizcan Billor, Ahmad Cheema,
Edet Nkposong, and Ranveer Chandra. 2023. A Holistic View of
Al-driven Network Incident Management. In The 22nd ACM Work-
shop on Hot Topics in Networks (HotNets ’23), November 28-29,
2023, Cambridge, MA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3626111.3628176

1 Introduction

“No design works unless it embodies ideas that are held
common by the people for whom the object is intended.”
—Adprian Forty

Frequent incidents—failures that compromise the reliability
of essential services—pose a challenge for large-scale cloud
operations [20, 24]. Prior research has focused on the Incident
Management (IM) process which finds and mitigates these

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
HotNets *23, November 28-29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628176

180

incidents quickly [1, 10, 13, 22, 26, 46]. We present a net-
work operations view of how Large Language Models (LLMs)
can accelerate and improve the IM process. We discuss the
requirements that any LLM-based solution for IM must meet.

When automation or customers report an incident, the inci-
dent manager assigns it to an On-Call Engineer (OCE) who
investigates the issue, mitigates it (e.g., moves traffic away
from the problematic area or takes a failed device offline),
finds the root cause, and fixes it. The mitigation step is the
most important: it stops the incident’s impact on customers.
Providers view Time to Mitigation (TTM) as the main indicator
of efficiency and strive to keep it within 30 minutes (for more
details on the IM process, see prior work [13, 22, 24]).

The IM process is time-consuming, exhausting, and stressful
for the OCE because the set of possible root causes and mon-
itoring data is large. OCEs also need to understand a diverse
set of systems and their components and go through multiple
hours of training to develop enough expertise to understand
how different components interact.

A prevailing question is: should we utilize LLMs to im-
prove the IM process [1, 13, 46] i.e., create an LLM-powered
OCE-helper? LLMs can ingest large datasets, generate struc-
tured insights from unstructured text, automate workflows,
and generate human-like written content [8]: they introduce
an unexplored design continuum in systems research. LLMs
such as GPT-3.x [7] and PaLM [14] have already helped with
tasks such as code generation [12], formal verification [21],
database query generation [31, 48]. But LLMs struggle with
long-term planning [8], and are prone to hallucination [8, 41].

Our answer to this question—whether one should use LLMs
in this context—is nuanced: due to the unstructured format of
IM, universal OCE-helpers are infeasible without LLMs, but
cannot solve the end-to-end problem directly. We investigated
feasible OCE-helpers and the design requirements. This led
us to a modular design where we incorporate LLMs to help in
different stages of the IM workflow. Our design bears a similar
insight to goal-driven LLM agents [37, 47, 55].

While the implications may not be as severe, IM process
shares similarities to medical diagnosis. Operators (medical
practitioners) want to mitigate incidents (treat symptoms), un-
derstand what caused the incident, and fix (cure) the problem.
The space of possible hypotheses (underlying diseases) is large,
and they cannot test each and every one. Instead, they pick a
likely hypothesis, do targeted tests, and reassess their initial

https://doi.org/10.1145/3626111.3628176
https://doi.org/10.1145/3626111.3628176
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626111.3628176&domain=pdf&date_stamp=2023-11-28

HotNets '23, November 28—-29, 2023, Cambridge, MA, USA

@ Pi
(nau:

Testing

OCE-Helper 9000
Faulty Link 17
O overload 7

O Faulty

Incident Info
& Metadata

Formation Planning

<OVERRIDE>

<PROCEED>

Figure 1: The three modules in our framework: hypothesis
formation, hypothesis testing, and mitigation planning.

guess—doing so from incident summaries (symptoms) is non-
trivial. They also have to be careful in how they apply mitiga-
tions (treatments) to avoid further harm to the system (patient)—
the risks involved mean an OCE-helper cannot replace an oper-
ator (medical practitioner) outright. This is why we design the
OCE-helpers as assistants instead of replacements for OCEs.
We interviewed OCEs with 5+ years of experience and found
three key requirements for any OCE-helper, which we describe
through examples based on real incidents. Initial work on such
helpers shows promise [1, 13], but to realize their full potential,
we have to take a holistic view of IM and identify how helpers
can meet the fundamental requirements described in this work.
We found an OCE-helper should be: iterative, reliable and
safe, and adaptive. An iterative helper forms and tests hypothe-
ses and recommends mitigation strategies through a multi-step
process. A reliable and safe helper does not cause extra harm to
the network, and adaptive helper can evolve and adjust as opera-
tors deploy new components, make configuration changes, and
discover new issues. We discuss these requirements in depth.
We propose a framework that meets these key requirements
(§4) and explain the practical considerations and insights that
led us to it. This framework (Figure 1) is analogous to OCE’s
natural thought process and includes three modules: hypothesis
former, hypothesis tester, and mitigation planner. The hypoth-
esis former offers plausible explanations for an incident. The
hypothesis tester aims to test these hypotheses, querying avail-
able monitors and tools and interpreting the results. The miti-
gation planner creates a mitigation plan based on the validated
hypotheses, which the OCE can execute at their discretion.
This ambitious framework needs further research to realize
it in areas such as: (1) network-specialized LLMs to serve
as backbones to these modules; (2) network-specialized em-
bedding models that help knowledge-retrieval methods (e.g.,
vector databases); and (3) structural approaches that break-
down complex tasks in network management (e.g., isolate
links) to LLM-digestible steps. The community needs to ap-
proach problems such as risk estimation and safety [2, 38]
differently and think through how to: (1) analytically evaluate
the end-to-end risk of the LLM proposals; (2) define abstrac-
tions between LLMs and existing tools to gracefully balance
the trade-off between automation and safety; and (3) create
verifiable LLM-based tools (e.g., text-to-SQL [48]).

181

P. Hamadanian et al.

Our goal for this paper is to motivate the community to fur-
ther explore this space and think about the implications such
solutions have for network management and beyond.

2 Foundational Principles: Design

We analyzed real incidents across various teams, services, and
time-frames and interviewed OCEs with several years of expe-
rience, with a focus on their day-to-day operations, pain points,
and where they thought automation could help. We studied
prior work, explored the different designs for OCE-helpers,
and then ran through what-if scenarios where we took a specific
design for an OCE-helper, replayed historical incidents and
observed how this hypothetical helper would integrate into the
IM workflow. Three main themes emerge which we believe are
foundational principles any such design should meet: iterative
prediction, reliable and safe, and adaptive. These principles
seem obvious; yet prior works do not fully meet them.
Iterative Prediction. It is simple to formulate this problem as
aMachine Learning (ML) prediction problem which entices us
to train a one-shot feed-forward model that predicts root cause
or mitigation, conditioned on past incidents and telemetry we
carefully engineer: prior work [1, 13] takes the (predefined) in-
cident information (e.g., title, summary, and the auto-generated
digest of system health and telemetry) and predicts the root
cause or mitigation without any additional context. These ap-
proaches are promising: they work well with incidents similar
to those resolved in the past, or where operators have fleshed
out clean monitoring signals. But they fail with more complex
(often more impacting') or novel incidents.

Challenging incidents deviate from known patterns, are
sparse, and often happen due to a complex chain of events.
There is not enough information in the initial incident sum-
mary of many networking incidents to find the right mitigation
or root cause in one-shot—operators need to make multiple
informed attempts to test various hypotheses, safely mitigate
the incident, zero in on the root cause, and resolve the problem.
The one-shot approach falls short in these cases, and such a
design is inherently too restrictive for the IM workflow.

Consider the Casc—1 incident from a report on Google
Cloud incidents [24] (Figure 2). At the time, Google’s network
was comprised of two Wide Area Networks (WANs), namely
B2 and B4. During a network upgrade, a transient configu-
ration inconsistency (event 1) caused more than one cluster
to observe B4 with several IP prefixes (event 2). The traffic
controller that managed traffic across B2 and B4 mistakenly
interpreted that as B4’s failure (event 3) and rerouted all B4
traffic through B2 (event 4). This led to an overload (event 5)
and packet loss (event 6). A one-shot predictor has to infer
event 1 after it observes event 6, and a naive OCE-helper that

I'These works don’t report accuracy per severity of incidents they studied and
this discussion is based on our experience in IM.

A Holistic View of Al-driven Network Incident Management

One-shot Prediction

gk

Iterative Prediction

initial symptom root cause

(4) B4 Traffic
Rerouted to

(3) Bugin
Traffic
Controller

(2) Muttiple
IP Prefixes
fora WAN

(6) Packet
Loss

(5) Capacity
Overload

(1) Config
Issue

£

deductior
step

T E N %

Figure 2: Iterative vs. one-shot design. One-shot predictors
need to make logical leaps with no extra information. Iterative
chaining mimics the natural thought process of OCEs.

only observes predefined information would decide it is either
adevice failure (e.g., a switch) or a transient increase in traffic.

An OCE checks both of these suggestions first, but would
quickly reassess after they gather more evidence that shows
both are incorrect: high traffic utilization of B2 (event 5) and no
traffic for B4. They would hypothesize and confirm that traffic
is intentionally rerouted away from B4 (event 4). This cascade
of hypothesis, testing, and reassessment would continue until
they discover the inconsistency and the bug. We believe an
OCE-helper should behave the same, i.e., only an OCE-helper
that hypothesizes, tests, and re-evaluates its decisions in a feed-
back loop can successfully resolve such complex incidents.
Reliable & Safe. The OCE-helper should not make expensive
mistakes [20] on its first day: risk assessment cannot be an after-
thought. Even smaller mistakes can drive operators away—if
they can’t reliably show when drastic cases happen, they will
bypass the helper with the mere threat of a mistake [22]: we
need safe (should not worsen the situation) and reliable (should
not have inconsistencies that introduce mistakes) helpers.

Helpers need to include risk mitigating mechanisms both
baked in—where it provides a reason for why it arrived at a
particular response (these mechanisms often improve LLM
responses [52])—and on the outside, e.g., a wrapper around
the helper which statistically analyzes the mitigation the helper
proposes [38]. We should not just analyze what helpers sug-
gest: we should explicitly design the helper to take in feedback
from all risk assessors, and search for actions with lower risks.

If we intend to eventually automate OCE-helpers, confi-
dence and risk measures are non-negotiable. We discuss why
prior work does not enable such a solution and the research the
community needs to fill the gap in §4.4.

Adaptive. A core challenge with IM is that network compo-
nents’ software and hardware evolve rapidly—often teams
don’t explicitly coordinate with each other when they update
components they own. Such evolution invalidates prior inci-
dents and mitigation strategies, and uncoordinated changes
lead to new incidents [5, 24]. Such “new” incidents are com-
plex and have the highest negative impact, but also where we
see the most potential for helpers to improve the IM workflow
and where we believe research in this space should focus.
Consider a failure reported in AWS Direct Connect Tokyo [44]

(Figure 3). This service provides low-latency consistent tunnel-
ing to the Tokyo region. New software and a perfect storm of

182

HotNets '23, November 28-29, 2023, Cambridge, MA, USA

it sympmm unseen root cause

(4) Packet Loss H H H

Iterative Helper Aware of the New Protocol

) New
Protocol with a
Bug

(2) Network
Device OS
Failure

3) Incorrect
Traffic
Forwarding

Figure 3: One-shot methods need to learn similar incidents.
Iterative methods only need to learn incremental changes.
events led to this failure, where customers saw latency spikes
and packet loss. Operators deployed a new protocol that re-
acted faster to network failures. This protocol had an unknown
defect triggered by a specific set of packet headers and pay-
loads. Months later, traffic from one customer happened to
fit that pattern, and several network devices failed to forward
traffic. Operators first removed these devices to mitigate the
incident, but the same failure popped up again on other devices.
Operators eventually realized the culprit, disabled the protocol,
and resolved the defect. This was a unique incident, partly
because the events that led to it involved new and untested
protocols. No amount of historical incidents could supply a
helper with the knowledge to mitigate such an incident.

It is difficult to adapt to new incidents because there is little
“learn-able” data in such sparse novel scenarios: we know the
changes, but are unaware what impact they may cause until they
happen. We cannot use end-to-end approaches (e.g., one-shot
helpers) for new incidents since they need end-to-end samples
the change causes. An iterative helper that explicitly reasons
about individual components and how operators change them
can gradually build towards the right mitigation. Operators
only need to update this helper with the new behavior of the
system and not its impact. This helper could evolve almost as
quickly as OCEs to any changes in the infrastructure, guide-
lines, and incidents, and does not need end-to-end samples.

An OCE-helper that safely assists with incidents needs to
satisfy these principles. While they are stringent, and there is
no current automated OCE-helper that satisfies them, we have
designed a framework that addresses all of them systematically
(§4). We first describe how we can verify and measure whether
any such framework can satisfy these requirements.

3 Foundational Principles: Evaluation

It is hard to evaluate solutions in this space. Prior works’ met-
rics (e.g., F; score, semantic similarity) paint an incomplete
picture of the impact these helpers have on metrics operators
care about: how fast they resolve the incident and whether they
can do so safely—alone, they will not reveal the helper’s ability
to meet our requirements. Instead, we need to track: (1) TTM;
and (2) the overheads the helper’s mistakes induce (new inci-
dents caused by wrong mitigation plans, SLA violations, etc).

We can A/B test a helper to conduct an end-to-end evaluation
of the target system, i.e., randomly assign incidents to either a

HotNets '23, November 28—-29, 2023, Cambridge, MA, USA

helper-enhanced intervention or to a helper-free control group.
This is the most robust evaluation we can get and with enough
cases and statistical tests, we can compare the two groups at any
statistic (e.g., average TTM). This is nonetheless challenging,
because of the high variability in the nature of each incident,
among OCE’s expertise, and other confounding factors.

It is hard to estimate the overhead of the helper’s mistakes—
the complex interactions between the system state and the
mitigation make it hard to model; A/B tests are one mechanism
to do so but they are also costly and invasive. Many incidents
(e.g., customer-reported ones) are diverse and heavy-tailed: we
need a long test span to collect enough measurements.

We can instead ‘replay’ historical incidents and compare
the replayed TTM to the original; we can use this to scale up
the measurements. We can query telemetry retroactively, but
this will not work if the mitigation the helper suggests differs
from the one the operator used in the original incident.

We can naively solve this problem and report the TTM sav-
ings for incidents where the mitigations match and the fraction
where this was not the case. Can we do better? We can find past
incidents where operators used the same mitigation the helper
proposed and estimate the impact of that mitigation on the TTM
distribution—this measure will be, by definition, approximate:
the semantics of the specific incidents may be different which
will impact the TTM. We need further research to formalize
how we derive this estimate, and what to condition it on.

Operators also need efficient OCE-helpers—they cannot
cost more than the SLA violations the incidents induce. The in-
frastructure cost to train (or fine-tune) and run inference consti-
tute the system cost of the helpers—research [17,45, 50] which
makes ML training and inference more efficient can help re-
duce this cost. Work on OCE-helpers should report these costs.

Research on OCE-helpers should also report management
costs. Each time operators have to research how to adapt to new
incidents or maintain a reliable and performant solution they
add to this cost. We considered an OCE-helper that automates
well-structured incidents that have a clear resolution strategy—
in these cases OCEs follow a detailed Troubleshooting Guide
(TSG) to mitigate and resolve the incident and the LLM can
do the same—but the cost outweighs the benefit: to make this
(seemingly simple) solution work we had to integrate LLMs
with monitoring APIs, put guard-rails to minimize damages
that results from mis-predictions, and even carefully design
prompts to make sure the LLM exactly follows the TSG. We
can achieve the same goal with a hard-coded Python script (in
fact, operators already do)! A change in the TSG necessitates
a change in both solutions, and the cost would not amortize.

4 Framework

We present a framework that meets the foundational principles
we discussed. It consists of three modules: a hypothesis former,
a hypothesis tester, and a mitigation planner. These modules

183

P. Hamadanian et al.

replicate an OCE’s thought process when resolving an incident.
We discuss where LLMs fits within this framework.

4.1 Our Perspective

We next discuss our design perspective to provide context for
our design choices. These choices are not necessary (unlike the
principles in §2) but are based on our firsthand experiences.

OCE-centric design. IM workflows are too chaotic and intri-
cate to fully automate. We believe the helper should act as a

“copilot” and suggest the next steps but keep the OCE in the

driver’s seat. The OCE remains responsible for the incident
and can decide to use helpers only when they deem it useful.
This makes it easier for operators to deploy the solution and
helps prevent the negative impacts of the helper on the IM
workflow when it inevitably makes mistakes.

Decentralized extensibility. 100+ independent networking
teams work on IM—each team has its own categories of in-
cidents, root causes, guidelines, tools, and documentation. It
is impractical for all teams to follow the same formula [34]
(especially if they have ossified legacy workflows). Instead, we
believe in a design where each team can modify how the helper
impacts their workflow but not interfere with other teams—we
want to enable operators to distributedly manage the helper.
Modular design. We split the helper into independent modules—
similar to how, early on, researchers split the networking
stack into separate layers (i.e., OSI [18]). A well-designed
monolithic system can outperform a modular one—e.g., co-
optimized application and transport layers outperform the
modularized stack [29]—but a modularized design acceler-
ates early research and helps find solutions quickly.

Asset reuse. OCEs use many tools: device health monitors,
packet loss detectors, link/device isolation tools, etc. It took op-
erators many years of research and experience to create them,
and we designed our framework to leverage them.

4.2 The Case for LLMs

LLMs have a unique ability to help us achieve a holistic OCE-
helper design, and perhaps a fully automated solution:

They can reason (kind of). Resolving incidents (or in general,
debugging faults) boils down to inferring the chain of causal re-
lationships that lead to the incident (e.g., Figure 2). Operators
logically understand the components—e. g.,, switch failures
lead to packet loss—which they use to make these inferences—
and backtrack through the possible chain and confirm or reject
prior states in the chain to hone in on the correct cause.

We see a similar causal deduction in LLMs [52]: they parrot
the cause and effect relationships they learned through training
on vast corpora of text; e.g., we asked GPT-4 why a VM experi-
enced packet loss, and it provided an exhaustive list including
congestion, device failure, misconfigurations, bugs, efc. Since
OCE:s also learn such deduction through training, we can get
more detailed responses if we fine-tune LLMs on the same

A Holistic View of Al-driven Network Incident Management

documents and if we look at the mitigation history of previous
incidents—this is in line with prior works’ observations [1].

We can embed causal deductions statistically in a black-
box [3, 4, 22], e.g., statistically model the causal link between
device failures and packet loss. But such models are usually
not tractable (operators make them explicit and narrow to make
them tractable): a monolithic black box that models all causal
relationships needs to observe all telemetry and predict all
possibilities. We have too much telemetry to collect or feed
to a black-box and the larger input/output sizes increase sam-
ple complexities—they need too many training samples. IM
involves rare incidents and is structurally sample-starved.
They are technically well-suited to the problem. Unlike
prior ML solutions which have fixed input spaces, we can input
anything from normal text, to numbers, to system logs, to loose
descriptions, or instructions to an LLM. LLMs also quickly
and cheaply instance-optimize, i.e., specialize to a specific
instant and problem, with in-context learning and can integrate
with external tools [43] and plugins [40].

But LLMs are not magic. Computational complexity grows
quadratically with token count, and we have input limits (cur-
rently 32K tokens ~ 24K words in GPT-4).> Mainstream LLMs
only accept text, and we need clever tricks for multi-modal
inputs (e.g., images, graphs, time series). We still can’t use
them for long-term planning and reasoning [8, 41]. LLMs are
unreliable—they are powerful enough to enable OCE-helpers,
but imperfect on their own: they cannot replace the OCE. As
researchers, we have to find how best to use them, and we
discuss our initial work on this in the next section.

4.3 Overview

The framework we propose has three “LLM agents” (Figure 1):
(1) the hypothesis former produces bite-sized hypotheses and
describes possible root causes or mitigations in each step; (2)
the hypothesis tester takes a hypothesis as input and gener-
ates a procedure to verify it; and (3) the mitigation planner
creates a detailed mitigation plan. These modules need not
use the same techniques: some may use a simple LLM while
others more complex goal-driven LLM-agents [47, 55]. Each
module presents several suggestions to the OCE who then ap-
proves a select few. OCEs can pre-approve certain suggestions
that have high confidence and low risk. This strict approval
process avoids compounding mistakes—one early irrelevant
hypothesis can lead the LLM astray for long durations.

In this design, we generate hypotheses and tests in a loop
and eventually produce a mitigation plan (the design shadows
the OCE). The end-to-end helper workflow is as follows:
Hypothesis former. The hypothesis former takes in the current
context and produces a hypothesis small enough that we can

20Ongoing trends suggest higher token lengths and specialized smaller models,
which would benefit our applications.

184

HotNets '23, November 28-29, 2023, Cambridge, MA, USA

easily verify—its only goal is to help the operator get one step
closer to recognizing the root cause or mitigation.

Take an example incident where a link drops packets: the hy-
pothesis former hypothesizes that either a link is faulty or over-
loaded, or the monitoring pipeline is broken. The OCE has to
choose which hypothesis to test. The LLM must produce a con-
fidence score and an explanation to help novice OCEs decide.
Hypothesis tester. The hypothesis tester receives these choices
and generates a plan to validate each: in our earlier example,
the tester can query monitors to check the link utilizations and
validate whether any link is overloaded. The tester can access
the operator’s monitoring infrastructure (e.g., link utilizations),
LLM-based tools (e.g., one that checks whether there is an
ongoing incident with similar symptoms), or even produce
manual steps the OCE can execute (e.g., it can tell the OCE to
ask the customer for a packet trace). The role the LLM plays
in this step is to identify what tools can test the hypothesis and
how to interpret the results from the queries and either accept
or reject the hypothesis. The OCE will verify both steps.
Mitigation planner. The OCE then invokes the mitigation
planner which takes the fested hypothesis as input and pro-
duces a mitigation plan that the OCE then can trigger. We
explicitly only allow the OCE to start the mitigation process
because: (1) mitigations can impose drastic costs on cloud ten-
ants, and the responsibility of premature mitigation should fall
on the OCE; (2) the hypothesis forming and testing is meant
to decrease OCE (not the helper’s) uncertainty. This adds an
extra layer of risk protection without impacting TTM.

The mitigation planner generates a list of possible actions
(e.g. de-isolate link or reroute traffic) and the associated risk.
The OCE selects which to use. The OCE has to use various
tools to execute each action and then presents the results to the
module, which decides whether the mitigation was successful.

Risk assessment is central to the third module. We highlight
two important risk assessments in §2: (1) an internal, qualita-
tive analysis, which the LLM produces based on thought chains
and reason (e.g., if the de-isolated link is faulty, packet loss
may increase); (2) an external, quantitative analysis, which
a white-box algorithm produces based on network principles
(e.g., 23% risk that de-isolating link A disrupts a microservice).
We find these measures necessary as they are complementary
views of risk, and vital to both experienced and novice OCE:s.
Design benefits. Teams can independently contribute and de-
velop the system. They can add new tools or remove deprecated
ones. OCEs have first-hand experience and know best what
tool or mitigation implementation is cost-effective and which
tools to update to support new incident patterns.

While these modules work best in tandem, their tasks are
separate. Operators benefit from each individual module, and
OCE:s can fill the gaps for modules in development. This allows
a phased execution and lowers the high barrier to deployment.

HotNets '23, November 28—-29, 2023, Cambridge, MA, USA

A modular design eases adaptation. In an end-to-end model,
each change requires a full prompt redesign or model fine-
tuning. With a modular design, we can surgically upgrade the
relevant module. We can adapt LLM-based modules by: (1)
fine-tuning [1] which pays an up-front cost; (2) in context
learning [13] which is faster to develop but cannot accept tasks
with large contexts because of limited prompt size.

4.4 Research Directions

Our community needs to research several new directions to
materialize this framework, which are:

Network expertise. We need to evaluate, and if necessary,
improve the LLM’s performance on complex systems and net-
work problems (LLMs can diagnose simple problems but not
complex ones [47, 55]). To fine-tune for networking knowl-
edge, we can use IM data: (1) OCE training documents, slides,
and videos (which are multi-modal, high-quality, and low
volume); (2) TSGs (which are high-volume, detailed, and
sometimes stale); (3) incident logs and OCE communications
(which are high-volume, low-quality and unstructured); (4)
direct LLM chatting with OCEs (which are high-quality and
expensive); (5) IM tools and their documentation.
Network-focused Embeddings. We have a limited token size
per query and have to carefully pick what information is rel-
evant to the current prompt. Frameworks currently embed
pieces of text to a vector, and store the tuple in a vector data-
base. At runtime, the vector database runs an approximate
nearest-neighbor search on the database and appends top re-
sults to the prompt. But embeddings come from generic models
trained on non-network specific data [23], and also not trained
specifically to guide prompts. Future work can train network-
specific embedding models that guide LLM prompts. Recent
work may serve as a good starting point [57].

Intelligent planning. LL.Ms cannot plan long-term [8]. We
require the framework to generate and test small hypothe-
ses that are easy to plan and test but also benefit from better
planning which requires more study. Methods such as chain-of-
thought [28, 52, 54] show promise but rely on intuitive ways to
structure the LLM response. There is no barrier to entry for this
research, and in fact, the systematic mindset in our community
may help us find better solutions. Recent work provides a good
starting point for the design [37, 47].

Risk assessment. We propose three lines of research. First, au-
tomated qualitative reasoning with LLMs: LLMs can support
their conclusions with logical [28, 52] or common-sense [6]
arguments if we use them in a multi-step process with “short
steps”. But researchers have not yet built a reasoning engine
for network and cloud systems. In the short-term, a network ex-
pert LLM that understands key network concepts (e. ., routing,
wired and wireless media, congestion, RDMA), cloud services
(VMs, WANS, Clos topologies, SDN, NICs, Programmable

185

P. Hamadanian et al.

switches), and can deduce the interaction between these differ-
ent components, at least in steps can help address this.
Second, we can use reliable and white-box analytical models
of risk that apply to specific scenarios. Prior work has looked at
analytical risk assessment [2, 38, 53, 58] but they fall short: (1)
they don’t measure risk directly (e.g., they measure the increase
in link B’s utilization if we isolate link A but the risk operators
care about is the impact on the applications that used link A
before isolation and link B after); (2) they consider a small set
of mitigations compared to the full breadth of what operators
can use (e.g., they consider isolating the faulty link but do
not model migrating the affected VMs or partially re-routing
traffic); and (3) none consider whether the mitigation itself
may cause an incident (e.g., whether the mitigation may trigger
arace condition that would cause further harm to the network).
Third, and perhaps the most exciting path, is how we can
merge these two perspectives on confidence and risk; LLM-
based qualitative and high-level assessments, and explicit mod-
els with quantified analysis. At a high level, an LLM-based
agent decides what is at risk given some mitigation, generates
a causal graph of components, and uses analytical tools to
quantify the risks, given the causal model.
Toolbox abstraction. The boundary between modules and
tools is unclear. There is a trade-off; tools can provide low-
level telemetry and let the main module parse the information,
or tools could parse low-level telemetry and provide the main
module with high-level insights. With the former, we have to
verify the LLM-based module parsed the data correctly, and
with the latter, we have to manually design the tools.
Verifiable LLM-based tools. LLMs can help with code gener-
ation [12] and SQL queries [31, 48]. But we need to verify the
outputs they generate if we want to use them in an automated
pipeline. This requires research in: (1) formal verification tech-
niques [21] to prove correctness; (2) repairing responses with
consistency checks such as Haskell QuickCheck [15].

5 Related Works

LLMs. Prompt-engineering research has surged recently and is
necessary to utilize LLMs to their full potential. Broadly, these
techniques include: approaches attempt to improve the rea-
soning quality of LLMs through chain-of-though and scratch-
padding [28, 39, 52, 54], keeping the LLM self-consistent [27,
32,42,47,51], etc. [9, 16, 19, 25, 33, 43, 56].

Incident Management. Multiple work improve and under-
stand the IM workflow either by describing examples from
large production environments [24], monitoring solutions to
help diagnosis [30, 35, 36, 49], or ML-based solutions to im-
prove different parts of the OCE experience [22].

The work which focuses on using ML to improve the IM
workflow itself includes [1, 10, 11, 13,22, 26, 46]. From this
set, those which involve LLMs [1, 13] laid the initial founda-
tion to show there is a promise for LLMs in this space.

A Holistic View of Al-driven Network Incident Management

References

(1]

(2]

(31

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zim-
mermann, Xuchao Zhang, and Saravan Rajmohan. 2023. Recom-
mending Root-Cause and Mitigation Steps for Cloud Incidents
using Large Language Models. (2023). arXiv:cs.SE/2301.03797
https://arxiv.org/abs/2301.03797 ICSE’23.

Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin
Vahdat, and Minlan Yu. 2019. Risk-based planning of network changes
in evolving data centers. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 414-429.

Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish
Agarwal, Mohammad Alizadeh, and Devavrat Shah. 2023. CausalSim:
A Causal Framework for Unbiased Trace-Driven Simulation. In 20th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). USENIX Association, Boston, MA, 1115-1147.
https://www.usenix.org/conference/nsdi23/presentation/alomar
Behnaz Arzani, Kevin Hsieh, and Haoxian Chen. 2021. Interpret-able
feedback for AutoML systems. (2021). arXiv:cs.LG/2102.11267
https://arxiv.org/abs/2102.11267

Microsoft Azure. 2023. Post Incident Review (PIR) — Azure Networking
— Global WAN issues. (2023). https://azure.status.microsoft/en-
us/status/history/ https://azure.status.microsoft/en-us/status/history/,
Accessed: 2023-06-26.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya,
Asli Celikyilmaz, and Yejin Choi. 2019. COMET: Commonsense
Transformers for Automatic Knowledge Graph Construction. In
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 4762—4779. https://doi.org/10.18653/v1/P19-1470
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners.
(2020). arXiv:cs.CL/2005.14165 https://arxiv.org/abs/2005.14165
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes
Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of Artificial General Intelligence:
Early experiments with GPT-4. (2023). arXiv:cs.CL/2303.12712
https://arxiv.org/abs/2303.12712

Harrison Chase. 2022. LangChain. (Oct. 2022). https://github.com/
hwchasel7/langchain https://github.com/hwchase17/langchain,
Accessed: 2023-06-26.

Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019.
Continuous incident triage for large-scale online service systems. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 364-375.

Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang,
Dan Hao, Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, et al.
2020. How incidental are the incidents? characterizing and prioritizing
incidents for large-scale online service systems. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering. 373-384.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,

186

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

HotNets '23, November 28-29, 2023, Cambridge, MA, USA

Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse,
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. (2021). arXiv:cs.LG/2107.03374
https://arxiv.org/abs/2107.03374

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu
Shi, Yunjie Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng,
Supriyo Ghosh, Xuchao Zhang, Chaoyun Zhang, Qingwei Lin, Saravan
Rajmohan, and Dongmei Zhang. 2023. Empowering Practical Root
Cause Analysis by Large Language Models for Cloud Incidents. (2023).
arXiv:cs.SE/2305.15778 https://arxiv.org/abs/2305.15778
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan
Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. 2022. PalLM: Scaling Language Modeling with Pathways.
(2022). arXiv:cs.CL/2204.02311 https://arxiv.org/abs/2204.02311
Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming.
268-279.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen,
Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob
Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
2021. Training Verifiers to Solve Math Word Problems. (2021).
arXiv:cs.LG/2110.14168 https://arxiv.org/abs/2110.14168

Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi,
and Yifan Xiong. 2022. MSCCL: Microsoft Collective Communication
Library. arXiv preprint arXiv:2201.11840 (2022).

John D Day and Hubert Zimmermann. 1983. The OSI reference model.
Proc. IEEE 71, 12 (1983), 1334-1340.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and
Igor Mordatch. 2023. Improving Factuality and Reasoning in Language
Models through Multiagent Debate. (2023). arXiv:cs.CL/2305.14325
https://arxiv.org/abs/2305.14325

Marisa Fernandez. 2018. Prime Day woes might have cost Amazon
$72m-$99m in sales. (2018). https://www.axios.com/2018/07/
18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-
cost-amazon-from-72-99-million, Accessed: 2023-06-26.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023. Bal-
dur: Whole-Proof Generation and Repair with Large Language Models.

https://arxiv.org/abs/cs.SE/2301.03797
https://arxiv.org/abs/2301.03797
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://arxiv.org/abs/cs.LG/2102.11267
https://arxiv.org/abs/2102.11267
https://azure.status.microsoft/en-us/status/history/
https://azure.status.microsoft/en-us/status/history/
https://azure.status.microsoft/en-us/status/history/
https://doi.org/10.18653/v1/P19-1470
https://arxiv.org/abs/cs.CL/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/cs.CL/2303.12712
https://arxiv.org/abs/2303.12712
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain
https://arxiv.org/abs/cs.LG/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/cs.SE/2305.15778
https://arxiv.org/abs/2305.15778
https://arxiv.org/abs/cs.CL/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/cs.LG/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/cs.CL/2305.14325
https://arxiv.org/abs/2305.14325
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million

HotNets '23, November 28—-29, 2023, Cambridge, MA, USA

(2023). arXiv:cs.L.G/2303.04910 https://arxiv.org/abs/2303.04910
[22] Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri,
Vincent Liu, Ricardo Bianchini, Ramaswamy Aditya, Xiaohang
Wang, Henry Lee, David Maltz, Minlan Yu, and Behnaz Arzani. 2020.
Scouts: Improving the Diagnosis Process Through Domain-Customized
Incident Routing. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM ’20). Association for Computing Machinery, New
York, NY, USA, 253-269. https://doi.org/10.1145/3387514.3405867
Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2022. SimCSE:
Simple Contrastive Learning of Sentence Embeddings. (2022).
arXiv:cs.CL/2104.08821 https://arxiv.org/abs/2104.08821
Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. 2016. Evolve or Die: High-Availability
Design Principles Drawn from Google’s Network Infrastruc-
ture. In Proceedings of the 2016 ACM SIGCOMM Conference.
http://dl.acm.org/authorize.cfm?key=N19254
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and
Ming-Wei Chang. 2020. REALM: Retrieval-Augmented Lan-
guage Model Pre-Training. (2020). arXiv:cs.CL/2002.08909
https://arxiv.org/abs/2002.08909
Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu
Kang, Hongyu Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al.
2020. How to mitigate the incident? an effective troubleshooting guide
recommendation technique for online service systems. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
1410-1420.
Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 2023. Language
Models can Solve Computer Tasks. (2023). arXiv:cs.CL/2303.17491
https://arxiv.org/abs/2303.17491
[28] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reason-
ers. (2023). arXiv:cs.CL/2205.11916 https://arxiv.org/abs/2205.11916
Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente,
Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett,
Janardhan Iyengar, et al. 2017. The quic transport protocol: Design and
internet-scale deployment. In Proceedings of the conference of the ACM
special interest group on data communication. 183-196.
Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016.
FlowRadar: A Better NetFlow for Data Centers. In I3th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16). USENIX Association, Santa Clara, CA,
311-324. https://www.usenix.org/conference/nsdil 6/technical-
sessions/presentation/li-yuliang
Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. 2023. A com-
prehensive evaluation of ChatGPT’s zero-shot Text-to-SQL capability.
(2023). arXiv:cs.CL/2303.13547 https://arxiv.org/abs/2303.13547
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu
Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye,
Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-Refine: Iterative Refinement with Self-Feedback.
(2023). arXiv:cs.CL/2303.17651 https://arxiv.org/abs/2303.17651
Microsoft. 2023. LangChain. (Feb. 2023). https://github.com/microsoft/
semantic-kernel https://github.com/microsoft/semantic-kernel, Ac-
cessed: 2023-06-26.
Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas
Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with
Modeling Network Topologies at Multiple Levels of Abstraction.. In
NSDI. 403-418.

(23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

[32]

(33]

[34]

187

P. Hamadanian et al.

[35] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2014. DREAM: Dynamic Resource Allocation for Software-defined
Measurement. In Proceedings of the ACM SIGCOMM Conference.

[36] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2016. Trumpet: Timely and Precise Triggers in Data Centers. In ACM
SIGCOMM.

[37] Yohei Nakajima. Task-driven Autonomous Agent.

(April 2023). https://github.com/yoheinakajima/babyagi

https://github.com/yoheinakajima/babyagi, Accessed: 2023-06-28.

Pooria Namyar, Behnaz Arzani, Daniel Crankshaw, Daniel S. Berger,

Kevin Hsieh, Srikanth Kandula, and Ramesh Govindan. 2023. Miti-

gating the Performance Impact of Network Failures in Public Clouds.

(2023). arXiv:cs.NI1/2305.13792 https://arxiv.org/abs/2305.13792

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk

Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor

Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and

Augustus Odena. 2021. Show Your Work: Scratchpads for Intermediate

Computation with Language Models. (2021). arXiv:cs.LG/2112.00114

https://arxiv.org/abs/2112.00114

OpenAl. 2023. ChatGPT plugins. (2023). https://openai.com/blog/

chatgpt-plugins https://openai.com/blog/chatgpt-plugins, Accessed:

2023-06-26.

OpenAl. 2023. GPT-4 Technical Report.

arXiv:cs.CL/2303.08774 https://arxiv.org/abs/2303.08774

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges,

Antoine Bosselut, Robert West, and Boi Faltings. 2023. REFINER:

Reasoning Feedback on Intermediate Representations. (2023).

arXiv:cs.CL/2304.01904 https://arxiv.org/abs/2304.01904

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria

Lomeli, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.

Toolformer: Language Models Can Teach Themselves to Use Tools.

(2023). arXiv:cs.CL/2302.04761 https://arxiv.org/abs/2302.04761

[44] Amazon Web Services. 2021. Summary of AWS Direct Con-

nect Event in the Tokyo (AP-NORTHEAST-1) Region. (2021).

https://aws.amazon.com/message/17908/

Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,

Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi.

2023. TACCL: Guiding Collective Algorithm Synthesis using

Communication Sketches. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23). 593-612.

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun

Radhakrishna, and Anurag Gupta. 2022. AutoTSG: Learning and Syn-

thesis for Incident Troubleshooting. (2022). arXiv:cs.SE/2205.13457

https://arxiv.org/abs/2205.13457

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik

Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents

with Verbal Reinforcement Learning. (2023). arXiv:cs.Al/2303.11366

https://arxiv.org/abs/2303.11366

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi

Sinha, Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Im-

proved Large Language Model Adaptation for Text-to-SQL. (2023).

arXiv:cs.CL/2306.00739 https://arxiv.org/abs/2306.00739

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,

Karl Deng, Dongming Bi, and Dong Xiang. 2019. NetBouncer:

Active Device and Link Failure Localization in Data Center Networks.

In 16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19). USENIX Association, Boston, MA,

599-614. https://www.usenix.org/conference/nsdil9/presentation/tan

Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi,

Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch.

2023. TopoOpt: Co-optimizing Network Topology and Parallelization

Strategy for Distributed Training Jobs. In 20th USENIX Symposium on

2023.

[38]

[39]

[40]

[41] (2023).

[42]

[43]

[45]

[46]

[47]

[48]

[49]

[50]

https://arxiv.org/abs/cs.LG/2303.04910
https://arxiv.org/abs/2303.04910
https://doi.org/10.1145/3387514.3405867
https://arxiv.org/abs/cs.CL/2104.08821
https://arxiv.org/abs/2104.08821
http://dl.acm.org/authorize.cfm?key=N19254
https://arxiv.org/abs/cs.CL/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/cs.CL/2303.17491
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/cs.CL/2205.11916
https://arxiv.org/abs/2205.11916
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://arxiv.org/abs/cs.CL/2303.13547
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/cs.CL/2303.17651
https://arxiv.org/abs/2303.17651
https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/semantic-kernel
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
https://arxiv.org/abs/cs.NI/2305.13792
https://arxiv.org/abs/2305.13792
https://arxiv.org/abs/cs.LG/2112.00114
https://arxiv.org/abs/2112.00114
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins
https://arxiv.org/abs/cs.CL/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/cs.CL/2304.01904
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/cs.CL/2302.04761
https://arxiv.org/abs/2302.04761
https://aws.amazon.com/message/17908/
https://arxiv.org/abs/cs.SE/2205.13457
https://arxiv.org/abs/2205.13457
https://arxiv.org/abs/cs.AI/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/cs.CL/2306.00739
https://arxiv.org/abs/2306.00739
https://www.usenix.org/conference/nsdi19/presentation/tan

A Holistic View of Al-driven Network Incident Management

[51]

[52]

[53]

[54]

Networked Systems Design and Implementation (NSDI 23). 739-767.
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi,
Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-
Consistency Improves Chain of Thought Reasoning in Language Models.
(2023). arXiv:cs.CL/2203.11171 https://arxiv.org/abs/2203.11171
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language Models.
(2023). arXiv:cs.CL/2201.11903 https://arxiv.org/abs/2201.11903
Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang,
Lihua Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter
network failure mitigation. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols
for computer communication. 419-430.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L.
Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree of Thoughts:
Deliberate Problem Solving with Large Language Models. (2023).
arXiv:cs.CL/2305.10601 https://arxiv.org/abs/2305.10601

188

[55]

[56]

[57]

(58]

HotNets '23, November 28-29, 2023, Cambridge, MA, USA

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and
Acting in Language Models. arXiv preprint arXiv:2210.03629 (2022).
Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski,
Adrian Wong, Stefan Welker, Federico Tombari, Aveek Purohit, Michael
Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, and Pete
Florence. 2022. Socratic Models: Composing Zero-Shot Multimodal
Reasoning with Language. (2022). arXiv:cs.CV/2204.00598
https://arxiv.org/abs/2204.00598

Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqgian Sun, Bicheng
Zhang, Sibo Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa
Jin, Dai Zhang, Zhenyu Zhu, and Dan Pei. 2023. Robust Failure
Diagnosis of Microservice System through Multimodal Data. (2023).
arXiv:cs.SE/2302.10512 https://arxiv.org/abs/2302.10512

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Forster,
Arvind Krishnamurthy, and Thomas Anderson. 2017. Understanding
and mitigating packet corruption in data center networks. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication. 362-375.

https://arxiv.org/abs/cs.CL/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/cs.CL/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/cs.CL/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/cs.CV/2204.00598
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/cs.SE/2302.10512
https://arxiv.org/abs/2302.10512

	Abstract
	1 Introduction
	2 Foundational Principles: Design
	3 Foundational Principles: Evaluation
	4 Framework
	4.1 Our Perspective
	4.2 The Case for LLMs
	4.3 Overview
	4.4 Research Directions

	5 Related Works
	References

