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The Belief Roadmap: Efficient Planning in Belief
Space by Factoring the Covariance

Samuel Prentice and Nicholas Roy

Abstract—When a mobile agent does not known its position
perfectly, incorporating the predicted uncertainty of future posi-
tion estimates into the planning process can lead to substantially
better motion performance. However, planning in the space
of probabilistic position estimates, or belief space, can incur
substantial computational cost. In this paper, we show that
planning in belief space can be done efficiently for linear Gaussian
systems by using a factored form of the covariance matrix. This
factored form allows several prediction and measurement steps
to be combined into a single linear transfer function, leading to
very efficient posterior belief prediction during planning. We give
a belief-space variant of the Probabilistic Roadmap algorithm
called the Belief Roadmap (BRM) and show that the BRM can
compute plans substantially faster than conventional belief space
planning. We conclude with performance results for an agent
using ultra-wide bandwidth (UWB) radio beacons to localize and
show that we can efficiently generate plans that avoid failures
due to loss of accurate position estimation.

1. INTRODUCTION

Sequential decision making with incomplete state informa-
tion is an essential ability for most real-world autonomous
systems. For example, robots without perfect state information
can use probabilistic inference to compute a distribution over
possible states from sensor measurements, leading to robust
state estimation. Incorporating knowledge of the uncertainty
of this state distribution, or belief, into the planning process
can similarly lead to increased robustness and improved per-
formance of the autonomous system; the most general formu-
lation of this problem is known as the partially observable
Markov decision process (POMDP) (Kaelbling et al., 1998).
Unfortunately, despite the recent development of efficientex-
act and approximate algorithms for solving POMDPs, planning
in belief space has had limited success in addressing large
real-world problems. The existing planning algorithms almost
always rely on discrete representations of the agent state,
dynamics and perception and finding a plan usually requires
optimizing a policy across the entire belief space, inevitably
leading to problems with scalability.

In contrast, the motion planning community has realized
considerable success in using stochastic search to find paths
through high-dimensional configuration spaces with algo-
rithms such as the Probabilistic Roadmap (PRM) (Kavraki
et al., 1996) or Rapidly-Exploring Randomized Trees
(RRT) (LaValle and Kuffner, 2001). Some approaches have
extended these techniques to allow uncertainty over the effects
of actions by modelling the planning problem as a Markov
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Decision Process (MDP). MDP-based planning through a
Probabilistic Roadmap optimizes over a stochastic action
space (Alterovitz et al., 2006, 2007), but still assumes perfect
knowledge of the state. More recently, Pepy et al. (2008) used
an RRT-based approach to plan over a set representation of
uncertain states; however, only the effects of action uncer-
tainty were considered in state prediction, resulting in the
monotonic growth of belief uncertainty without exteroceptive
observations. Incorporating the full probability distribution
provided by state estimation into planning algorithms suchas
the PRM or RRT has generally not been feasible. Computing
the reachable part of belief space can be expensive; predicting
the full evolution of the agent’s belief over time, incorporating
both stochastic actions and noisy observations, involves costly
non-linear operations such as matrix inversions. Furthermore,
the reachable belief space depends on the initial conditions
of the robot and must be re-computed when the robot’s state
estimate changes. Therefore, any work done in predicting the
effect of a sequence of actions through belief space must be
completely reproduced for a query from a new start position.

We present a formulation for planning in belief space which
allows us to compute the reachable belief space and find
minimum expected cost paths efficiently. Our formulation is
inspired by the Probabilistic Roadmap, and we show how a
graph representation of the reachable belief space can be con-
structed for an initial query and then re-used for future queries.
We develop this formulation using the Kalman filter (Kalman,
1960), a common form of linear Gaussian state estimation. We
first provide results from linear filtering theory and optimal
control (Vaughan, 1970) showing that the covariance of the
Kalman filter can be factored, leading to a linear update
step in the belief representation. This technique has been
well-established in the optimal control and filtering literature;
however, its use for prediction in planning is both novel and
powerful. Using this result, the mean and covariance resulting
from asequenceof actions and observations can be combined
into a single prediction step for planning. The factored form
not only allows the graph of reachable belief space to be
computed efficiently, but also updated online for additional
queries based on new initial conditions. Optimal paths with
respect to the roadmap can therefore be found in time linear
with the size of the graph, leading to greatly accelerated
planning times compared to existing techniques.

The specific problem we address is an agent navigating in
a GPS-denied environment. The Global Positioning System
(GPS) provides position estimates of a user’s location on
the Earth to within a few meters, enabling geolocation in
areas with a clear line-of-sight (LOS) to GPS satellites, but
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in indoor and dense urban environments, GPS becomes un-
reliable or altogether unavailable. One approach to mitigating
the loss of GPS involves placing anchor radio beacons around
the target environment, enabling localization by computing
range measurements from the RF signals. However, even with
spread-spectrum technologies such as ultra-wide bandwidth
(UWB) radio, the quality of positional information available
to a mobile agent varies across the environment. When a
signal is transmitted, the channel properties of the environment
may result in multiple signal path reflections; interference
between these path reflections can result in signal degradation,
or even cancellation, which inhibits the receiver’s ability to
successfully resolve the original signal for time-based rang-
ing. Obstacles in the environment may occlude the radio
transceivers, blocking signal transmission or adding substantial
material propagation delays, both of which are problematic
for ranging applications. We show that integrating predictions
of position uncertainty into the planning algorithm enables
the robot to choose plans that maximize the probability of
reaching the goal, avoiding trajectories through regions of low
density of UWB signals that lead to very uncertain estimates of
the agent position. We give experimental results demonstrating
this algorithm for motion planning of a mobile robot, in which
the robot must use UWB range estimates for tracking its
position. We conclude with results that show planning using
a simulated UWB ranging model to navigate across MIT
campus.

2. TRAJECTORYPLANNING AND SEARCH

Given a map, model of robot kinematics, and the start and
goal positions, the objective of trajectory planning is to find
the minimum-cost collision-free path from start to goal. We
will restrict the discussion in this paper to kinematic motion
planning; we plan to extend this work to kinodynamic planning
in future work. C denotes the configuration space (Lozano-
Perez, 1983), the space of all robot poses,Cfree is the set
of all collision-free poses (based on the map of obstacle
positions) andCobst is the set of poses resulting in collision
with obstacles, so thatC ≡ Cfree ∪ Cobst. When the state is
fully observable, the Probabilistic Roadmap (PRM) algorithm
(Kavraki et al., 1996; Bohlin and Kavraki, 2000) can be
used to find a path throughCfree by generating a discrete
graph approximation ofCfree. The PRM provides a general
framework for efficiently solving fully observable motion
planning problems in two stages, as follows:

1) Pre-processing phase: The PRM first constructs a
graph, or roadmap, that is a simplified representation
of Cfree. Robot poses are sampled fromC according to
a suitable probabilistic measure and tested to determine
if each pose lies inCfree or Cobst. Poses withinCfree

(i.e., that do not collide with obstacles) are retained and
added as nodes to the graph. Edges in the graph are
placed between nodes where a straight-line path between
the nodes also lies entirely inCfree. Typically, edges
are limited to thek nearest neighbor nodes or to the
neighbors that are closer than some bounding distance.

2) Query phase: Given a start and goal pose, a graph
search algorithm is used to find a path through the graph

that connects the corresponding start and goal nodes. As
a result, the PRM returns a path consisting of a series
of straight-line trajectories between waypoints. If the
start and goal poses are not already nodes in the graph,
additional nodes are added to the graph and edges to any
reachable graph nodes are added as in the pre-processing
phase.

The power of the PRM resides in the fact that even if
Cfree cannot be tractably computed, it is relatively efficient
to determine if an arbitrary node or edge lies inCfree. As
a result, when planning in high-dimensional spaces,Cfree

can be approximated as a discrete graph by sampling poses
from C, retaining the collision-free samples and straight-line
trajectories. Note that there is an implicit assumption in using
the PRM, specifically, that some controller exists that can be
used to follow a straight-line trajectory from way-point toway-
point without collisions when the edge is known to lie entirely
in Cfree. It should also be noted that any sampling-based
roadmap approach inherently sacrifices guaranteed global op-
timality for the computational tractability of solutions within
the discrete graph approximation. “Optimal” plans within the
discrete roadmap are approximations of optimal trajectories in
the continuous state space, which converge as the size of the
roadmap grows.

3. BELIEF ESTIMATION IN L INEAR GAUSSIAN SYSTEMS

When the agent does not have access to near-perfect in-
formation about its state in the world using some external
positioning system such as GPS, the agent can infer its
position from a history of sensor measurements and control
actions. The sensor measurements constitute observationsof
the environment, and can be matched against a prior model
of the world, such as a map. Typically, these observations
are noisy and imperfect; as a result, statistical inferencecan
be used to maintain a distribution over possible positions,
essentially averaging out errors in the observations over time.
While the inference results in a probability distribution over
the agent’s state, a common assumption is that the maximum
likelihood state under the distribution can be used in placeof
the true state when executing a plan.

Let us denote the (unknown) state of the agent at timet

as st. If the agent takes an action according to some control
ut, then at timet + 1 the agent has moved to some new state
st+1 that is drawn stochastically according to some transition
probability distributionp(st+1|st, ut). After each motion, the
agent receives an observationzt that is drawn stochasti-
cally according to some observation probability distribution
p(zt|st). With knowledge of the transition and observation
distributions, the agent can estimate the probability of its
current statebt = p(st|u1:t, z1:t) after a sequence of controls
and observations.

A common assumption is that the posterior statest after
some control inputut depends only on the prior statest−1 such
that p(st|st−1, u1:t, z1:t−1) = p(st|st−1, ut). Similarly, the
likelihood of an observation depends only on the current state,
p(zt|st, u1:t, z1:t−1) = p(zt|st). These assumptions allow the
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posterior beliefbt to be computed recursively as

p(st|u1:t, z1:t)=
1

Z
p(zt|st)

∫

S

p(st|ut, st−1)p(st−1)dst−1, (1)

whereZ is a normalization factor. Equation (1) is the standard
Bayes’ filter equation, and provides a recursive form of
updating the state distribution.

Implementing the Bayes’ filter requires committing to a
specific representation of the state distributionp(st), with con-
sequences on how the transitionp(st|st−1, ut) and observation
p(zt|st) functions are represented, and on the tractability of
performing the integration in Equation (1). One of the most
common representations is the Kalman filter (Kalman, 1960),
in which the state distribution is assumed to be Gaussian
and the transition and observation functions are linear with
Gaussian noise. If the true system transition and observation
functions are non-linear, the extended Kalman filter (EKF)
(Smith et al., 1990) linearizes the transition and observation
functions at each step. A full derivation of the EKF is outside
the scope of this paper, but briefly, the assumption is that

st = g(st−1, ut, wt), wt ∼ N (0,Wt), (2)

and zt = h(st, qt), qt ∼ N (0, Qt), (3)

wherewt andqt are random, unobservable noise variables. In
the presence of this unobserved noise, the EKF estimates the
state at timet from the estimate at timet− 1 in two separate
steps: a process step based only on the control inputut leading
to an estimatep(st) = N (µt,Σt), and a measurement step to
complete the estimate ofp(st). The process step follows as

µt = g(µt−1, ut) (4)

Σt = GtΣt−1G
T
t + VtWtV

T
t , (5)

whereGt is the Jacobian ofg with respect tos andVt is the
Jacobian ofg with respect tow. For convenience, we denote
Rt , VtWtV

T
t . Similarly, the measurement step updates the

belief as follows:

µt = µt + Kt(h(µt)− zt) (6)

Σt = Σt −KtHtΣt, (7)

whereHt is the Jacobian ofh with respect tos and Kt is
known as the Kalman gain,

Kt = ΣtH
T
t

(

HtΣtH
T
t + Qt

)−1
. (8)

If the measurement function is conditionally independent of a
large number of state variables, the information form of the
EKF may be more computationally efficient. The distribution
p(st|u1:t, z1:t) can be represented by the information vector
and the information matrixΩt = Σ−1

t (Julier et al., 1995). The
information matrix updates in the process and measurement
steps of the extended information filter (EIF) can be written
respectively as

Ωt = Σ
−1

t = (GtΣt−1G
T
t + Rt)

−1
(9)

Ωt = Ωt + HT
t Q−1

t Ht. (10)

For convenience, we useMt , HT
t Q−1

t Ht to denote the

information matrix corresponding to a given measurement,
such thatΩt = Ωt + Mt.

4. BELIEF SPACE PLANNING

The assumption of most planning and control algorithms
is that knowledge of the mean of the belief distribution is
sufficient for good performance. However, if the planner uses
both the mean and the covariance of the belief in choosing
actions, different plans can be computed depending on whether
the position estimate is very certain (for example, a norm
of the covariance is small), or if the position estimate is
uncertain (a norm of the covariance is large). The robot can
then balance shorter paths against those with greater potential
to reduce belief uncertainty through sensor information gain,
choosing longer but more conservative motion plans when
appropriate. Notice that by incorporating additional statistics
from the belief such as the covariance, we are doing nothing
more than increasing the state space of the agent. Instead of
planning in configuration space, the agent is now planning in
belief spaceB, or information space, but the basic problem is
essentially the same: the planner must find a sequence of ac-
tions {u0, . . . , ut} such that the resulting beliefs{b0, . . . , bt}
maximize the objective functionJ of the robot. Conventional
motion planners generally search for collision-free pathsthat
minimize the cost of moving to the goal location, such that

J(st) = min
u0:T

C(st − sgoal) +
T

∑

t

c(st, ut), (11)

whereC is the cost of the distance to the goal location andc

is the cost of executing controlut from statest.
Planning in a Gaussian belief space requires a differ-

ent objective function since every belief has some non-zero
probability that the robot is at the goal state (although this
probability may be extremely small for beliefs where the
mean is far from the goal). A more appropriate objective
function is therefore to minimize theexpectedcost of the path,
Es0:T

[J(st)]. In practice, the effect of uncertainty along the
trajectory is dominated by the effect of uncertainty at the goal,
allowing us to approximate the cost with a more efficient cost
function:

J(bt) ≈ min
u0:T

Ebgoal|bt,u0:T
[C(st−sgoal)]+

T
∑

t

c(bt, ut), (12)

where the expectation is taken with respect to the belief state
at the goal.

A trivial extension of the PRM for solving this optimization
problem would first generate a graph by sampling belief nodes
randomly and creating edges between nodes where an action
exists to move the robot from one belief to another. Graph
search would then find a trajectory to the belief with highest
probability of being at the goal.

The difficulty with this approach is that the control prob-
lem is under-actuated and, thus, only a specific subset of
beliefs B∗ is actually realizable. Even if the robot has full
control of the mean of its belief, the covariance evolves as
a complicated, non-linear function of both the robot controls
and environmental observations. If the robot has full control
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(a) Sampled Distribution Means

beacon

PRM node

PRM edge

(b) Edges Added

beacon

PRM edge

Σ ellipse

START

(c) Resulting Belief Space Graph

beacon

shortest path
b−space path
Σ ellipse

GOAL

START

(d) Advantage of Belief Space Planning

Fig. 1. A basic example of building a belief-space roadmap in anenvironment with ranging beacons. (a) Distribution means aresampled, and the means in
Cfree are kept. (b) Edges between distributions that lie inCfree are added to the graph. (c) Once the graph is built, an initialbelief (lower right, labelled
START) can be propagated through the graph by simulating the agent’s motion and sensor measurements, and performing the appropriate filter update steps in
sequence along edges. The posterior distribution at each node is drawn with1−σ uncertainty ellipses, and results from a single-source, minimum uncertainty
search path to that node. In this example, we artificially increased the noise in the robot motion to make the positional uncertainty clearly visible throughout
the environment. Figure (d) reiterates the benefit of incorporating the full belief distribution in planning. The beliefspace planner detours from the shortest
path through an sensing-rich portion of the environment to remain well-localized.

over its n-dimensional mean, then the reachable part of the
belief space is ann-dimensional manifold embedded in the
n3-dimensional belief space, and therefore a subset of measure
0. It is vanishingly unlikely that any beliefb′ ∈ B∗ would ever
be sampled such that there exists a controlu to reach it.

A different approach must therefore be used for building
the belief graph. Since the robot does have control authority
over its mean, it is possible to sample mean components of the
belief, then predict the corresponding covariance components.
This process is shown in Figure 1. Let us sample a set
of mean poses{µi} from Cfree as the nodes in the PRM
graph (Figure 1a). We add an edgeeij between pairs(µi, µj)
if a sequence of controlsuij = {uti

, . . . , utj
} exists to

move along the straight line betweenµi and µj without

collision (Figure 1b). We then simulate a sequence of controls
and measurements along each edge; for each step along the
edgeeij , the Gt, Rt and Mt matrices are computed using
the appropriate models. Finally, we perform search in the
graph to find a sequence of controls starting from the initial
belief b0 such that the posterior covariance at the end of the
sequence is minimized, computing this posterior covariance
using equations (5) and (7). Figure 1(c) shows the result of
the search process and the minimum covariance achieved at
each graph node. Figure 1(d) demonstrates the advantage of
planning in belief space. The belief space planner detours from
the shortest path, finding a trajectory that is rich with sensor
information to enable superior localization.
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5. LINEARIZING BELIEF SPACE PLANNING

A major computational bottleneck with the planning algo-
rithm described above is that standard search optimization
techniques cannot be used, such as re-using portions of previ-
ous solutions. While the EKF is an efficient model for tracking
the probability distribution of both linear and well-behaved
non-linear systems, the update steps in the filtering process
itself are non-linear. In particular, any trajectory optimization
that depends on the covariance requires solving the following
Riccati equation (from equations (5) and (7)):

Σt = (GtΣt−1G
T
t +Rt)− (GtΣt−1G

T
t +Rt)H

T
t × (13)

(Ht(GtΣt−1G
T
t +Rt)H

T
t +Qt)

−1Ht(GtΣt−1G
T
t +Rt).

As a result, if the initial conditions or the trajectory itself are
modified in any way, the covariance must be recomputed from
scratch. If the planner computes a predicted posterior state
(µt,Σt) from an initial distribution(µ0,Σ0) and a predicted
sequence of actions and observations using a set oft EKF
updates, the non-linearity prevents us from computing a new
posterior state(µ′

t,Σ
′
t) from a different set of initial conditions

(µ′
0,Σ

′
0), except by repeating the entire sequence oft EKF

updates. This isnot the case for the meanµt for most real-
world systems; for a sequence of controls{u0, . . . , ut}, under
some reasonably mild assumptions, onceµt is calculated from
µ0, a newµ′

t can be calculated in a single step from a different
µ′

0. The EKF update of the mean becomes linear during
predictive planning when the measurementzt is assumed to
be the maximum likelihood observationzt = h(µt), which
simplifies equation (6) toµt = µt.

For a trajectory formed from a sequence ofk graph edges
each of lengthl, O(kl) EKF process and measurement up-
dates are required. The asymptotic complexity of the overall
problem isO(lbd) for a search depth ofd edges in the graph
with a branching factor ofb; the computational cost of the
specific EKF updates along each edge may seem negligible as
a constant multiplier of the exponential growth, but this term
has a significant effect on the overall time to plan. However,
if the covariance is factored appropriately, we can show that
the EKF update equations for each factor separately are in
fact linear. Along with other benefits, the linearity will allow
us to combine multiple EKF updates into a single transfer
functionζij associated with each edgeeij to efficiently predict
the posterior filter state from a sequence of controls and
measurements in a single step. Although initial construction
of the graph and transfer functions requires a cost ofO(l)
per edge, this construction cost can be amortized, leading
to a planning complexity ofO(bd), equivalent to the fully-
observable case.

The one-step covariance transfer functionζij is demon-
strated in Figure 2. In the top, standard EKF updates are
used to predict the evolution of an initial belief(µ0,Σ0)
along edgeeij . The belief is updated in multiple filter steps
across the edge; the meanµ propagates linearly (with the
assumptions stated above), while the covariance requires com-
puting a corresponding series of non-linear updates according
to Equation (13). The posterior belief(µT ,ΣT ) resulting from
the initial belief(µ0,Σ0) is recovered afterT update steps, and

Fig. 2. Belief Prediction With One-Step Covariance Transfer Function. Nodes
i and j are connected by an edge inCfree; a beacon (diamond) provides
range measurements. (Top) Standard EKF updates are used in succession to
propagate the initial covarianceΣ0 along edgeeij in multiple filtering steps.
(Bottom) The one-step transfer functionζij encodes the effects of multiple
EKF process and measurement covariance updates, enabling theposterior
covarianceΣT to be computed in one efficient step given any novel initial
covarianceΣ0.

must be fully re-computed for a change in initial conditions.
The one-step transfer function is shown in the bottom of
Figure 2. An initial belief at nodei is propagated through
ζij in one efficient step to recover the posterior covariance at
nodej. The following section derives this transfer function by
showing that EKF covariance updates can be composed.

5.1. Linear Covariance Updates

To show the linearization of the EKF covariance update,
we rely on previous results from linear filtering theory and
optimal control (Vaughan, 1970) to make use of the following
matrix inversion lemma:

Lemma 1.

(A + BC−1)−1 = (ACC−1 + BC−1)−1

= C(AC + B)−1

Theorem 1. The covariance can be factored asΣ = BC−1,
where the combined EKF process and measurement update
givesBt and Ct as linear functions ofBt−1 and Ct−1.

Proof: We proceed by proof by induction.
Base case:We can show the theorem to be trivially true, as

Σ0 = B0C
−1
0 = Σ0I

−1. (14)

Induction step:

Given:Σt−1 = Bt−1C
−1
t−1 (15)

From equation (5),

Σt = GtBt−1C
−1
t−1G

T
t + Rt (16)

Σt = (GtBt−1)(G
−T
t Ct−1)

−1 + Rt (17)
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From lemma 1,

Σt =
(

(G−T
t Ct−1)

(

GtBt−1+Rt(G
−T
t Ct−1)

)−1
)−1

(18)

Σt =
(

DtE
−1

t

)−1

(19)

⇒ Σt = EtD
−1

t , (20)

whereDt = G−T
t Ct−1 and Et = GtBt−1 + Rt(G

−T
t Ct−1).

As a result, we can see that the process update preserves the
factored form ofΣ. Similarly, if we start with the information
form for the covariance update,

From equation (10),

Σt = (Σ
−1

t + HT
t Q−1

t HT
t )−1 (21)

Substituting inMt and equation (20),

Σt = (DtE
−1

t + Mt)
−1 (22)

Again from lemma 1,

Σt = Et(Dt + MtEt)
−1 (23)

⇒ Σt = BtC
−1
t , (24)

whereBt = Et and Ct = Dt + MtEt. If we collect terms,
we see that

Bt = Et = GtBt−1 + Rt(G
−T
t Ct−1) (25)

and

Ct = Dt + MtEt (26)

= G−T
t Ct−1 + Mt(GtBt−1 + Rt(G

−T
t Ct−1)). (27)

In both cases,Bt and Ct are linear functions ofBt−1 and
Ct−1.

Collecting terms again, we can re-write equations (25)
and (26), such that

Ψt =

[

B

C

]

t

=

[

W X

Y Z

]

t

[

B

C

]

t−1

(28)

=

[

0 I

I M

]

t

[

0 G−T

G RG−T

]

t

[

B

C

]

t−1

, (29)

whereΨt is the stacked block matrix
[

B
C

]

t
consisting of the

covariance factors andζt =
[

W X
Y Z

]

t
is the one-step transfer

function for the covariance factors.

5.2. Initial Conditions

In order to use this factored form of the covariance, we
need to ensure that this factorization applies across all pos-
sible initial conditions. To verify that the factorizationand
update are independent of the initial conditions, we show that
our assumed initial conditionΣ0 = X0Y

−1
0 = Σ0I

−1 is
an achievable result of performing a boundary update from
each of two possible boundary conditions, which we will
denote with a minus subscript asΣ− = X−

Y−

, or equivalently

Ω− = Y−

X−

, with a slight abuse of notation. The first boundary

condition we will consider is that of infinite uncertainty, or
equivalently zero information. The second is that of zero
uncertainty, or equivalently infinite information. The linear
system corresponding to the boundary update is given as

[

X

Y

]

0

=

[

G RG−T

MG MRG−T + G−T

]

0

[

X

Y

]

−

(30)

We consider each boundary condition in turn, by solving
the system in equation (30) and imposing the constraintΣ0 =
X0Y

−1
0 .

5.2.1. Boundary Case: Infinite Uncertainty, Zero Informa-
tion: The boundary condition of infinite uncertaintyΣ− =∞,
or zero informationΩ− = 0, corresponds to the case where
Y− = 0, which is shown as follows:

Σ− =
X−

Y−
=

X−

0
=∞, (31)

Ω− =
Y−

X−
=

0

X−
= 0, (32)

X− 6= 0. (33)

Using equation (30), the covariance factors are written as

X0 = G0X− + 0 = G0X− (34)

Y0 = M0G0X− + 0 = M0G0X−. (35)

Solving for the initial condition using equations (34-35),we
obtain,

X0Y
−1
0 = G0X− ·X

−1
− G−1

0 M−1
0 = M−1

0 ,

which implies the following constraint:

Σ0 = M−1
0 . (36)

By denotingA = G0X− and applying the constraint in
equation (36) to equations (34-35), we obtain the following
solution set:

[

X

Y

]

0

=

[

A
Σ−1

0 A

]

, A 6= 0. (37)

Note that our trivial initial condition ofX0 = Σ0 andY0 = I

is valid withA = Σ0.
The result shown above is intuitive when considering

EKF/EIF control and measurement updates from the boundary
condition of zero informationΩ− = 0 and, equivalently,
infinite uncertaintyΣ− = ∞. The EKF control update is
irrelevant, since adding any process noise to infinite covariance
results in infinity:

Σ0 = G0Σ−GT
0 + R0 = G0∞GT

0 + R0 =∞. (38)

The measurement update, however, shows that an update from
this boundary condition corresponds to receiving a measure-
mentM0 = Ω0:

Ω0 = Ω− + M0 = 0 + M0 = M0. (39)

Thus, this boundary update is equivalent to beginning in
a state with zero information and increasing certainty by
incorporating a measurement of valueM0 = Ω0 = Σ−1

0 .
5.2.2. Boundary Case: Zero Uncertainty, Infinite Informa-

tion: The boundary condition of zero uncertaintyΣ− = 0, or
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infinite informationΩ− = ∞, corresponds to the case where
X− = 0, which is shown as follows:

Σ− =
X−

Y−
=

0

Y−
= 0, (40)

Ω− =
Y−

X−
=

Y−

0
=∞, (41)

Y− 6= 0. (42)

As before, the covariance factors are written as

X0 = G0 · 0 + R0G
−T
0 Y− = R0G

−T
0 Y− (43)

Y0 = M0G0 · 0 + (M0R0G
−T
0 + G−T

0 )Y− (44)

= (M0R0 + I)G−T
0 Y−. (45)

Computing the initial covariance corresponding to equa-
tions (43-45) gives us

X0Y
−1
0 = R0G

−T
0 Y− · Y

−1
− GT

0 (M0R0 + I)−1

= R0(M0R0 + I)−1,

implying the following constraint onR0 andM0:

Σ0 = R0(M0R0 + I)−1. (46)

We make the substitutionB = G−T
0 Y− for the free

variables, and apply the constraint in equation (46) to equa-
tions (43-45), yielding the solution set:

[

X

Y

]

0

=

[

R0B
(M0R0 + I)B

]

, B 6= 0, (47)

This result is also intuitive, although not as straightforward
as the previous boundary update in which the control update
had no effect. Due to the ordering of control and measurement
updates, the initial covariance can result from a combination
of both adding uncertaintyR0 to the boundary state of per-
fect information, and then subsequently adding measurement
informationM0. It is for this reason that the constraint set is
a function of bothR0 andM0. However, our assumed initial
condition of X0 = Σ0 and Y0 = I is the trivial result of
adding only process noiseR0 = Σ0 and zero measurement
informationM0 = 0, with B = I.

6. REDHEFFERSTAR PRODUCT

The factored covariance representation and matrix form of
the update given in equation (29) represents a non-recursive
solution to the Riccati equation (13) in the symplectic form.
The 2n× 2n matrix Ψ is by definition symplectic if

ΨJΨT = J (48)

where

J =

[

0 −In

In 0

]

(49)

and In is the n × n identity matrix. The eigenvalues of
symplectic matrices such asΨ occur in reciprocal pairs such
that if λ is an eigenvalue ofΨ, then so isλ−1. Unfortunately,
as a result, composition of symplectic matrices is known to
become numerically unstable as round-off errors in computa-
tion can result in loss of the symplectic eigenvalue structure
(Fassbender, 2000). An alternate form that provides greater

numerical stability through inherent structure preservation is
the Hamiltonian form, with the corresponding composition
operator known as the Redheffer “star” product (denoted with
a ‘⋆’) (Redheffer, 1962). A2n× 2n block matrix

S =

[

A B

C D

]

(50)

is calledHamiltonian if

JS = (JS)T = −ST J, (51)

noting that JT = J−1 = −J . We will show that there
is a Hamiltonian representation and composition operator
equivalent to the symplectic form that does not share the same
numerical instability.

6.1. Derivation of Star Product

We can formally derive the Hamiltonian method of com-
position by starting with descriptor matrices of a Hamiltonian
system at two adjacent timesteps as follows:

[

x2

y1

]

=

[

A B

C D

] [

x1

y2

]

, (52)

[

x3

y2

]

=

[

W X

Y Z

] [

x2

y3

]

. (53)

For clarity it should be stated that these two system matrices
have the same block structure, where each block actually cor-
responds to a time-varying quantity. Our goal is to determine
the Hamiltonian matrix corresponding to the aggregate system
that represents both equation (52) and equation (53). We will
show that the resulting system can be computed using the star
product in the following manner:

[

x3

y1

]

=

[

A B

C D

]

⋆

[

W X

Y Z

] [

x1

y3

]

. (54)

Our explicit goal is to derive equations for the variablesx3

and y1 in terms ofx1 and y3 to determine the star product
operation in equation (54). We begin by writing the given
equations from the systems in equations (52) and (53), as
follows:

x2 = Ax1 + By2 (55)

y1 = Cx1 + Dy2 (56)

x3 = Wx2 + Xy3 (57)

y2 = Y x2 + Zy3. (58)

Substitutingy2 from equation (58) into equation (55) we solve
for x2 as follows:

x2 = Ax1 + B(Y x2 + Zy3)

(I −BY )x2 = Ax1 + BZy3

x2 = (I −BY )−1Ax1 + (I −BY )−1BZy3 (59)

We also substitutex2 from equation (55) into equation (58)
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to solve fory2 as follows:

y2 = Y (Ax1 + By2) + Zy3

(I − Y B)y2 = Y Ax1 + Zy3

y2 = (I − Y B)−1Y Ax1 + (I − Y B)−1Zy3.

(60)

Now with x2 andy2 both written in terms ofx1 andy3, it is
possible to similarly solve forx3 andy1. To solve forx3, we
substitutex2 from equation (59) into equation (57):

x3 = Wx2 + Xy3

=
(

(I −BY )−1Ax1 + (I −BY )−1BZy3

)

+ Xy3.

which is simplified to give the desired result

x3 = W (I−BY )−1Ax1+(X +W (I−BY )−1BZ)y3. (61)

We also substitutey2 from equation (60) into equation (56) to
solve fory1 as follows:

y1 = Cx1 + Dy2

= Cx1 + D(I − Y B)−1Y Ax1 + D(I − Y B)−1Zy3,

which simplifies to become

y1 = (C + D(I −Y B)−1Y A)x1 + D(I −Y B)−1Zy3. (62)

Now, with equations (61) and (62), our solution is obtained
as the aggregate system in equation (54), which can now be
written in terms of one matrix as
[

x3

y1

]

=

[

W (I−BY )−1A X+W (I−BY )−1BZ

C+D(I−Y B)−1YA D(I−Y B)−1Z

][

x1

y3

]

, (63)

where we have now derived the star product as a set of matrix
block operators, given as

S1 ⋆ S0 =

[

A B

C D

]

⋆

[

W X

Y Z

]

= (64)
[

W (I −BY )−1A X + W (I −BY )−1BZ

C + D(I − Y B)−1Y A D(I − Y B)−1Z

]

. (65)

6.2. Scattering Theory Parallel

The Hamiltonian method of composition can be demon-
strated most intuitively with an analogy in scattering theory
stemming from Redheffer’s original work and developed in
the context of optimal filtering by Kailath et al. (1976).

The key to this analogy lies in the forward-backward Hamil-
tonian system associated with the discrete Riccati difference
equation: in filtering, this corresponds to a system which
simultaneously produces filtered and smoothed estimates; in
scattering theory it is interpreted as waves traveling through
a medium in opposite directions with forward and backward
transmission and reflection operators, whose interactionsare
determined by the state space parameters{G,R,M}. Given
these parameters for a set of consecutive scattering medium
layers, or equivalently a set of consecutive Kalman filter up-
dates, the descriptor matrices for each update can be combined
using the star product to produceonedescriptor matrix. This
resulting descriptor matrix represents the aggregate scattering
medium, or equivalently the aggregate filter update.

The Riccati difference equation is represented as follows:

Σt = Rt + GtΣt−1(I −MtΣt−1)
−1GT

t , (66)

where at filtering timet (or scattering layert)

Gt =state transition matrix (or scattering transmission matrix)

Rt =error covariance (or right reflection coefficient)

Mt =measurement information (or left reflection coefficient)

and the associated Hamiltonian matrix is called thescattering
matrix and has the form:

St =

[

G R

−M GT

]

t

(67)

Composition of multiple layers can be performed using the
star product as

St:T = St ⋆ St+1 ⋆ · · · ⋆ ST , (68)

where St:T is the aggregate scattering matrix capturing the
effects of layerst throughT .

It can be shown that individual control and measurement
steps have corresponding scattering matrices by noting thedi-
rect correspondence between EKF/EIF updates and the Riccati
equation (66). The control update yields the control update
scattering matrix

SC
t =

[

G R

0 GT

]

t

. (69)

Similarly, the measurement update gives the measurement
update scattering matrix

SM
t =

[

I 0
−M I

]

t

. (70)

Thus, multiple filter updates can be composed in the
Hamiltonian form as in equation (68) by star-producing the
corresponding scattering matrices in succession:

St = SC
t ⋆ SM

t . (71)

6.2.1. Initial Conditions: The initial conditions in this
formulation are handled in similar fashion to our discussion
in Section 5.2. The insight in applying the initial covariance
is to create aboundary layer, which is a scattering layer that
is attached to thenull scattering layer.

It is straightforward to see that the initial covarianceΣ0

could be represented as a null layer with process noiseR =
Σ0, or alternatively with additional measurement information
M = Σ−1

0 = Ω0. These are identical to the cases derived
in Section 5.2. The first two cases would be boundary layers
described as

S0 =

[

I Σ0

0 I

]

, or S0 =

[

I 0
−Ω0 I

]

, (72)

where this boundary layer can be attached to a scattering
medium to impose an initial condition.

6.3. Computing the Hamiltonian One-Step Update

The key to applying the star product for composition
lies in the associative property of the star product operation
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Algorithm 1 The Belief Roadmap Build Process.
Require: Map C over mean robot poses

1: Sample mean poses{µi} from Cfree using a standard
PRM sampling strategy to build belief graph node set{ni}
such thatni[µ] = µi

2: Create edge set{eij} between nodes(ni, nj) if the
straight-line path between(ni[µ], nj [µ]) is collision-free

3: Build one-step transfer functions{ζij} ∀ eij ∈ {eij}
4: return Belief graphG = {{ni}, {eij}, {ζij}}

(Redheffer (1962)), which ensures that the star product of any
scattering matrices yields another scattering matrix of the same
block form. To compose the filter updates forT time steps,
we begin by computing the aggregate scattering matrix,

S1:T =

[

G1:T R1:T

−M1:T GT
1:T

]

= S1 ⋆ S2 ⋆ · · · ⋆ ST . (73)

We can then apply a novel initial conditionΣ0 and use
equation (66) to solve for the posterior covariance,

[

· ΣT

· ·

]

=

[

I Σ0

0 I

]

⋆ S1:T . (74)

(The matrix elements· are irrelevant to the final solution
for the covariance.) As mentioned previously, the advantage
to this formulation is that the aggregation of Hamiltonian
matrices is numerically more stable than the symplectic form
of equation (29).

7. THE BELIEF ROADMAP ALGORITHM

The belief space planning algorithm can now be shown as
a two stage process. First, mean positions of the robot are
sampled, as in the Probabilistic Roadmap algorithm, and edges
between visible graph nodes are added. The corresponding
process and measurement Jacobians are calculated at steps
along each edge and assembled via matrix multiplication into
a one-step transfer function for the covariance,ζij , according
to equation (29).

In the second stage, a standard search algorithm is used to
compute the sequence of edges through the graph, starting at
b0, that maximizes the probability of being at the goal (or,
equivalently, results in minimal belief covariance at the goal).
During search, eachζij now allows us to compute the posterior
covarianceΣj that results at nodej by starting at nodei with
covarianceΣi, moving in one efficient step along edgeeij .
We call this algorithm theBelief Roadmap(BRM) planner.
The build and search phases of the BRM planner are shown
in Algorithms 1 and 2, respectively.

There are several points of discussion that we address in
turn. Firstly, note that this must be a forward search process;
the terminal node of this path cannot be determineda priori,
for while the goal locationµgoal is known, the covariance (and
hencebt(sgoal)) depends on the specific path.

Secondly, the BRM search process in Algorithm 2 assumes
a queue function that orders the expansion of(µ,Σ) nodes.
Breadth-first search sorts the nodes in a first-in, first-out order.
Note that cycles in the path are disallowed in line 9 of

Algorithm 2 The Belief Roadmap Search Process.

Require: Start belief(µ0,Σ0), goal locationµgoal and belief
graphG

Ensure: Pathp from µ0 to µgoal with minimum goal covari-
anceΣgoal.

1: Append G with nodes {n0, ngoal}, edges
{{e0,j}, {ei,goal}}, and one-step transfer functions
{{ζ0,j}, {ζi,goal}}

2: Augment node structure with best pathp=∅ and covari-
anceΣ=∅, such thatni={µ,Σ, p}

3: Create search queue with initial position and covariance
Q← n0 ={µ0,Σ0, ∅}

4: while Q is not emptydo
5: Popn← Q

6: if n = ngoal then
7: Continue
8: end if
9: for all n′ such that∃en,n′ and not n′ ∋ n[p] do

10: Compute one-step updateΨ′ = ζn,n′ ·Ψ, whereΨ =
[

n[Σ]
I

]

11: Σ′ ← Ψ′
11 ·Ψ

′
21

−1

12: if tr(Σ′) < tr(n′[Σ]) then
13: n′ ← {n′[µ],Σ′, n[p] ∪ {n′}}
14: Pushn′ → Q

15: end if
16: end for
17: end while
18: return ngoal[p]

Algorithm 2, where a neighboring noden′ is only considered
if it is not already in the search state pathn[p]. This guarantees
that upon termination of the breadth-first search process, the
minimum covariance path stored at the goal node is optimal
with respect to the roadmap. More intelligent search processes
rely on anA⋆ heuristic to find the goal state faster; however,
common admissible heuristics do not apply as the evolution of
the covariance through the roadmap is non-monotonic (due to
the expansion and contraction of uncertainty in the underlying
state estimation process). Developing suitableA⋆ heuristics for
planning in belief space are a topic for future work. Similarly,
the applicability of dynamic search processes, such as theD⋆

family of algorithms (Stentz, 1995; Koenig and Likhachev,
2002) and anytime methods (Van den Berg et al., 2006), is a
direction for future research. For the results given in thispaper,
we used exclusively breadth-first search for both shortest-path
(PRM) and belief-space (BRM) planning problems.

Additionally, note in lines 12-13 of Algorithm 2 that we
only expand nodes where the search process has not already
found a posterior covariancen′[Σ] such that some measure of
uncertainty such as the trace or determinant is less than the
measure of the new posterior covarianceΣ′. It is also assumed
that a noden′ replaces any current queue membern′ when
pushed onto the queue in line 14.

Further, considerable work has been devoted to finding
good sampling strategies in fully-observable motion planing
problems (we refer the reader to (Hsu et al., 2006; Missiuro
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Algorithm 3 The Min-Max Belief Roadmap (minmax-BRM)
algorithm.

Require: Start belief(µ0,Σ0), goal locationµgoal and belief
graphG

Ensure: Pathp from µ0 to µgoal with minimum maximum
covariance.

1: G = {{ni}, {eij}, {Sij}} ← BUILD BRM GRAPH (Bµ)
2: Append G with nodes {n0, ngoal}, edges
{{e0,j}, {ei,goal}}, and one-step descriptors
{{S0,j}, {Si,goal}}

3: Augment node structure with best pathp = ∅ and
maximum covarianceΣp

max =∞ along pathp, such that
ni = {µ,Σ, p,Σp

max}
4: Create search queue with initial position and covariance

Q← n0 = {µ0,Σ0, ∅,∞}
5: while Q is not emptydo
6: Popn← Q

7: if n = ngoal then
8: Continue
9: end if

10: for all n′ such that∃en,n′ and n′ ∋ n[p] do
11: Compute one-step updateΨ′ = ζn,n′ ·Ψ, whereΨ =

[

n[Σ]
I

]

12: Σ′ ← Ψ′
11 ·Ψ

′
21

−1

13: if max(tr(Σ′), tr(n[Σp
max])) < tr(n′[Σp

max]) then
14: n′ ← {n′[µ],Σ′, {n[p], n′},max(Σ′, n[Σp

max])}
15: Pushn′ → Q

16: end if
17: end for
18: end while
19: return ngoal[p]

and Roy, 2006)). Such strategies can bias samples towards
different topological features and areas of interest to improve
both the quality and efficiency of the roadmap. For the
results in this paper, we used a medial-axis sampling strategy
for both the shortest-path (PRM) and belief-space (BRM)
planning problems. However, it is likely that better belief-
space planning would result from sampling strategies that are
aware of the sensor model. Similarly, a sampling strategy that
incorporates the cost function would also lead to improved
planning, especially for cost functions that are not solelya
function of the distribution over the goal state. By iteratively
computing expected costs and re-sampling the roadmap, an
upper-bound on the expected cost of the entire computed plan
can be achieved. The exact algorithm for iteratively planning-
resampling is outside the scope of this paper.

7.1. Modified BRM for MinMax Path Uncertainty

In the BRM formulation shown in Algorithm 2, the search
process finds the series of trajectories that results in minimal
uncertainty at the goal location; however, it may be desirable
to instead limit the maximum uncertainty encountered along
an entire path. One approach could be to impose bounds on
the maximum allowable uncertainty during the BRM search
tr(Σ) < trmax to discard undesirable goal paths. In a

more principled approach, one could modify the BRM search
process to optimize an alternative objective function that
minimizes the maximum predicted uncertainty along the entire
path. Within the context of the BRM graph, this approach
would consider the posterior covariance predicted at each
intermediate belief node in a series of trajectories. The goal
would be to minimize the objective function̂J , which is given
as

Ĵ(bt) ≈ min
u0:T

(

T
∑

t

c(bt[µ], ut) + max
b0:T

D(bt[Σ])), (75)

where Ĵ(. . .) is the cost of a path,c is the cost of executing
controlut from belief posebt[µ], andD is the cost associated
with the maximum uncertainty of all discrete belief nodes
along the path.

The BRM search process is adapted to minimize the objec-
tive functionĴ in Algorithm 3, which we have named the Min-
Max Belief Roadmap (minmax-BRM) algorithm. There are
two key changes from the standard BRM. First, the augmented
search node structure in line 3 stores the best pathp to
the given node and the maximum covarianceΣp

max along p.
The best pathni[p] to nodeni corresponds to the series of
nodes beginning at the start noden0 that collectively has the
minimum maximum (min-max) covariance of all such paths
considered to nodeni. The maximum covarianceni[Σ

p
max]

along this best pathni[p] is also stored in the search state for
computing the associated costD in the objective functionĴ
(equation (75)) and for decision-making during search. Note
that the covarianceni[Σ] stored at nodeni is no longer
the minimum achievable covariance, but rather the posterior
covariance resulting from the best pathni[p].

Secondly, the primary decision-making step in line 13 is
modified for the new objective function. In this case, the
path being considered in the current search state{n[p], n′}
is deemed better than the existing pathn′[p] to noden′ if its
maximum uncertainty is less than that of the existing path.
Note that the maximum uncertainty of the current search path
{n[p], n′} is computed by taking themax function of the
associated uncertainty of each portion of this path, which is
tr(n[Σp

max]) for n[p] and tr(Σ′) for n′. If the current search
path is better than the existing path, then the noden′ is updated
accordingly in line 14 and placed on the queue in line 15.

A key consideration of the minmax-BRM algorithm is that
it can only guarantee an optimal solution within the roadmap
for a specific resolution of the uncertainty evolution along
a path. In Algorithm 3, we only consider the covariance
at node locations along the path. While lines 11-12 exactly
compute the posterior covariance of multiple EKF updates
along a trajectory, the underlying multi-step process is not
monotonic. This means that it is possible for the covarianceat
an intermediate point on an edge between two graph nodes
to be larger than both the prior covariance and posterior
covariance for the full trajectory. It is possible to revertto
some form of multi-step approach to this problem, but, without
further assumptions, the guarantee of min-max covariance will
always be limited to the resolution of discretization. We leave
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the analysis of this problem for future work, and place our
focus on the standard BRM for experiments.

It is important to note the generality of the BRM formula-
tion, which was demonstrated in this section by modifying the
search process to optimize an alternative objective function.
The BRM technique presents a general approach to planning
in belief space that can be adapted to solve a broad class of
planning problems.

8. UWB LOCALIZATION

In this work, we applied the belief roadmap algorithm to
the problem of navigating in a GPS-denied environment using
ultra-wide bandwidth (UWB) radio beacons for localization.
UWB is a nascent technology that is amenable to ranging
applications in dense indoor and urban environments, over-
coming weaknesses of traditional narrowband counterparts
with its fine delay resolution and large bandwidth that provide
immunity to multipath fading and the ability to penetrate
building materials (Win and Scholtz, 1998; Cassioli et al.,
2002). Ranges can be computed between a pair of UWB
radio beacons by measuring the round-trip time-of-flight of
UWB pulse exchanges. While a complete characterization of
the UWB channel is still an active area of research and beyond
the scope of this paper, here we briefly develop the general
ranging model used in this work. A supplementary discussion
of the details of this UWB ranging scheme was presented by
Prentice (2007).

8.1. Ultra-Wideband Measurement Model

The general UWB sensor model can be written as

rt = dt + bt + nt, (76)

where rt is the range,dt is the distance between UWB
sensors,bt is the range bias, andnt is additive noise. The
round-trip time calculation is approximate in nature, leading
to uncertainty in the range calculation which can be modelled
as a stochastic process. In a testing campaign, we developed
a Gaussian model to describe ranging uncertainty in LOS
scenarios. We characterized the Gaussian process by gathering
range data between a pair of sensors at various distances
with LOS visibility. The distance was increased in 0.25 meter
increments from 1 to 14 meters of separation and at each
point, 1,000 range samples were gathered. The resulting data is
plotted in Figure 3, showing the mean biasµbias and standard
deviationσbias errorbar at each distance.

This data suggests that the LOS range bias can be reason-
ably modeled as distance-varying Gaussian noise, with mean
µbias(dt) and standard deviationσbias(dt). Computing a linear
regression yields

µbias(dt) = µm
biasdt + µb

bias (77)

σbias(dt) = σm
biasdt + σb

bias. (78)

The range function in equation (76) then becomes

rt = dt + µbias(dt) +N (0, σbias(dt)
2), (79)

where the biasbt is now a linear function of the distance
µbias(dt), and the noise termnt is zero-mean Gaussian noise
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Fig. 3. The Ultra-Wide Band Ranging Model in LOS. Thex-axis is
the true range between sensors and they-axis is the measured systematic
error (unbiased measurements are at 0), and the error bars givethe standard
deviation of the random noise.

with varianceσbias(dt)
2. When used in filtering problems, the

range function in equation (79) corresponds to the observation
function zt = h(xt)+ vt, with zt = rt, vt = N (0, σbias(dt)

2)
andh(xt) is given as

h(xt) = dt + µbias(dt) (80)

= µb
bias+(1+µm

bias)

√

(x−xbeacon)
2
+(y−ybeacon)

2
,

(81)

wherext is assumed to be the robot pose(x, y, θ)t at time t,
and (xbeacon, ybeacon) is the ranging beacon location.

9. EXPERIMENTAL RESULTS

In order to evaluate the BRM algorithm, we performed a
series of evaluations on a small planning domain in simulation.
The testing consisted of two objectives: (1) to evaluate the
quality of plans produced by the BRM algorithm in terms
of uncertainty reduction; and (2), to assess the computational
advantage of employing the linearized EKF covariance update
during the search process.

The experimental setup consisted of small-sized maps with
randomly placed ranging beacons using the stochastic range
sensor model from Section 8.1. The environment was assumed
to be free of obstacles to avoid experimental bias resulting
from artifacts in sensor measurements and random trajectory
graph generation in environments with varying contours.

We begin by presenting the motion and sensor models used
in our experiments, which are linearized versions of the motion
and sensor models for use in our EKF-based formulation. Note
that, for readability, we omit time index subscripts in the next
two sections; however, all matrices derived are time-varying
quantities.
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9.1. Linearized Motion Model

We use the following non-linear probabilistic motion model,

gx = x + D cos (θ +
T

2
) + C cos (θ +

T + π

2
)

gy = y + D sin (θ +
T

2
) + C sin (θ +

T + π

2
)

gθ = θ + T mod 2π,

wheregx, gy and gθ are the components ofg corresponding
to each state variable, and the control variableut is given by
ut =

[

D C T
]T

with down-rangeD, cross-rangeC and turn
T components.

In the EKF, the state transition matrixG is the Jacobian of
the motion model with respect to the state, and is computed
by linearizing the state transition functiong about the mean
stateµ as follows:

G =















δgx

δx

δgx

δy

δgx

δθ
δgy

δx

δgy

δy

δgy

δθ
δgθ

δx

δgθ

δy

δgθ

δθ















µ

=





1 0 a

0 1 b

0 0 1



 ,

where

a = −D sin (µθ +
T

2
)− C sin (µθ +

T + π

2
)

b = D cos (µθ +
T

2
) + C cos (µθ +

T + π

2
).

The linearized process noise in state space is computed as
R , V WV T where W is the process noise covariance in
control space

W =





σ2
D 0 0
0 σ2

C 0
0 0 σ2

T





andV is the mapping from control to state space, computed as
the Jacobian of the motion model with respect to the control
space components

V =













δgx

δD

δgx

δC

δgx

δT
δgy

δD

δgy

δC

δgy

δT
δgθ

δD

δgθ

δC

δgθ

δT













µ,µ[u]

.

Computing these partial derivatives leads to
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where the components ofV are evaluated at the mean state
µ and the mean controlµ[u] (D, C, andT take on the mean
values of the respective normal distributions).

9.2. Linearized LOS Sensor Model

Similarly, the UWB sensor model developed in Section 8.1
can be linearized for use in the EKF. For convenience we
restate the distance-varying Gaussian noise model of the bias
N (µb(d), σb(d)) and the observation functionz. The noise
model is given by,

µb(d) = µm
b d + µb

b

σb(d) = σm
b d + σb

b

and the observation functionz = h(x) + v is determined by,

h(x) = µb
b + (1 + µm

b )

√

(x− xb)
2

+ (y − yb)
2

v = N (0, σb(d)2),

where(x, y) is the robot pose,(xb, yb) is the beacon location,
d is the Euclidean distance and the parameters of the Gaussian
bias distribution are linear functions of the distance.

The linearized transformation from measurement space to
state space is computed as the measurement JacobianH, com-
puted as the partial derivatives of the measurement function
with respect to each component of the state:

H =

[

δh

δx

δh

δy

δh

δθ

]

,

which becomes:

H =

[

(1 + µm
b )(x−xb)

√

(x−xb)
2
+(y−yb)

2

(1 + µm
b )(y−yb)

√

(x−xb)
2
+(y−yb)

2
0

]

. (82)

Note that(x−xb) = d cos θm and(y− yb) = d sin θm, where
θm = atan2(y−yb, x−xb) is the angle of measurement relative
to the robot pose. Thus, equation (82) becomes

H =
[

(1 + µm
b ) cos θm (1 + µm

b ) sin θm 0
]

. (83)

As can be seen, the range measurements yield no informa-
tion on bearing, and thus only affect the estimation of thex

andy components of the robot state. The measurement noise
covarianceQ , cov(q, q) for a given beacon is the1 × 1
matrix

Q =
[

(σm
b d + σb

b)
2
]

. (84)

Recall that the information matrix update in the measure-
ment step is additive asΩt = Ωt + Mt. Thus, the range
measurementsz[i]

t to each ofN visible beaconsi at time t

can be incorporated by computing the aggregate measurement
information as

Mt =

N
∑

i=0

M
[i]
t , (85)

whereM
[i]
t = H

[i]T

t Q
[i]−1

t H
[i]
t .

9.3. Localization Performance:

In the first set of analyses, we compared the quality of
paths produced using the BRM algorithm to those resulting
from a shortest path search in a conventional PRM, which
does not incorporate uncertainty. In each test iteration, sensor
locations were sampled along randomized trajectories between
a start and goal location in an obstacle-free environment with
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Fig. 4. Experimental Setup. Range sensor locations (shown assmall circles)
were sampled along randomized trajectories between a start and goal location.
The solid and dashed line show the plans generated by the BRM and shortest
path algorithms, respectively, with ellipses indicating the covariancesΣ along
each trajectory. This experimental design tests the abilityof the BRM to find
paths with greater potential information gain to stay well-localized during
execution.

100m sides, as shown in Figure 4. This experimental setup
tests the ability of the BRM to detour from shorter paths for
those with lower expected uncertainty. We tested the quality of
paths computed by the BRM and PRM shortest path planning
algorithms by evaluating the average position error obtained
at the goal location after executing the prescribed path.

We performed two analyses to demonstrate that the BRM
provided more accurate localization; we artificially varied the
random noise of the range beacons, and we artificially limited
the range of the beacons by discarding measurements beyond
a maximum range. In Figure 5(a), we see the performance
of the two planning algorithms under conditions of varying
noise. As the sensor noise increases, both algorithms have
worsened positional accuracy at the goal, but the shortest path
algorithm degrades more quickly. The BRM planner contends
with increased sensor noise by finding trajectories with higher
quality measurements. In Figure 5(b), we see that with a small
maximum sensor range, the BRM is able to find trajectories
in close proximity to sensors, yielding a reasonable level of
positional accuracy. As the maximum sensor range increases,
trajectories farther from sensors provide sufficient information
for localization and the positional errors in both planners
converge to similar values. Intuitively, as the information space
becomes artificially saturated with abundant state information,
the agent can remain well-localized regardless of its trajectory.
Conversely, when the information space has greater disparity,
the BRM excels at finding higher-quality paths that provide
greater state information.

9.4. Algorithmic Performance:

Secondly, we assessed the speed improvement of utilizing
the linearized EKF covariance update during planning. We
compared the time required by the planning search process
when using the one-step linearized EKF covariance update
(ζij) to that of the standard EKF covariance updates. Note once
again that the one-step covariance transfer function produces
the same resulting covariance as performing each of multiple
standard EKF updates in succession; there is no trade-off in
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Fig. 5. In these figures we characterized the positional accuracy of the
robot for both the PRM shortest path and BRM planners as a function of the
sensor noise and sensor range. (a) Accuracy vs. Sensor Noise. The positional
accuracy of the PRM shortest path algorithm suffered with increased noise.
The positional accuracy of the BRM increased slightly but not substantially
with noise. (b) Accuracy vs. Range. The positional accuracyof the PRM
shortest path algorithm increased with sensor range as the agent had more
ranges for localization. Even with very short range, the BRMalgorithm was
able to find paths that maintained relatively good localization.

accuracy. This experiment evaluates the effect of using theone-
step transfer function on planning speed. Planning experiments
were performed using randomized sensor locations in maps
of varying size (30−100m per side). To reduce variability
in the speed comparison results, the number of sensors was
held constant throughout the experiments and the number of
nodes was sampled randomly in proportion to the area of the
environment to maintain consistent trajectory lengths.

Figure 6(a) shows the relative search times with respect
to the depth of the search tree in the corresponding trajec-
tory graph. The BRM maintains a consistent improvement
by over two orders of magnitude, with search costs scaling
logarithmically with increasing tree depth. Similar results
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Fig. 6. Algorithmic Performance. (a) Time to Plan vs. Tree Depth(b) Time
to Plan vs. Path Length. Note that these graphs are semi-log graphs, indicating
two orders of magnitude increase in speed.

are obtained when comparing the search times with respect
to the length of the resulting path, shown in Figure 6(b),
reiterating the significant scalable improvement of the one-step
update. The one-step covariance update presents a consistent
improvement in planning speed and scales with the size of
the trajectory graph, making planning in belief space with the
BRM computationally tractable.

Note that to construct update matrices for each trajectory
in the graph, the one-step linearized search incurs a one-
time build cost comparable to the cost ofone path search
using the standard covariance model. However, this cost is
amortized; the BRM reuses this graph to enable efficient
search in replanning.

9.5. Example trajectories:

Finally, example trajectories are shown in Figures 7-8. In
Figure 7, a mobile robot navigates through a small-sized in-
door environment (∼70m in length) providing ranging beacons

beacon

PRM path
BRM path
Σ ellipse

GOAL

START

Fig. 7. Example trajectories for a mobile robot in an indoor environment
(∼70m across) with ranging beacons. The robot navigates from START
(lower left) to GOAL (top). The BRM finds a path in close proximity to
the ranging beacons, balancing the shorter route computed bythe PRM
in configuration space against a lower cost path in information space. The
positional uncertainty over the two paths is shown as the bold covariance
ellipses.

for localization. The BRM planner detours from the direct
route chosen by the shortest path planner for sensor-rich
regions of the environment. Whereas the shortest path planner
accumulates positional error by relying on dead-reckoning, the
BRM path incorporates ranging information to maintain lower
uncertainty.

Figure 8 shows example trajectories for a very large plan-
ning problem. The robot must navigate across the MIT campus
from the bottom right corner to the top left corner. Scattered
throughout the environment are ranging beacons with known
position, shown as the small blue circles. The robot can
localize itself according to the ranges, but the ranging accuracy
varies across campus according to the proximity and density
of the beacons. The robot is also constrained to the outside
paths (and cannot short-cut through buildings, the light-grey
blocks). The shortest path planner shown in Figure 8(a) findsa
direct route (the solid blue line) but the positional uncertainty
grows quite large, shown by the green uncertainty ellipses.
In contrast, the BRM algorithm finds a path that stays well-
localized by finding areas with a high sensor density. The
uncertainty ellipses are too small to be seen for this trajectory.

10. CONCLUSION

In this paper, we have addressed the problem of planning in
belief space for linear-Gaussian systems, where the beliefis
tracked using Kalman-filter style estimators. We have shown
that the computational cost of EKF predictions during planning
can be reduced by factoring the covariance matrix and combin-
ing multiple EKF update steps into a single, one-step process.
We have presented a variant of the Probabilistic Roadmap
algorithm, called the Belief Roadmap (BRM) planner, and
shown that it substantially improves planning performanceand
positional accuracy. We demonstrated our planning algorithm
on a large-scale environment and showed that we could plan
efficiently in this large space. This kind of trajectory has
been reported elsewhere (Roy and Thrun, 1999) but in limited
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(a) PRM: Shortest Path

(b) BRM: Lowest Expected Uncertainty Path

Fig. 8. Example paths for a mobile robot navigating across MIT campus.
The solid line in each case is the robot path, the small dots arethe range
beacons being used for localization, and the dark ellipses are the covariances
Σ of the robot position estimate along its trajectory. Notice that the shortest
path trajectory grows very uncertain, whereas the lowest expected uncertainty
path always stays well-localized at the cost of being slightly longer.

scales of environments. We believe that our demonstration
of belief-space planning in the MIT campus environment is
considerably larger than existing results.
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