
1

On the Design and Use of a Micro Air Vehicle to
Track and Avoid Adversaries

Ruijie He, Abraham Bachrach, Michael Achtelik, Alborz Geramifard,
Daniel Gurdan, Samuel Prentice, Jan Stumpf and Nicholas Roy

Abstract—The MAV ’08 competition focused on the problem
of using air and ground vehicles to locate and rescue hostages
being held in a remote building. To execute this mission, a number
of technical challenges were addressed, including designing the
micro air vehicle (MAV), using the MAV to geo-locate ground
targets, and planning the motion of ground vehicles to reach the
hostage location without detection.

In this paper, we describe the complete system designed for
the MAV ’08 competition, and present our solutions to three
technical challenges that were addressed within this system. First,
we summarize the design of our micro air vehicle, focusing on the
navigation and sensing payload. Second, we describe the vision
and state estimation algorithms used to track ground features,
including stationary obstacles and moving adversaries, from a
sequence of images collected by the MAV. Third, we describe
the planning algorithm used to generate motion plans for the
ground vehicles to approach the hostage building undetected by
adversaries; these adversaries are tracked by the MAV from
the air. We examine different variants of a search algorithm and
describe their performance under different conditions. Finally, we
provide results of our system’s performance during the mission
execution.

1. INTRODUCTION

The MAV ’08 competition in Agra, India focused on the
problem of using air and ground vehicles to locate and rescue
hostages being held in a remote building. Executing this
mission required addressing a number of technical challenges.
The first technical challenge was the design and operation
of micro air vehicles (MAVs) that were capable of flying
the necessary distances and carrying the sensor payload to
locate the hostages. The second technical challenge was the
design and implementation of vision and state estimation
algorithms to detect and track a ground adversary guarding
the hostages. The third technical challenge was the design
and implementation of robust planning algorithms to generate
tactical motion plans for our ground vehicles to reach the
hostage location without detection by the ground adversary.

In this paper, we describe the complete system designed
for the MAV ’08 competition, and present our solutions
to the three technical challenges described above. First, we
summarize the design of our micro air vehicle, focusing on

Ruijie He, Abraham Bachrach, Alborz Geramifard and Samuel Prentice
and Nicholas Roy are with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 32 Vassar St., Cambridge,
MA 02139. Email: ruijie@mit.edu, abachrac@mit.edu,
prentice@mit.edu, agf@mit.edu, nickroy@mit.edu
Michael Achtelik, Daniel Gurdan and Jan Stumpf are with Ascending
Technologies GmbH. Graspergerstr. 8, 82131 Stockdorf Germany. Email:
michael.achtelik@asctec.de, daniel.gurdan@asctec.de,
jan@asctec.de

the navigation and sensing payload. We present a schematic of
our complete system and discuss some of our design choices.
Second, we describe the vision and state estimation algo-
rithms used to track ground features through image sequences
obtained by the MAV, including stationary obstacles and a
moving adversary. Specifically, we use an adaptive algorithm
(Avidan, 2007) that learns to discriminate the target from the
background, coupled with standard Bayesian filtering to track
the object from image to image in a global co-ordinate system.
Third, we describe the planning algorithm used to generate
motion plans for the ground vehicles to approach the hostage
building undetected by the moving adversary. In order to plan
with respect to the changing position of the ground adversary,
we examine different variants of standard search algorithms
that allow us to plan efficiently and react to unexpected or un-
modeled changes in the ground adversary’s position. Finally,
we provide results of our system’s performance during the
mission execution.

2. RELATED WORK

We built on work from the different fields of robotics,
computer vision, and planning to compete in the MAV ’08
competition. There have been many rotorcraft UAV platforms
developed, including quad-rotors (Hoffmann et al., 2007; Gur-
dan et al., 2007) that operate on the same principles as the
hex-rotor developed here. Other autonomous rotorcraft mor-
phologies include coaxial vehicles (Bouabdallah et al., 2006;
Ng et al., 2004) and conventional helicopter platforms (Bagnell
and Schneider, 2001).

The computer vision community has seen considerable work
on object tracking, and an exhaustive survey of this literature
is beyond the scope of this paper. However, surveys of the
current state of the art include Yilmaz et al. (2006) and Porikli
(2006). While there have been many successful algorithms
such as background subtraction (Javed et al., 2002), mean
shift tracking (Comaniciu et al., 2000), and ensemble tracking
(Avidan, 2007) (which our algorithm is based on), all of
these algorithms make the assumption of a relatively stationary
camera, which does not hold for the camera on our vehicle.
There has also been considerable work on tracking in the
UAV literature (Casbeer et al., 2005; Furukawa et al., 2006;
Quigley et al., 2005; Tisdale et al., 2008); however, much of
this UAV work focuses on the abstract problem of tracking the
target over time. Previous work does not leverage computer
vision algorithms to effectively use a camera to track the
objects without making major assumptions regarding their



2

Bank
Building

Cover
Positions

(a) Prior Map

(b) Hostage building

(c) View from the ingress point

Fig. 1. (a) The map of the environment from the ingress point (IP, lower right) to the hostage building (top middle). The lightly shaded rectangles are cover
points for the commandos, the circles are mine locations and thedark boxes are potential terrain obstacles. The cover points were provideda priori but the
MAV was required to detect the mines and obstacles. (b) The view of the hostage building from the on-board MAV camera. (c) Theview of the hostage
building from the ingress point, 1km away. The rectangular cover positions can be seen faintly near the horizon.

appearance. In this work, we have been able to integrate
modern computer vision inference algorithms with Bayesian
filtering to effectively track the targets over time.

Similarly, we have built on existing work in spatial-temporal
planning, showing the trade-offs present between full space-
time planning and approximate techniques. Path planning
with moving obstacles has been a challenging problem for
researchers in many fields, including robotics and navigation.
One option (van den Berg and Overmars, 2004) is to use
a Probabilistic Road Map (PRM) to first generate discrete
points in a continuous map that takes into account obstacle
locations. Given a model of the dynamics of the moving
obstacles, the resulting points are then extended into the time
dimension to calculate the optimal path. A similar approach
(Jaillet and Simeon, 2004) generates the initial map based on
static obstacles and then uses a lazy-evaluation techniqueto
generate a complete map of state-time space. Similarly, path
planning in state-time space has been considered (Fraichard,
1999), where all dynamic obstacles in the 2-dimensional space
are represented as static obstacles in a 3-dimensional space.

A general path planning algorithm can then be used to find
the optimal path in that space. One interesting fact is that
path planning with dynamic obstacles can be viewed as a
special case of cooperative path planning with multiple agents,
where all dynamic obstacles are simply moving agents with
predefined paths. Silver (2005) explored a similar approachto
Fraichard’s, resolving collisions in multi-agent path planning
by using a reservation table.

3. THE MAV ’08 M ISSION

The MAV ’081 mission was a hostage-rescue scenario,
in which commandos had to be guided across a field by
aerial vehicles to a remote building. The hostage building was
guarded by a moving adversary; to allow the commandos to
reach the building undetected, aerial surveillance was required
to estimate the guard vehicle’s position and its field-of-view.
As the guard vehicle moved, the commandos were able to

11st US-Asian Demonstration & Assessment of Micro-Aerial & Unmanned
Ground Vehicle Technologyhttp://www.nal.res.in/mav08/



3

Fig. 2. Schematic of our sensing, tracking, planning and control system.

take advantage of covered positions at known GPS locations
throughout the field. When the guard vehicle’s view of the
field was occluded by obstacles such as the hostage building,
the commandos were able to advance from covered position
to covered position, remaining hidden at all other times.
Complicating the problem further, some of the routes between
covered positions were blocked by unknown obstacles and
terrain, and some of the routes were seeded with mines at
unknown positions. These obstructions had to be detected and
geo-located aerially to plan safe paths for the commandos.
Once detected and geo-located, the mines could also be
disposed of using an explosive ordinance disposal (EOD)
vehicle. Finally, the commandos were required to reach the
hostage building within 40 minutes of the start of the mission,
including completion of the surveillance, mine disposal and
guard tracking tasks.

In order to obtain the position of the guard vehicle, detect
route blockages and geo-locate mines, aerial surveillancewas
essential. However, the MAV ’08 rules dictated a maximum
size of air vehicle of 30 cm. Our approach to the mission
was to use a series of rotorcrafts to survey the field, search
for mines and obstacles, and also maintain a position estimate
of the guard vehicle. Figure 1(a) shows a map of the field,
containing the covered positions (A1 to F2) at known GPS
locations. The circles along the edges are mine positions and
the black bars are route blockages (these positions are shown
here for the purposes of explanation, but were not provided
before or during the competition). The ingress point for MAV
launch, commando and EOD vehicle entry is shown at the
bottom right (IP) and the hostage building is at the top middle
(shown in Figure 1(b) from the on-board MAV camera). The
view from the ingress point to the hostage building across the
1 km field is shown in Figure 1(c).

Figure 2 presents a schematic of our software architecture
for the MAV ’08 mission, describing the communication links
between the different modules at the ground station, on the
MAV, and with the ground agents. Via the human interface,
ground station operators choose high-level goals for the MAV,
such as searching areas for mines and tracking the guard

Fig. 3. Our six-rotor helicopter. The helicopter is 29cm in diameter and
weighs 142g without the navigation electronics, camera or communication
hardware.

vehicle. The MAV planner processes the human input and
sends goal GPS waypoints to the MAV onboard controller
(Section 4), which deals with the low-level controls for GPS-
waypoint navigation. As the MAV surveys the environment,
camera data is streamed back to the ground station, and the
vision tracking and detection module (Section 5) enables the
human operator to track particular objects of interest. GPSco-
ordinates of the geo-located mines and guard vehicle are then
conveyed to the ground vehicle planner (Section 6), which
uses this real-time information to plan paths for the ground
agents to reach the bank building safely.

4. THE M ICRO A IR VEHICLE

Our vehicle design consists of a custom-designed carbon-
fiber airframe, with 6 brushless motors as the propulsion
system. The vehicle is 29 cm rotor-tip to rotor-tip and weighs
142 grams without the navigation electronics, camera or
communication hardware. The vehicle is shown in Figure 3.
The total flight time of the vehicle is 10-12 minutes, with
maximum speed of 10 m/sec, depending on wind conditions,
temperature, etc.

4.1. Hex-rotor Vehicle Design

For an efficient design of a Vertical Take-Off and Landing
(VTOL) vehicle, it is important to maximize the total rotor
area. Lift is generated by the impulse of the air acceleratedby
the rotors, and the impulsep is linear in the velocityva and
the massma of the accelerated air:p = mava. The energy
E required to accelerate the air is linear in the mass of the
air, but is proportional to the square of the air’s velocity:E =
1
2mava

2. Thus, to produce a certain impulse, it is more energy
efficient to accelerate more air to a lower velocity than to
accelerate less air to a higher velocity. Consequently, a major
goal in the design of our air vehicle was to maximize the
overall rotor area.

Other driving factors of building a multi-rotor system in-
clude the increased agility, maximum wind-load and mechan-
ical robustness of quad- or hex-rotor designs, relative to their
coaxial counterparts. Additionally, the rules of the MAV ’08



4

competition required that the vehicle be smaller than 30 cm
in diameter. As custom propeller design and molding is very
expensive, we sought the use of COTS propellers. The only
COTS propellers that complied with the size limitations and
were available in both the clockwise and counter-clockwise
rotation variants necessary for a quad- or hex-rotor solution
were 3-blade propellers with a 92 mm rotor-diameter.

(a) Hex-rotor design. CW: Clock Wise rotation, CCW: CounterClock Wise
rotation.

(b) Actual vehicle. 1) Antenna, 2) Analog RC link 3) IMU sensor 4) ARM
microprocessor 5) GPS sensor 6) Shock absorber 7) Rotors

Fig. 4. Top-view of hex-rotor. (a) Vehicle schematic. (b) Photo of actual
vehicle.

An initial quad-rotor prototype using these propellers was
unfortunately unable to provide the required payload and flight
time. However, it was possible to design a hex-rotor platform
within the size limitations specified by the rules, as shown in
Figure 4. By using six rotors instead of four, our helicopter
was able to generate up to 50% more thrust with less than a
10% increase in vehicle weight.

The six motors are mounted underneath the frame such
that air is displaced downwards without disturbance from
the chassis, increasing energy efficiency and flight-time. The
vehicle has three rotors spinning clockwise, and three rotors
spinning counter-clockwise, as shown in Figure 4. With this
rotor configuration, all rotational degrees of freedom can
be controlled independently, as is the case for a quad-rotor
helicopter. Thus, the vehicle controller ensures that a yaw

command has no influence on pitch, roll or thrust, and the
same is true for the other three command channels.

4.2. Onboard Sensing and Navigation

The navigation system consists of a 60 MHz Philips ARM
microprocessor, u-blox GPS receiver, compass, IMU and
pressure sensor. The software on the ARM microprocessor
integrates the IMU and GPS measurements to provide a
consistent state estimate at 1000 Hz. The on-board software
accepts goal waypoints(x, y, z, θ) in the GPS (world) co-
ordinate frame and uses PID control to achieve the desired
position. Changing wind conditions affect how accurately the
PID controller can achieve a specific waypoint; the integral
(I) term can compensate for this error, but the time required
for the I term to integrate the error and respond accordingly
is frequently not worth the improved accuracy. We therefore
use a dead-band in the position controller that describes the
expected error in the controller, and we estimate the width of
this dead-band online using a series of progressively smaller
distance thresholds for each GPS waypoint. The position
controller attempts to achieve the desired GPS position initially
with a minimum 15 m accuracy, and then takes an additional
30 seconds to achieve the position with 2.5 m accuracy. If
the waypoint is not achieved to within 2.5 m in those 30
seconds, the control software assumes that external factors
(i.e., wind) are interfering and ends the attempt. In this way, we
are guaranteed to get within 15 m of the desired waypoint, and
the vehicle will attempt to achieve a higher level of accuracy
without incurring excessive time delays.2 However, the control
loop will not keep trying indefinitely if wind or other external
factors prevent it from achieving a 2.5 m accuracy.

The vehicle carries a Digi 900 MHz Xtend RF module
operating at 100 mW, connected to the ARM microprocessor
over an RS-232 serial line. The ground station communicates
with the MAV via a USB-serial converter to the Xtend base
station; the bandwidth is such that the ground station typically
receives telemetry packets of 35 bytes at 30 Hz. The vehicle
is configured to use the digital data link as the primary
communication mechanism, over which GPS commands are
sent to the vehicle and the vehicle’s current GPS position
is received in the telemetry data. Our assumption is that as
long as the ground station can communicate with the vehicle,
the vehicle can be controlled safely. If the digital data link
is lost and the ground station and vehicle can no longer
communicate, then the on-board controller reduces power to
30% of full throttle and attempts to land. The GPS waypoint
controller can also be over-ridden with an auxiliary analog
RC link operating at 72 MHz. If a safety pilot observes the
vehicle behaving incorrectly, then an RC transmitter can be
used to assume control over the vehicle and return it to base
or land it safely. The onset of manual (analog) control signals
is processed by the software on the ARM microprocessor.
Since the vehicle is unstable without attitude control, switching

2In practice, we were always able to achieve 15 m accuracy in winds up to
10 knots, but were not able to make progress against headwindsof between
15 and 20 knots.



5

(a) (b) (c) (d) (e)

Fig. 5. Operation of tilt-camera. The camera has a90◦ range of motion in the tilt direction. When the vehicle is below5 m, the camera is automatically
retured to the forward view.

to manual control disables GPS-waypoint following while
keeping attitude control active.

The camera sensor is a Panasonic KX141 480 line CCD
camera with a 90◦ field-of-view lens. Since the 900 MHz
digital transmitter does not have sufficient bandwidth for real-
time video, we use a LawMate TM-240500 2.4 GHz 500 mW
transmitter to transmit the analog video data, and an Iftron
Technologies YellowJacket 2.4 GHz diversity receiver at the
ground station. This camera and transmitter provide excellent
video capability at long ranges, and the 2.4 GHz frequency
does not interfere with our 900 MHz data link. The camera
is mounted on a small servo that provides 90◦ motion along
one degree of freedom, allowing the camera to tilt towards
any angle between the forward and straight down directions.
The servo is controlled from the ARM navigation computer,
which in turn receives servo instructions from the base station.
The camera lens extends below the frame of the vehicle when
pointing straight down, so that the camera is automatically
returned to the forward view when the vehicle is below 5 m
(Figure 5).

5. OBJECTTRACKING

The first phase of the MAV ’08 mission involved surveying
the field, identifying obstacles and mines, and then tracking
the guard vehicle. These tasks presented the second challenge
of identifying the positions of targets on the ground. Our
approach was to locate objects in the image received from the
camera, and use the known position of the MAV from GPS and
a calibrated camera model to geo-locate the objects. However,
due to noisy estimates of the vehicle pose, it was necessary to
combine projections from many successive images to achieve
an accurate geo-location estimate. For example, when we
analyzed the geo-location estimates for an object with known
world position, we see in Figure 6 that the individual estimates
deviated from the ground-truth by up to 6 m. However, the
distribution of measurements shows a systematic error or bias
of approximately 3.3 m. This bias was likely due to errors
in the calibration of the transformation between the body and
camera co-ordinate frames.

We were given minimal prior information of the appear-
ance of the guards, obstacles and mines; hence, we did not
have enough information regarding a specific color, shape,
or motion to allow general object detection of any of the
target objects. We instead focused on the problem of object
tracking, first relying on a human operator to detect the initial
appearance of each object in the scene before tracking the
object in successive frames. For object tracking, we developed

Fig. 6. Target geo-location estimates for an obstacle with a known location.
The true location is mapped to(0, 0).

a modified version of the classifier-based adaptive ensemble
tracker, developed by Avidan (2007). Our algorithm, which we
call Agile Ensemble Tracking (AET), uses the same object
appearance classifier as Avidan. However, instead of using
mean-shift to track the object across frames, we use a more
robust, particle-filter based, Bayesian filter approach that is
able to handle the fast motion of the MAV-mounted camera.
While this approach does not allow completely autonomous
operation, it significantly reduces the amount of attention
required from the operator.

5.1. Learning Object Appearance Models

Once an initial estimate of the target object in an image
is identified by a human operator, we use a machine learning
classifier to learn a model of the object’s appearance. The
classifier is trained to distinguish pixels that belong to the
object from background pixels. To train the classifier, we
assume that the object is localized within a knownn × m

sub-block of the image; pixels within that sub-block are given
positive labels, and pixels outside that sub-block are given
negative labels. Each pixel is described byd local features,
e.g., local color features and a histogram of local oriented
gradient features (Dalal and Triggs, 2005). Each pixeli at
image locationpi is therefore a separate training instance
consisting of ad-dimensional feature vectorxi ∈ X and a
label yi ∈ Y . To distinguish the object from the background,
we learn a classifier that predicts the label for each pixel based
on the local image features. Following Avidan’s work, we use
a boosting method inspired by AdaBoost (Schapire, 2003) to



6

learn this classifier. AdaBoost requires a weak classifier, which
in this algorithm is implemented as a linear separating hyper-
planeh, such that

ŷ(xi) = h(xi) = sign(hT xi) (1)

where ŷ(x) is the classifier output label for instancex. The
separating hyper-plane for a set of examples is computed using
weighted least squares. This weak classifier is then boosted
to learn an ensemble of classifiersH = {h1, . . . ,hK} with
associated weightsα1, . . . , αK . K is the total number of
classifiers that are maintained by the algorithm. These weights
are chosen iteratively, as shown in Algorithm 1.

Algorithm 1 : ADABOOST

Require: N training instances{xi, yi}
1: Initialize weights{wi}

N
i=1 to be 1

N

2: for k = 1 . . . K do
3: Normalize{wi}

N
i=1 to sum to1

4: Train weak classifierhk

5: err =
∑N

i=1 wi|hk(xi)− yi|
6: αk = 1

2 log 1−err
err

7: Updatewi = wie
αk|hk(xi)−yi| for i = 1 . . . n

8: end for

9: return H(xi) =
K∑

k=1

αkhk(xi)

In order to capture the appearance characteristics of an
object at different scales, we train a separate ensemble of
classifiers for a range of image scales. We then classify the
pixels of a new image using the multi-scale, boosted, en-
semble classifier, such that each pixel receives a (normalized)
weighted vote for each label from each classifier based on the
local image features at each pixel. The output of the classifier
is a new image where each pixel has an associated likelihood
value that it belongs to the tracked object.

Figure 7(a) illustrates an example training image, where the
pixels in the inner block are positive training instances and
the pixels in the outer block are negative training instances.
Figure 7(b) shows the weighted classifier response to the
same image after training. Notice that pixels along the sharply
distinct color boundaries have the greatest classifier response.

During tracking, the appearance of both the object and the
background will vary over time; for instance, the orientation
of edge features will change as objects rotate in the image
frame. We therefore continually learn new classifiers from
the incoming images. After tracking has been performed on
each image, the image is used as a new training instance for
learning new classifiers. Using boosting, theB best classifiers
are retained from the currentK classifiers, whileK − B

additional classifiers are trained and added to the set of weak
classifiers. This process of updating the classifiers is shown
in Algorithm 2. In order to ensure that this retraining does
not result in a drift over time away from the original image,
we also investigated a variation where a subset of the original
K classifiers are kept, regardless of the performance of this
classifier subset at the current time step. This modification
would ensure that there always exist at least some classifiers

(a) Original Image

(b) Ensemble Filter Response

Fig. 7. (a) An example training sub-block. The pixels in the smaller, inner
block are assumed to be positive training instances, and the pixels in the
outer block are negative training instances. (b) The response of the weighted
classifiers across the sub-image of the detected vehicle. Theintensity of each
pixel is the likelihood of belonging to the object as provided by the classifier.

that are known to be correct.

Algorithm 2 : ADABOOSTONLINE UPDATE

Require: N training instances{xi, yi}, existing strong clas-
sifier Hin = {h1, . . . ,hK}

1: Initialize weights{wi}
N
i=1 to be 1

N

2: Hout = {∅}
3: for k = 1 . . . B do
4: Normalize{wi}

N
i=1 to sum to1

5: for hj ∈ Hin do
6: Computeerrj =

∑N

i=1 wi|hj(xi)− yi|
7: end for
8: Chooseĥ ∈ Hin with minimum êrr

9: α̂ = 1
2 log 1−derr

derr

10: Removeĥ from Hin and add toHout

11: Updatewi = wie
α̂|ĥ(xi)−yi| for i = 1 . . . n

12: end for
13: for k = B + 1 . . . K do
14: Normalize{wi}

N
i=1 to sum to1

15: Train weak classifierhk as in ADABOOST

16: Add hk to Hout

17: end for
18: return Hout

5.2. Image Space Object Tracking

In the original ensemble tracker (Avidan, 2007), the esti-
mate of the object’s location is found using mean-shift on



7

the likelihood image computed from the classifier response.
Starting from the previous target rectangle, mean-shift uses a
hill-climbing technique to find them × n rectangular region
which contains the greatest aggregate response. While this
approach works quite well for relatively stationary cameras,
we found that the mean-shift approach was unable to handle
the fast motion of our MAV platform.

As a result, we modified the tracking algorithm to use a
particle-filter based Bayes filter to update the position estimate
of the object. We incorporate an estimate of the camera ego-
motion as a prior for predicting the location of the object in
a subsequent image. This ego-motion estimate is essential for
compensating for unpredictable motions of the camera, which
would otherwise cause the tracker to lose track of the object.
The attitude of the vehicle, as estimated by its onboard IMU,
was too noisy to provide an adequate estimate of this ego-
motion. Instead we estimate it directly from the imagery by
computing optical flow between the entire previous and current
images. We make use of the Pyramidal-Lucas-Kanade optical
flow implementation available in the OpenCV package.3 The
optical flow algorithm computes a sparse set off feature
matches{pt−1

i ,pt
i}

f
i=1, wherept−1

i is the2D pixel location
of feature i in the imageIt−1, and pt

i is its corresponding
location in imageIt at the next time-step. Using these feature
matches, we can estimate the camera ego-motion as a3 × 2
affine transformation matrix∆ such that:

pt+1
i ≈

[
1 pt

i

]
∆ (2)

This affine transformation captures translation, rotation,
scaling, and shearing effects in image space. Due to the height
of the vehicle, and the nearly planar ground surface, an affine
transformation is generally a reasonable approximation.

Since some of the feature matches may be wrong or corre-
spond to moving objects, we refine the ego-motion estimate
by performing expectation-maximization (EM) to identify the
affine transformation that best explains the apparent camera
motion. Other methods such as RANSAC could also be used.
The affine transformation∆ is then used in the motion model
of a Bayes filter, while the learned object appearance modelH

is used in the associated sensor model. We use a particle filter
to approximate the posterior distributionp(pt|z0:t) according
to

p(pt|z0:t) = αp(zt|pt)

∫

Xt−1

p(pt|pt−1)p(pt−1|z0:t−1)dt.

(3)
wherept is the location of the object in the image at time
t, zt is the object measurement calculated from the image
at time t, p(pt|pt−1) is our motion model,p(zt|pt) is our
sensor model, andp(pt−1|z0:t−1) is the prior distribution of
the object’s location.

The object measurementzt is obtained by using the learned
object appearance model to classify the image at timet. The
classifier outputs a real value in the interval[0, 1] for each pixel
qt in the image, and Figure 7(b) is a sample measurement.
Our sensor modelp(zt|pt) can therefore be characterized as

3Intel Corporation. Open Source Computer Vision Library (OpenCV).
http://www.intel.com/technology/computing/opencv/index.htm

follows,

zt(qt)|pt =

{
1 + ǫz

0 + ǫz

qt = pt,

otherwise,
ǫz ∼ N(0, σz),

(4)
where zt(qt) is the response of the classifier at pixelqt.
Equation 4 essentially predicts that the classifier will respond
with a 1 at the predicted locationpt in the image, and0
everywhere else, where the measurements have Gaussian noise
ǫz. The model is clearly approximate since the noise is not
Gaussian (and measurements can never exceed 1), but the
Gaussian model worked well experimentally.

It is computationally expensive to run the classifier on the
entire image. Hence, we only run the classifier in the vicinity
of the current particle filter mean estimate, and assume thatthe
object has a minimal likelihood of being at all other locations
in the image. Additionally, we smooth the classifier responses
zt across the image using a Gaussian blur operator to obtain a
spatially smooth likelihood map, and each particle is givena
weight equal to the value in the Gaussian-blurred probability
image at its location in the image. Although this Gaussian
smoothing creates minor correlations between image pixels,
we continue to assume that the likelihood of object detection
at each pixel is independent; experimentally the Gaussian
smoothing of the classifier responses led to more robust object
tracking even with this independence assumption, and more
closely matched our Gaussian model of the classifier.

The motion modelp(pt|pt−1) is equal to the ego-motion
estimated from optical flow with additive Gaussian noise

pt|pt−1 =
[

1 pt−1

]
∆ + δp, δp ∼ N(0, σp) (5)

Algorithm 3 presents the complete Agile Ensemble Tracking
algorithm. For clarity, although the algorithm is presented as
if the images are all given to the algorithm at the start, on the
real system, the images are actually processed in real-timeas
they are streamed from the vehicle.

In contrast to more conventional filtering techniques such
as the Kalman filter (Kalman, 1960), the particle filter is
better at modeling the non-linearities in the sensor and motion
models. In contrast to ground vehicles and fixed-wing aircraft
that generally have stable attitudes, the attitude of the MAV
rotorcraft is particularly dynamic and non-linear. Frequent
attitude changes of the MAV would cause very large object
displacements in the image.

Table I(b) illustrates the benefits of the particle filter. Using
the modified motion model, we were able to maintain a track
of the person in Figure 8(b) for over 2 minutes, requiring
human intervention only once when the person left the frame
for a few seconds. In contrast, a much higher rate of human
intervention to reacquire lost tracks was required when the
original (non-optical-flow-based) motion prediction was used.

5.3. World Location Object Tracking

Given the position of a tracked object in an image, but
without knowing the distance between the object and the
camera, we would normally not be able to compute the
global co-ordinates of the object. However, for the MAV’08



8

(a) EOD Vehicle (b) Person (c) Guard Vehicle

Fig. 8. Examples of the variety of objects tracked. (a) The EODvehicle for mine disposal. (b) A walking person. (c) The guardvehicle circling the hostage
building. (a) was relatively easy to track, but (b) and (c) required a better motion prediction model.

No optical flow, no retraining 0 Hz (0)
No retraining 0 Hz (0)
Keep first 3 classifiers 0 Hz (0)
Full retraining 0 Hz (0)

(a) 250 frames, 17 seconds

No opt. flow, no retrain. 0.140 Hz (21)
No retraining 0.040 Hz (6)
Keep first 3 classifiers 0.027 Hz (4)
Full retraining 0.007 Hz (1)

(b) 2683 frames, 150 seconds

No opt. flow, no retrain. 0.39 Hz (21)
No retraining 0.26 Hz (14)
Retain first 3 classifiers 0.28 Hz (15)
Full retraining 0.30 Hz (16)

(c) 1000 frames, 54 seconds

TABLE I
PERFORMANCE COMPARISON FOR THEAGILE ENSEMBLE TRACKING ALGORITHM , COMPARING THE EFFECT OF RETRAINING, AND THE OPTICAL FLOW

BASED MOTION MODEL. THE FREQUENCY OF REQUIRED TRACK RE-INITIALIZATIONS IS SHOWN , WITH THE TOTAL NUMBER OF ERRORS IN PARENTHESES

Algorithm 3 : AGILE ENSEMBLE TRACKING

Require: T video framesI1 . . . IT , initial object bounding
box r1

1: Learn initial strong classifierH1 from I1 and r1 using
ADABOOST

2: for It = I2 . . . IT do
3: Compute ego-motion estimate∆ from It−1 to It

4: Propagate image space particle locations using∆
5: UseHt−1 to update the likelihood of each particle and

perform importance sampling
6: Use filter’s maximum likelihood estimate as prediction

of rectanglert

7: ComputeHt using ADABOOSTONLINE UPDATE

8: end for

competition, we knew that the MAV would be observing
the objects from a large height, relative to height variations
in the terrain. This knowledge allowed us to assume that
the object was located on a flat ground plane. We could
therefore recover the object’s location in global co-ordinates
using the camera’s intrinsic properties (focal length, center
of projection, distortion, and the rigid transformation from
the camera image plane to the vehicle’s body center), and
the MAV’s GPS position and attitude. The camera parameters
and camera transformation are obtained using a standard least-
squares calibration process.

Due to noise in the sensors, the location and attitude of
the MAV are not perfectly known. Unfortunately, small errors
in attitude can lead to substantial errors during the projection
from image co-ordinates to world co-ordinates. We therefore

apply a second level of Bayesian filtering to maintain a cleaner
estimate of the target’s location in global co-ordinates. For
simplicity, we again use a particle filter, though given our
models here a Kalman filter would have also been applicable.
Our motion modelp(xt|xt−1) assumes that the particles can
be propagated with Gaussian noise. A common approach is to
estimate the target velocity with the filter, improving the noise
in the measurements with a stronger model bias. However,
in practice, the image space measurements were of too high
variance to provide accurate position and velocity estimation;
we therefore estimated only the position over time. Similarly,
our sensor modelp(zt|xt) assumes that the output of the
image-space filter is corrupted by additive Gaussian noise
when it is projected to world-coordinates. Essentially, inthe
world model, we are using the standard technique of a very
strong model bias, coupled with Gaussian noise, to smooth the
high variance estimates from image space.

In the image-space filter, we generally assume that the noise
associated with the motion model is large and therefore place
more weight on the sensor measurements. In contrast, when
tracking in global co-ordinates, we place more weight on the
motion model and model the image to world co-ordinate pro-
jections as very noisy measurements. With these parameters,
the filter implicitly averages over more measurements when
estimating the target’s location on the ground plane, resulting
in a more accurate estimate.

5.4. Tracking Analysis

Human intervention is still required to ensure that the
object is continuously being tracked, to potentially restart the
tracker when it fails, and to initialize the tracker when new



9

objects of interest appear. We evaluated the tracker under
different configurations, including with and without the motion
prediction given by optical flow, with and without retraining,
as well as retaining different numbers of original classifiers.
We tested the object tracker on very different targets across a
wide variety of scenes, measuring the number of times that the
estimate of the object’s location diverged from hand-labeled,
ground-truth data.

The easiest object tracking problem was the EOD vehicle,
shown in Figure 8(a). This data set contained 17 seconds of
video, for a total of 250 frames.4 Due to the large vehicle
size, crisp features and stable hover of the MAV, we obtained
good performance for all tracker configurations. As Table I(a)
reveals, even with the non-optical-flow motion model, or the
online retraining of the classifier, the tracker never lost the
vehicle after initialization. In addition, retaining different num-
bers of the original classifiers had no effect on the tracker’s
performance for this target.

Tracking the walking person, shown in Figure 8(b), was
much more challenging due to the small size of the person
in the image. Nevertheless, by taking advantage of the ego-
motion estimation, the AET algorithm was still able to achieve
excellent performance. As Table I(b) demonstrates, optical
flow played an important role in keeping the tracking estimate
on target. In addition, adapting the object appearance over
time led to improved tracking. Although the appearance of
the person moving around the field was relatively constant,
the background changed dramatically when the person moved
from the green grass to the gray dirt patches. Retraining and
adapting the classifier therefore ensured that the classifier was
able to maintain enough discrimination between the person
and the background to continue tracking accurately.

Finally, we evaluated the tracker performance in tracking
the guard vehicle in the MAV ’08 competition. Due to the
mission profile, the MAV observed the bank building from a
distance with the camera pointed forward, rather than hovering
directly above the bank building. With a forward-pointing
camera, image changes between frames due to the MAV
motion became more pronounced. In addition, as shown in
Figure 8(c), the hedges surrounding the bank building were
exactly the same color and similar shape as the guard vehicle.
As a result, the tracker lost track of the guard vehicle far more
often than in the other data sets we tested on.

In this data set, the camera motion, rather than changes in
guard vehicle appearance, was the major factor that resulted
in the tracker becoming lost. The guard vehicle was moving
slowly enough that its motion should have had a negligible
effect. Instead, from watching the video of the guard vehicle,
there were several situations where the pitching and rolling
of the MAV caused abnormally large inter-frame motion. In
some of these cases, the optical flow was able to estimate and
compensate for this ego-motion. In others, however, the optical
flow computation failed to compensate for the camera motion,
and many of these large inter-frame motion coincided with the
tracker losing track of the vehicle. As a result, retrainingthe

4We typically received data from the vehicle at 15 Hz, but thisnumber
varied depending on the characteristics of the local RF field.

classifiers actually reduced performance slightly, since newer
classifiers in the ensemble were trained on bad data as the
tracker began to get lost, thereby creating a positive feedback
cycle from which the tracker could not recover. While it is
clear that the optical flow plays an important role in keeping
the tracking on target, the optical flow algorithm may be
unable to capture the full camera motion in some domains,
resulting in the classifier becoming lost.

Fundamentally, to solve the tracking problem in the face
of potentially large inter-frame camera motion, more sophis-
ticated object detection is needed. Once the ensemble-based
tracker loses the target, there is no way to recover by using a
local appearance-based tracker that is learned online, since any
corruption of the current object estimate will be propagated
forward. Subsequent classifiers would then get corrupted. As
a result, an object detector with higher-level learned invariants
is needed to recover from object tracker failures in the general
case.

6. GROUND VEHICLE PLANNING

Given the MAV’s ability to estimate the guard’s position
and trajectory, the third challenge was to plan a trajectoryfor
the commandos to reach the hostage building without being
detected by the guard. Additionally, when mines were detected
by the MAV, we needed to plan a trajectory for the EOD
vehicle to reach the mines without being detected. We treated
these problems symmetrically as a motion planning problem
for generic ground vehicles.

Traditional motion-planning algorithms are based on search
strategies through a discretized state space. Although thespe-
cific MAV ’08 planning problem focused on generating routes
between the cover points (markedA1, . . . , F2 in Figure 1a),
we sought a general purpose motion planner, one that is
flexible to unexpected guard motion and would allow us to
express a wider range of trajectories.

Our motion planner makes a number of assumptions based
on the initial problem description, though not all of these as-
sumptions were required for the actual MAV ’08 competition.
The planner assumes a discretized planning area, a regular
grid, and assumes that the vehicle can move from a grid cell
x to any of the 4-connected neighbors. We assume that each
motion incurs a cost, and that the planner’s objective is to
find the lowest cost sequence of states from the start to the
goal without being detected by the guard. The guard has a
360◦ field-of-view with finite range, and a prior map of the
environment reveals which obstacles would occlude the ground
vehicle from the guard. Additionally, the planner assumes that
the guard’s current position is known, and that a model of the
guard dynamics allows us to predict the guard’s position in the
future. While a deterministic model of the guard’s motion is
unrealistic, we did not have access to a reasonable stochastic
model of guard motion. As a result, following Bertsekas
(1995), we used open-loop feedback control in which the
planner assumes a deterministic model and replans after each
action. This form of planning under uncertainty relies on
very fast replanning but has been shown to converge under
reasonably mild assumptions.



10

Algorithm 4 : STATE-A*
Require: xstart, xgoal, xguard

1: π ← A* (xstart,xgoal)
2: i← COLLIDE(π,xguard)
3: while i > 0 do
4: MARK BLOCKED(π[i])
5: πtail ← A* (π[i− 1],xgoal)
6: if (πtail == null) then
7: return null

8: end if
9: π ← π[0 : i− 1] + πtail

10: i← COLLIDE(π,xguard)
11: end while
12: return π

The planner must incorporate the guard’s temporal behav-
ior to generate detection-free paths for the ground vehicle.
Temporal constraints typically require planning in both space
and time, but doing so leads to substantial computational
complexity, especially given the large map size. Instead, we
examined three different strategies for planning with respect
to the guard dynamics, identifying a strategy that scales well
with minimal loss in planner performance.

6.1. STATE-A*

To determine if the additional complexity of planning in
time and space could be avoided, we first examined the per-
formance of planning only in the state space of the ground ve-
hicle. The STATE-A* algorithm discretizes the state space and
searches for a planπ from the start positionxstart to the goal
xgoal, both given in GPS co-ordinates. The planπ consists of
an ordered list of statesπ = {xstart, . . . ,x

i, . . . ,xgoal}.
In order to avoid detection by the guard, STATE-A*

forward-simulates the plan with the guard starting at position
xgoal. As we simulate the ground vehicle moving to the next
state in the plan, the guard position is predicted using the
known guard dynamics. Grid cells that are within the guard’s
field-of-view are marked as dynamic obstacles. The planner
then tests to see if a detection (failure) would result, and any
state that is predicted to result in a detection is inserted into
the map as a static obstacle. A new plan is generated, and the
process is repeated until a plan that avoids guard detectionis
found, or until all possible plans have been tried. Algorithm
4 shows the STATE-A* in detail. The COLLIDE subroutine
simulates the ground vehicle motion along the planπ, and
the MARK BLOCKED subroutine modifies the map for future
re-planning.

The STATE-A* approach is expected to be computation-
ally efficient compared to time-state search processes, as the
branching factor in the search is limited to changes in the
position of the ground vehicle, rather than changes in both time
and position. However, this computational saving restricts the
plan space, since the search process cannot take advantage of
pause actions (without a time variable, a pause action would
appear to have no effect). As a result of the restricted plan
space, the planner may not be able to find efficient or robust
plans that actually exist.

6.2. TIME-STATE A*

The TIME-STATE A* algorithm, developed by Fraichard
(1999), represents the state of the ground vehicle with both
a position and time co-ordinate. In order to account for
the guard, the 2-dimensional space is extrapolated into the
time domain, creating a 3-dimensional cost map (or “cube”),
where each cell represents a separate (x, y, t) co-ordinate. All
actions are assumed to have the same, constant duration∆t.
In addition to the four motion commands, we add a PAUSE

action that causes the vehicle to stop in place for an amount
of time ∆t. Longer pauses can be achieved by executing
PAUSE repeatedly. As before, we search through the cube
using standard A*, but limit the actions from every cell (x, y, t)
to its 5-connected neighbors at the next time stept + 1, i.e.
(x, y, t+1), (x−1, y, t+1), (x+1, y, t+1), (x, y−1, t+1) and
(x, y + 1, t + 1). The Manhattan distance between the robot’s
current position and the final goal in the 2-dimensional space
is used as the heuristic; the Manhattan distance is known to
be admissible, consistent and is a standard heuristic for 2-D
search problems. Algorithm 5 shows the TIME-STATE A* in
detail.

Algorithm 5 : TIME-STATE A*
Require: xstart, xgoal, xguard, tmax

1: π ← A* ((xstart,xguard, 0), (xgoal, ·, tmax))
2: return π

Notice that the input to A* called from within TIME-STATE

A* now includes states with an explicit time variable and
a maximum time,tmax, in order to prevent infinite search
depth resulting from multiple PAUSE actions. We have abused
the notation slightly by stating that the goal state of the A*
process is(xgoal, ·, tmax), indicating that the guard can be in
any position for the search goal state.

By modeling time explicitly during the search process, the
TIME-STATE A* algorithm can express a wider variety of
plans than STATE-A* by incorporating plans that deliberately
wait for the guard to move. Additionally, the search incorpo-
rates knowledge of the guard more accurately by including
the changing guard position as part of the search in the state-
time domain. However, the computational cost of increasing
the size of the state space (an additional time dimension) may
affect the planner’s ability to find good plans in a reasonable
amount of time.

6.3. WINDOWED TIME-STATE A* (WTS-A*)

Since the search grows exponentially with the search depth,
one alternative approach is to reducetmax, including only
plans that have a maximum lengthtmax in the search. How-
ever, this may significantly reduce the planner’s ability tofind
good plans when plans need to be longer thantmax, which
is likely across a 1 km distance. Instead, we examine an
intermediate approach of iterating TIME-STATE A* search in a
limited time window, building off techniques in the cooperative
search literature that restrict the search window (e.g.WHCA*
(Silver, 2005)) to reduce the overall computational demands
of the search process. WHCA* performs cooperative search



11

(a) (b)

(c) (d)

Fig. 9. Average runtime, optimality, memory and failure rate of State-
A*, Time-State A*, WTS-A*(Small), and WTS-A*(Large) across planning
problems with sizes:30× 30, 70× 70, and100× 100, each over30 runs.

up to a fixed limited horizon and uses an abstract heuristic for
the remaining search to full depth. In contrast, we propose an
alternative form of windowed search by first using the abstract
heuristic to compute a path, before dividing it into smaller
sub-plans and performing TIME-STATE A* search within that
space.

Algorithm 6 : WINDOWED TIME-STATE A* (WTS-A*)
Require: xstart, xgoal, xguard, tmax, twindow

1: πapprox ← A* (xstart,xgoal)
2: {π̂i} ← DIVIDE(πapprox, twindow)
3: t← 0
4: for π̂i ∈ {π̂i} do
5: x← π̂i[1]
6: x′ ← π̂i[end]
7: πtail ← A* ((x,xguard, t), (x

′, ·, tmax))
8: if πtail == null then
9: return null

10: end if
11: π ← π + πtail

12: t← t + length(πtail)
13: end for
14: return π

Algorithm 6 presents our complete algorithm. First, an
approximated plan is computed using STATE-A*, ignoring
the guard position. This plan is then divided into sub-plans
according to a window size, and for each start and end state
of the sub-plan, the plan between these states is regenerated
using TIME-STATE A*. Notice that thet variable is used to
maintain the time required to execute each sub-planπ̂i, so
as to ensure a proper connection between each section of the
path.

6.4. Simulation Results

In order to determine the performance of these algorithms,
we evaluated the three algorithms in a series of random map

environments by varying a number of parameters. In particular,
we varied the size of the map, the percentage of the map that
was blocked by static obstacles, as well as the number of
single-occupancy dynamic obstacles that maneuvered in the
environment. Table II summarizes the 24 map settings used for
simulations. All algorithms were tested on each setting with 30
randomly generated maps. For each run,start andgoal states
were positioned randomly on the two opposite sides of the grid
world, while guard positions were randomly generated and
moved to an empty neighbor cell on each time step. Table III
summarizes the various window sizes (twindow) and maximum
time (tmax) used in each domain. Additionally, we measured
the memory usage and the failure rate of each algorithm. A
failure occurred if the algorithm failed to find the existingpath
to the goal.

Static obstacles
Map Size 20 % 30 %

30× 30 {20, 40, 60, 80} {20, 30, 40, 50}
70× 70 {40, 70, 100, 130} {20, 40, 60, 80}

100× 100 {50, 80, 110, 140} {10, 30, 50, 70}

TABLE II
NUMBER OF DYNAMIC OBSTACLES USED FOR EACH MAP SETTING.

Window Size(twindow)
Map Size Small Large tmax

30× 30 15 30 60
70× 70 20 40 327

100× 100 25 50 667

TABLE III
WINDOW SIZES AND MAXIMUM TIME PARAMETERS USED IN VARIOUS

MAP SIZES.

Figure 9 depicts the averaged runtime (a), quality (b),
memory usage (c), and failure rate (d) of the resulting plan
for STATE-A*, T IME-STATE A*, and WTS-A* with different
window sizes. As expected, on average, TIME-STATE A* was
the most time consuming algorithm, as shown in Figure 9(a).
Interestingly, WTS-A* on average outperformed STATE-A*
in terms of runtime. On the other hand, the quality of the paths
found by the WTS-A* were on par with those found by TIME-
STATE A*, shown in Figure 9(b). The plan performance found
by the WTS-A* was within 97% of the optimal plan (found
by TIME-STATE A*), while STATE-A* suffered a drop around
12% from the optimal. Figure 9(c) depicts the maximum
memory used by each algorithm in terms of the number of
identical visited nodes. While this graph resembles the running
time of the corresponding algorithms, with TIME-STATE A*
taking up the most memory, the memory usage of STATE-A*
is on par with the small window version of WTS-A* and less
than the large window version of WTS-A*. This highlights
the fact that although STATE-A* had to re-plan more often,
it searched through a more compact space. Figure 9(d) shows
the average failure rate of the various methods. As expected,
STATE-A* suffered the most because of its substantial search



12

(a) (b)

(c) (d)

Fig. 10. Runtime and optimality results of 30 runs for State-A*, Time-State
A*, WTS-A*(Small), and WTS-A*(Large) averaged across different numbers
of dynamic obstacles in map sizes of70 × 70 (a,b) and30 × 30 (c,d) with
20% blockade.

space restriction. While WTS-A* had a much lower failure
rate, it still failed to find the existing path in fewer than 7%of
maps. This is due to the fact that WTS-A* assumes that each
windowed path in the state space has a valid translation into
the time-state space, which is not always true. TIME-STATE

A* on the other hand is complete, which translates to a 0%
failure rate.

Similar results were observed across different map sizes
and obstacles quantity, although some additional observations
can be made. Figures 10(a) and 10(b) depict the runtime and
performance results of State A*, Time-State A*, and WTS-
A* with window sizes of 20 and 40 in a map of size 70.
As the number of dynamic obstacles increases, the extra cost
of re-planning for STATE-A* dominated the cost of planning
in the time-state space, as shown in Figure 10(a), indicating
that as the number of obstacles increased, re-planning needed
to occur more frequently. Even though TIME-STATE A* had
to search in a larger space, most plans generated by STATE-
A* were infeasible, leading to STATE-A* incurring a longer
runtime than TIME-STATE A*. Eventually after 100 obstacles,
this re-planning cost dominated the planning process in the
larger space. The side-effect of such excessive re-planning can
be observed in Figure 10(b), where the optimality of STATE-
A* drops rapidly with increasing obstacles. Although TIME-
STATE A* is guaranteed to find the optimal solution, it incurs
a heavy computational cost. In contrast, WTS-A* achieve the
best of both worlds: their running time is less than both that
of STATE-A* and TIME-STATE A*, while the quality of the
plans found remains high (about 98% of the optimal TIME-
STATE A*).

In very small maps, the cost of re-planning is even more

apparent. Figures 10(c) and 10(d) illustrate the runtime and
performance results of all algorithms for maps of size 30.
For any number of dynamic obstacles, STATE-A* and WTS-
A* with a large window size exceeded the runtime of TIME-
STATE A*. Since the size of this map was small, the number
of possible paths to the goal was limited. TIME-STATE A*
found the optimal path by a complete search through the search
space, while both STATE-A* and WTS-A* had to perform
a number of re-planning operations. These results suggest the
applicability of using TIME-STATE A* for small search spaces
with dynamic obstacles.

7. MISSION PERFORMANCE INMAV ’08

As described in section 3, the goal of the mission was to
guide commandos across a field to a remote building. Our
vehicle has a top speed of 10 m/sec, and the battery provides
a total flight time of 10-12 minutes. We therefore divided the
mission into multiple phases of mine detection, mine disposal
and guard surveillance. Between each phase of the mission,
we planned to return the MAV to the launch point to replace
the battery.

The goal of phase 1 was to identify potential mine locations
and begin guard vehicle estimation before having the MAV
return to recharge. Unfortunately, once the guard positionand
trajectory were identified, the amount of energy required to
return to the ingress point was underestimated, and the vehicle
was lost after 710 seconds, having traveling 1.75 km. We were
prepared to lose the vehicle in the field and therefore had
multiple vehicles at the ingress point.

The goal of phase 2 was to identify additional mine lo-
cations, coordinate with the EOD vehicle to perform mine
disposal and to begin execution of the commando plan. During
this phase, the mine shown in Figure 11 was geo-located and
successfully disposed of, and the MAV returned to the ingress
point for recharging. Additionally, the commandos continued
executing their planned motion towards the hostage building.

Fig. 11. A mine discovered during phase 2 embedded in a route between
covered positions.

The goal of phase 3 was to finish identifying mine locations,
finish disposing of remaining mines and re-acquire the guard
trajectory before finishing the commando mission. A deliberate
decision was taken by the human operators to abandon the
vehicle in the field and avoid the time of the return trip to
the ingress point for recharging, in order to provide additional
time to complete the commando mission in the 40 minutes.



13

(a) Phase 1
Maximum height: 35.7 m
Distance traveled: 1759.2 m
Total flight time: 710.0 secs

(b) Phase 2
Maximum height: 13.0 m
Distance traveled: 1247.2 m
Total flight time: 621.1 m

(c) Phase 3
Maximum height: 28.8m
Distance traveled: 1290.5m
Total flight time: 644.7 m

(d) Expected Ground Vehicle Path (e) Actual Path

Fig. 12. (a-c) The paths executed by the MAV. (d) The initial and actual plan executed by the commandos and EOD vehicle.

Figure 12(a-c) shows the actual paths flown by the MAV
on each mission. Figure 12(d) shows both the initial plan of
the ground vehicle computed using the WTS-A* algorithm,
as well as the actual executed plan during the mission. In
the final mission scenario, the guard vehicle motion was
extremely deterministic and did not require much variation
in the timing constraints so the timing information is not
shown in the image. The path from cover point to cover point
took 3 minutes and reliably avoided detection. The actual path

taken by the vehicles changed from this expected path to the
futtock (midline) path based on detected mines and obstacles
information, and the resultant re-planning.

In general, we were very pleased with the performance of
the MAV and the co-ordination between the tracked ground
targets and the planned trajectories for the EOD vehicle and
commandos. In particular, during phase 2 of the mission we
were able to compensate for a temporary loss of GPS on the
EOD vehicle; we repurposed the MAV temporarily to geo-



14

locate the EOD as it disposed of a mine. We flew a total of
4296.9m in 40 minutes, detected two mines and two ground
obstacles and successfully disposed of the only mine along the
planned trajectory.

8. CONCLUSION

This paper described critical hardware and software com-
ponents of a combined micro air vehicle and ground vehicle
system for performing a remote rescue task, as part of the
MAV ’08 competition organized by the US and Indian govern-
ments. While our system performed to our satisfaction and was
awarded “Best Mission Execution”, there are a number of key
technical questions that remain unsolved before coordinated
air and ground systems can become commodity technologies.

First, while the object detection and tracking system helped
the human operators considerably in geo-locating objects,
more work remains to be done in learning appearance-based
methods and compensating for large camera motions to gener-
ate robust autonomous object detection and tracking. Second,
there has been considerable amount of work in planning
under uncertainty for multi-agent systems. Without an explicit
stochastic model of the agent uncertainty, these planning algo-
rithms were not useful, but in the future we plan to extend the
planner to incorporate deliberate sensing actions at appropriate
points in time, to allow the environmental dynamics to be
learned, and robust planning under uncertainty algorithmsto
be used. Finally, the overall mission specification provided by
the organizers allowed very simple task planning and rigid
task execution. However, to allow more flexibility in planning
surveillance, tracking and trajectory execution between the
air and ground vehicles, we expect that more intelligent task
planning will be required in the future.

9. ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for their
constructive discussions. The support of the Army Research
Office under the MAST CTA is gratefully acknowledged.
Ruijie He was supported by the Republic of Singapore Armed
Forces. Abraham Bachrach was supported by Aurora Flight
Sciences and the Air Force Office of Scientific Research
under contract # F9550-06-C-0088. Alborz Geramifard was
supported by the Boeing company, and NSERC. Samuel
Prentice and Nicholas Roy were supported by the National
Science Foundation Division of Information and Intelligent
Systems under grant # 0546467. This project was supported by
the Office of the Dean, School of Engineering and the MIT Air
Vehicle Research Center (MAVRC) and their support is grate-
fully acknowledged. Col. Peter Young, Prof. Jonathan How,
Spencer Ahrens and Brett Bethke provided additional support
in the development of the vehicle and their support is gratefully
acknowledged. The development of the vehicle vision system
was supported by the Air Force Office of Scientific Research
as part of the Defense University Research Instrumentation
Program, “Cyber Flight Cage” contract # FA9550-07-1-0321.
Electronic design of the vehicle was supported by Klaus-
Michael Doth and his support is gratefully acknowledged.

REFERENCES

Avidan, S. (2007). Ensemble tracking.IEEE transactions on
pattern analysis and machine intelligence29(2): 261–271.

Bagnell, J. and Schneider, J. (2001). Autonomous helicopter
control using reinforcement learning policy search methods.
In Proceedings of the IEEE International Conference on
Robotics and Automation.

Bertsekas, D. (1995). Dynamic programming and optimal
control .

Bouabdallah, S., Siegwart, R., and Caprari, G. (2006). Design
and control of an indoor coaxial helicopter. InProceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Casbeer, D., Beard, R., McLain, T., Li, S., and Mehra, R.
(2005). Forest fire monitoring with multiple small UAVs.
In Proceedings of the 2005 American Control Conference.

Comaniciu, D., Ramesh, V., and Meer, P. (2000). Real-
time tracking of non-rigid objects using mean shift. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Fraichard, T. (1999). Trajectory planning in a dynamic
workspace: a ‘state-time space’ approach.Advanced
Robotics13(1): 75–94.

Furukawa, T., Bourgault, F., Lavis, B., and Durrant-Whyte, H.
(2006). Recursive Bayesian search-and-tracking using coor-
dinated UAVs for lost targets. InProceedings of the IEEE
International Conference on Robotics and Automation.

Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.-M., Hirzinger,
G., and Rus, D. (2007). Energy-efficient autonomous four-
rotor flying robot controlled at 1 khz. InProceedings
of the IEEE International Conference on Robotics and
Automation.

Hoffmann, G., Huang, H., Waslander, S., and C.Tomlin (2007).
Quadrotor helicopter flight dynamics and control: Theory
and experiment. InProceedings of the AIAA Guidance,
Navigation, and Control Conference.

Jaillet, L. and Simeon, T. (2004). A PRM-based motion plan-
ner for dynamically changing environments. InProceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Javed, O., Shafique, K., and Shah, M. (2002). A hierarchical
approach to robust background subtraction using color and
gradient information. InIEEE Workshop on Motion and
Video Computing.

Kalman, E., Rudolph (1960). A new approach to linear
filtering and prediction problems. Transactions of the
ASME–Journal of Basic Engineering82(Series D): 35–45.

Ng, A., Kim, H., Jordan, M., and Sastry, S. (2004). Inverted
autonomous helicopter flight via reinforcement learning. In
International Symposium on Experimental Robotics.

Porikli, F. (2006). Achieving real-time object detection and
tracking under extreme conditions.Journal of Real-Time
Image Processing1(1): 33–40.

Quigley, M., Goodrich, M., Griffiths, S., and Eldredge, A.



15

(2005). Target acquisition, localization, and surveillance
using a fixed-wing mini-UAV. InProceedings of the IEEE
International Conference on Robotics and Automation.

Schapire, R. (2003). The boosting approach to machine
learning: An overview.Lecture Notes in Statistics149–172.

Silver, D. (2005). Cooperative pathfinding. InProceedings of
the 1st Conference on Artificial Intelligence and Interactive
Digital Entertainment.

Tisdale, J., Ryan, A., Kim, Z., Tornqvist, D., and Hedrick, J.
(2008). A multiple UAV system for vision-based search and
localization. InProceedings of the 2008 American Control
Conference.

van den Berg, J. and Overmars, M. (2004). Roadmap-
based motion planning in dynamic environments. Technical
Report UU-CS-2004-020, Department of Information and
Computing Sciences, Utrecht University.

Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking:
A survey. ACM Comput. Surv.38(4).


