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Abstract— Legged robots require accurate models of their
environment in order to plan and execute paths. We present
a probabilistic technique based on Gaussian processes that
allows terrain models to be learned and updated efficiently
using sparse approximation techniques. The major benefit of
our terrain model is its ability to predict elevations at unseen
locations more reliably than alternative approaches, while it
also yields estimates of the uncertainty in the prediction. In
particular, our nonstationary Gaussian process model adapts
its covariance to the situation at hand, allowing more accurate
inference of terrain height at points that have not been observed
directly. We show how a conventional motion planner can use
the learned terrain model to plan a path to a goal location,
using a terrain-specific cost model to accept or reject candidate
footholds. In experiments with a real quadruped robot equipped
with a laser range finder, we demonstrate the usefulness of our
approach and discuss its benefits compared to simpler terrain
models such as elevations grids.

I. INTRODUCTION

The advantages of using legged robots over traditional

wheeled robots are the ability to move in rough and unstruc-

tured terrain and to step over obstacles. Without accurate

knowledge of the terrain, these advantages cannot be realized

as standard motion planners require a model of terrain height

for computing stability and avoiding collisions. However,

acquiring and representing models of rough terrain is a

challenging task. First of all, terrains are defined over a

continuous space such that the space of all models has

in principle infinitely many dimensions. Discretizing this

continuous space either results in models of enormous size

or in a loss of information that in turn may lead to the

selection of statically unstable and kinematically infeasible

configurations of the robot. Furthermore, we must rely on

the robot’s noisy sensors to gather information about the

world, which requires statistical inference in the continuous

and high-dimensional space of the model. Finally and most

importantly, we wish to be able to deal with a varying data

density, to balance smooth inference of the terrain against

the preservation of discontinuities, and to be able to make

sensible predictions about unseen parts of the terrain.

In this paper, we present a novel, probabilistic terrain

modeling approach based on a Gaussian process (GP) formu-

lation that adapts its generalization behavior to local structure
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Fig. 1. Our quadruped robot is equipped with a laser sensor in order to
observe its local surrounding. By bending its leg joints, it is able to acquire
dense 3D scans of the environment.

in the terrain and that can be learned and updated efficiently

using a decomposition of the model into smaller, overlapping

sub-models. As a result, our model is substantially more

efficient and accurate than those based on standard Gaussian

processes and also outperforms grid-based approaches to

elevation mapping in several aspects.

As a second contribution of this paper, we apply the novel

terrain model to the task of terrain mapping with a quadruped

robot, specifically the Boston Dynamics LittleDog. In the

situation depicted in Fig. 1, our robot, which is equipped with

a laser range finder, faces the task of planning and executing

a path over rough terrain. It is geometrically impossible for

the dog to directly sense every point in the terrain from a

single pose, since the sensor has a limited field of view and

the terrain self-occludes in multiple locations. The ability

to predict terrain elevations at unseen locations, however,

is highly beneficial in planning. Although it is difficult to

express a priori how the local structure can predict the

unobserved terrain heights, we will demonstrate in this paper

that this relationship can be learned from experience. Finally,

we also show how our locally adaptive GP model allows

us to select safe foothold locations and to plan a path to

a goal location. The terrain model we present in this paper

was implemented and tested with a real robot. Fig. 2 shows

screen-shots of our controller application in some example

situations, i.e., during scan acquisition, terrain adaptation,

and path planning.

We proceed as follows. We begin by discussing related

work in Section II. We formalize terrain modeling as a

nonparametric regression problem in Section III and show

how to automatically generate and execute locomotion plans

for a quadruped robot in Section IV. Finally, we present our

empirical evaluation on a real quadruped robot equipped with



Fig. 2. Online visualization using the controller application of our implemented system in three different scenarios. The robot bends its legs to acquire
a 3D scan (left), learns a probabilistic terrain regression model (middle), and then plans a path to a goal location (right). The terrain elevations are color
coded, ranging from green/blue (lowest) to pink/red (highest).

a laser range finder in Section V and compare our model to

popular grid-based alternatives.

II. RELATED WORK

Terrain modeling and map building are central tasks within

robotics, and a broad overview of methods used for modeling

terrain data was given by Hugentorp [6]. Elevation maps

in particular have been used as an efficient data structure

for representing dense terrain data [1], [11] and were later

extended to multi-level probabilistic surface maps [19]. Früh

et al. [4] present an approach to filling local gaps in 3D

models based on local linear interpolation. Compared to

these approaches, Gaussian process (GP) models [15] have

the advantage of not assuming a fixed discretization of the

space and of additionally providing predictive uncertainties.

The explicit model of uncertainty that a GP provides has

led to their successfully application in a wide range of other

applications areas such as positioning systems using cellular

networks [16].

Within robotics, GP models have recently become popular,

for instance for measurement models [2] or model-based

failure detection [12], because they naturally deal with noisy

measurements, unevenly distributed observations, and fill

small gaps in the data with high confidence while assigning

higher predictive uncertainty in sparsely sampled areas.

Many robotics applications, however, call for non-standard

GP models. For instance, in our problem domain the terrain

model should preserve structural elements such as edges and

corners as they are important features for path planning. We

follow Lang et al. [8] and model the terrain using a GP with

a nonstationary covariance function originally proposed by

Paciorek and Schervish [10]. If not specifically addressed, the

nonparametric nature of this approach causes computational

problems for large terrains, due to an unfavorable N3 scaling

for training, where N is the number of observations. To

overcome this problem, we propose to use an ensemble of

GPs, where every GP is assigned to a specific region, an

idea akin to GP mixture models such as Williams’ [20]. Ras-

mussen and Ghahramani [14] extend the ideas of Tresp [18]

and present an “infinite mixture of experts model” where

the individual experts are different Gaussian process models.

Cornford et al. [3] model straight discontinuities in wind

fields by placing auxiliary GPs along the edge on both

sides of the discontinuity. These are then used to learn GPs

representing the process on either side of the discontinuity.

III. TERRAIN MAPPING AS A REGRESSION PROBLEM

Traversable surfaces can be characterized by a function

f : R
2 → R, f(x) = y, where x indexes a location in the

2D plane and y denotes the corresponding terrain elevation in

the direction opposing the gravity vector. Elevation grids are

a popular way of representing such functions and learning

them from a set of elevation samples D = {xi, yi}n
i=1. In the

grid formulation, the space of locations x is discretized, such

that each grid cell is assigned a constant elevation value [11]

or a parametric function p(y) is fitted to the distribution of

its elevation values [19]. Gaussian processes (GPs) take a

different approach by viewing any finite set of samples yi

from the sought-after distribution as being jointly normally

distributed,

p(y1, . . . , yn | x1, . . . ,xn) ∼ N (µ,K) , (1)

with mean µ ∈ R
n and covariance matrix K. µ is typically

assumed 0 and K is specified in terms of a parametric

covariance function k and a global noise variance parameter

σ2
n, Kij = k(xi,xj) + σ2

nδij . The covariance function k

represents the prior knowledge about the target distribution

and does not depend on the target values yi of D. A common

choice is the squared exponential (SE) covariance function

k(xi,xj) = σ2
f exp

(

−
1

2

2
∑

d=1

(xi,d − xj,d)
2

ℓd

)

, (2)

where σf denotes the amplitude (or signal variance) and ℓd
is the characteristic lengthscale of dimension d (see [15]).

These parameters, along with the global noise variance σ2
n,

are known as the hyperparameters of the process and denoted

as Θ = (σf , ℓ, σn). Since any set of samples from the

process is jointly Gaussian distributed, the prediction of a

new target value y∗ at a given location x∗ can be performed

by conditioning the n+1-dimensional joint Gaussian on the

known target values of the training set D. This yields a

predictive normal distribution y∗ ∼ N (µ∗, v∗) defined by

µ∗ = E(y∗) = kT
(

K + σ2
nI
)−1

y , (3)

v∗ = V (y∗) = k∗ + σ2
n − kT

(

K + σ2
nI
)−1

k , (4)



with K ∈ R
n×n, Kij = k(xi,xj), k ∈ R

n, kj = k(x∗,xj),
k∗ = k(x∗,x∗) ∈ R, and the training targets y ∈ R

n. To best

represent the underlying data, the hyperparameters Θ need to

adapted. The common way of doing this is by maximizing

the marginal log likelihood of the training data w.r.t. the

hyperparameters.

A. Locally Adaptive Gaussian Processes

A limitation of the standard GP framework is the ass-

umption of constant lengthscales over the whole input space.

Intuitively, the lengthscales describe the area in which ob-

servations strongly influence each other. For terrain models,

one would like to use locally varying lengthscales to account

for the different situations. For example, in flat plains, the

terrain elevations are strongly correlated over long distances.

In contrast, in high-variance, “wiggly” terrain and at discon-

tinuities in the terrain, the terrain elevations are correlated

over very short distances, if at all. To address this problem

of nonstationarity, an extension of the squared exponential

(SE) covariance function was proposed by Paciorek and

Schervish [10]. It takes the form

k(xi,xi) = |Σi|
1

4 |Σj |
1

4

∣

∣

∣

∣

Σi + Σj

2

∣

∣

∣

∣

−
1

2

× (5)

exp

[

−(xi − xj)
T

(

Σi + Σj

2

)

−1

(xi − xj)

]

.

Each input location x′ is assigned a local Gaussian kernel

matrix Σ′ and the covariance between two targets yi and yj

is calculated by averaging between the two local kernels at

the input locations xi and xj . In this way, the local charac-

teristics at both locations influence the modeled covariance

of the corresponding target values. Lang et al. [8] applied

this model to the terrain regression problem and derived an

iterative adaptation procedure that does not require Markov

chain Monte Carlo integration as the original approach did.

In order to further increase the efficiency of the model and

to make it conceptually simpler, we derived the following

non-iterative model.

Following Lang et al. [8], we adapt the the local kernels Σi

using terrain gradient information. For an input location xi,

we estimate the gradient (∇y)i from elevation observations

in the local neighborhood. We then calculate the trace of the

elevation structure tensor

T (xi) = trace
(

(∇y)i(∇y)
T

i

)

(6)

to yield a single scalar representation of the terrain’s slope.

Here, · denotes the locally weighted averaging operator.

To achieve the desired smoothing behavior, we calculate the

local lengthscale

l(xi) =

{

a · T (xi)
−1 if a · T (xi)

−1 < lmax

lmax else
(7)

in order to yield short lengthscales in high variance terrain

and long lengthscales in flat parts. l(xi) is bounded by lmax

to prevent lengthscales from going to infinity in large, flat

regions. The scale parameter a is learned in parallel to the

search for the GP’s hyperparameters. We visualize l(xi) in

Fig. 3 for different parameter settings. The local kernel Σi

is then simply an isotropic kernel Σi = l2(xi) · I with

eigenvalues l(xi).
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Fig. 3. Left: The parametric function l(xi) links terrain slope to length-
scales. Right table: Placing a hyper GP (HGP) over the latent lengthscales
reduces the mean squared error (MSE) of predictions w.r.t. to weighted

averaging (WA) for different levels of missing data.

To be able to make elevation predictions at arbitrary

locations, we need to evaluate the covariance function at

arbitrary locations and, thus, need to have local kernels at

any point in the input space. We are only able to calculate

gradients and kernels directly where we have sufficient

elevation observations in the local neighborhood. Whereas

Lang et al. [8] use simple weighted averaging to calculate

kernels in regions with few or no observations, we propose to

instead put another GP prior on the local kernels’ parameters.

We call this a hyper GP, since its predictions are used as

hyper parameters for the GP that models the elevations.

The hyper GP represents the function x → l(x) for the

lengthscales of the main GP. As the lengthscales have to

be positive, we transform its training data into log space.

The hyper GP itself uses an isotropic lengthscale lh, which

can be treated as an additional hyperparameter of the model.

At inference time, we calculate the most likely lengthscale

given by the mean prediction of the hyper GP and use the

resulting kernels for elevation predictions of the elevation GP.

The improvement in elevation prediction using the hyper GP

(HGP) with respect to the weighted averaging (WA) approach

of Lang et al. [8] is shown in the table of Fig. 3. We give

the results for three different percentages of points removed

from the training set.

B. Model Tiling

The cubic time complexity of standard GPs limits their

applicability to large data sets. In terrain modeling tasks, the

training data grows as new parts of the terrain are explored.

With only a few laser scans, the training points are in tens of

thousands and regular GPs would spent days on fitting the

regression function.

We propose to use an ensemble of overlapping GPs, where

every sub-model is assigned to a specific region in the

input space. For most of the covariance functions relevant

in practice, the covariance between two points decreases

drastically with their distance (e.g., exponentially for SE).

The lengthscale parameter of the covariance function is

simply a factor scaling this decay, which does not influence



the asymptotic behavior. Consequently, the decrease in co-

variance is asymptotically the same for our nonstationary

covariance function, where lengthscales vary smoothly and

are ultimately bounded by a maximum value. If a point lies

sufficiently far from a region in input space, it has virtually

no influence on the regression result within this region.

Thus, we propose to split the input space into rectangular

segments, and to assign an individual GP model to each of

the segments. This sub-model is then only provided with

observations from within its segment. This idea is similar

to the approximation, which considers the full dependencies

between observations if they belong to the same segment, but

applies approximations for longer distances [17]. To avoid

problems at segment boundaries, we arrange the segments in

an overlapping fashion and only use the center parts of the

segments for the final prediction. In this way, we overcome

the problem that predictions close to segment borders have

unreasonably high variance [17].

Concretely, for a prediction at input location x, we first

determine the GP segment which we consider most likely to

have the best approximation for x, i.e., the segment which

has a center that is the shortest Euclidian distance to x. Given

this hard assignment to segments, the resulting function is

no longer continuous in general. We have, however, not

observed notable problems in practice, which might be

related to this approximation. In order to evaluate the gain

in runtime performance, let us assume that

a) every segment contains at most a percentage c of all

training data n, and

b) segments overlap by a percentage v of their inputs.

Every segment then uniquely covers cn−cnv = cn(1−v) of

the training data, which makes it necessary to use n
cn(1−v) =

(c(1 − v))−1 segments to cover the whole input space. The

original GP training time of O(n3) can then be expressed

as O((c(1 − v))−1 · (cn)3) = O(c2(1 − v) · n3). If we

keep v constant, and scale c anti-proportionally to n (which

corresponds to a constant segment size), the training time

becomes linear in n.

In the experiments documented in Section V, we specifi-

cally evaluated the benefits of our model tiling strategy, as

well as the advantages that the locally adapted GP has w.r.t.

the standard GP model and grid-based approaches. Before

doing so, we describe how useful trajectories for a quadruped

robot can be generated using the predictive elevation model

introduced in this section.

IV. PLAN GENERATION

We can now use the learned terrain models to plan

a path for the robot that is collision-free and statically

stable. Our overall planning approach is an adaptation of

the conventional probabilistic roadmap algorithm [7]. Our

simplified model of the quadruped robot is a body with

four two-link legs and point feet. The planning algorithm

is a search for motions of single legs from static stance to

static stance that maintain static stability over uneven terrain.

We first randomly sample a set of potential footholds across

the terrain, which are used to generate a graph of potential

Fig. 4. Parts of a plan generated by our algorithm including the underlying
cost function, which depends on the terrain gradient and the uncertainty
about elevation predictions estimated by the Gaussian process model. The
red line (filled boxes) depicts the trajectory of the center of body, the other
lines (stars and empty boxes) visualize feet motions. The cost function
is color coded ranging from black (little costs) to yellow/light-gray (high
costs). Axis dimensions are given in meters.

“stances”, that is, statically stable and kinematically feasible

positions of the robot. Graph search is then used to find a

sequence of stances from the start to the goal; the sequence

of stances can then be converted to series of planned joint

angles.

A. Sampling Footholds

Let us assume that the planning problem is to find a

motion plan that is essentially a futtock (midline) motion

across the uneven terrain from the start position to the goal.

This assumption will allow us to simplify the sampling to

examining potential footholds around the straight line to the

goal, selecting footholds φ = (x, y, z) according to some

regular discretization around the line of intended motion,

e.g., see the right diagram of Fig. 2 for the simplest case

of equidistantly sampled footholds around a straight line.

We do this without loss of generality; we can easily support

more complex scenarios by choosing different sampling

strategies1.

Each sampled foothold is evaluated with respect to a

cost function and rejected if the expected cost is above

some threshold. The cost function may consist of many

features including elevation, roughness, but in this work

we considered only terrain gradient (i.e., slope) and the

uncertainty in the terrain model (i.e., the Gaussian process

predictive uncertainty) at the sampled foothold φ.

B. Stance Graphs

We next generate feasible stances of the robot from the

discrete set of footholds. A stance is an assignment of each

foot i to a foothold, φi = x, such that it is kinematically

feasible for the robot to place its feet at each of the four

footholds and remain statically stable. Note that determining

whether a stance is feasible or not is not directly computable

from a set of foot positions because the feet do not provide

1The sampling problem is outside the scope of this paper but has been
discussed in [5] and others.



a unique description of the pose of the robot. The robot

has 18 degrees of freedom total: 6 degrees of freedom of

the center of the body (x, y, z, roll, pitch, yaw) and the 3

joints (hipx, hipy, knee) in each leg. Under the assumption

that the positions of the feet are fixed, the feet constitute

12 constraints, leaving 6 unconstrained degrees of freedom,

corresponding to the position of the center of body. A stance

si is therefore an assignment of feet to footholds φ1..4 and

a selection of a center of body position ξ.

Given an assignment of the center of the body position

for a set of foot positions, the known kinematics can be

used to recover the joint angles of the legs and determine if

the pose is consistent with the dimensions of the leg links

and the limits on the joint angles. Given knowledge of the

joint angles and that the stance is kinematically feasible, the

center of mass can then be determined; if the projection of

the center of mass onto the ground plane lies outside the

support polygon (the convex hull of the four feet on the

ground plane), then the stance is not statically stable and the

robot will fall.

In assigning the position of the center of body for a given

set of foot positions, we would ideally choose a center of

body that provides static stability. Unfortunately, no closed

form solution exists for finding a feasible and stable center of

body, and the problem is in general non-convex. We therefore

use a heuristic search strategy around the centroid of the

support polygon. If none of the sampled centers of body

provide a kinematically feasible and stable solution to the

robot position given the foot positions, then the foot positions

are rejected as an infeasible stance.

The feasible stances constitute nodes in a stance graph, to

which we then add edges between pairs of stances si and sj

when a feasible motion exists to transform the robot from the

start stance si (foot positions and center of body) to the end

stance sj (see Fig. 5). This problem is also underdetermined,

in that an arbitrarily complex motion may be required to

move from one stance to another. We therefore simplify this

problem to consider motions consisting of a stance phase,

during which the dog shifts its center of body to remain

stable while stepping, and a foot swing phase during which

a foot is moved from one foothold to another.

Once the stance graph has been built, we use standard

breadth-first search to find the shortest feasible sequence of

stances from the start stance to a goal stance that gives a

center of body position with some ǫ of the desired goal

position, in practice, combining the search process with the

stance graph generation. Additionally, we add a gait-order

constraint, so that the plan must consist of a well-formed

gait in which foot i is followed by foot i + 1 mod 4. By

augmenting each stance variable with an additional foot-

ordering variable ψ, this gait-ordering constraint dramatically

improved the planning speed. Finally, we also use a hash

table to prune the search, such that if two different routes

are found to the same stance node s, then the search along

the longer path is terminated. The full planning algorithm is

given in Algorithm 1. The hash table is omitted for space

reasons.
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Fig. 5. An example stance graph generated from the set of foothold
locations. Each stance node (yellow) is connected to four foothold nodes
(blue). Each two connected stance nodes have three stance legs in common.

Algorithm 1 The Planning Process.

Require: Terrain model, start stance s0 and goal xg .
Sample footholds Φ using terrain model
Initialize Q← s0
while Q is not empty do
s← pop Q
for all φ do
s′ ← s
Update of position of foot to move, φ(ψ(s′))← φ in s′

Update foot to move, ψ(s′)← ψ(s′) + 1 mod 4
Search for new center of body position ξ(s′)
if ||ξ(s′)− xg|| < ǫ then

return Parents [s′].
end if
if ξ(s′) exists then

Set parent, π[s′] = s
Push Q← s′

end if
end for

end while
return nil

V. EXPERIMENTS

The goal of the experimental evaluation is to demonstrate

the usefulness of the predictive terrain model introduced in

Section III for path planning in real environments and to

show that our adapted Gaussian process model is more accu-

rate than conceptually simpler approaches such as standard

GPs or elevation grid maps. We additionally analyzed the

benefits of our tiling approach introduced in Section III-B

with respect to runtime and accuracy performance.

A. Adapting to Local Terrain Structure

We evaluated the performance of the GP terrain regressi-

on using the standard squared exponential (SE) covariance

function against our nonstationary covariance function with

local lengthscale adaption. Our evaluation terrain was an

excerpt from the rocky terrain depicted in the left diagram

of Fig. 6, in which we simulated 2,500 laser observations

from a single viewpoint. We uniformly selected 4,350 points

from the true terrain for evaluation. We then conducted

Monte-Carlo search in the parameter space of the covariance

functions and on the parameters of the adaption procedure. In

a preliminary run over 34,000 configurations, we determined

general ranges for the parameters and in a secondary search,

we evaluated 10,000 configurations in the predetermined

ranges. A scatter plot of the best results is given in the



Fig. 6. Mapping results on a rocky, real terrain of dimensions 0.6m × 0.6m with a maximum elevation of approximately 7cm (color-coded as yellow)
above ground level. We give the true elevation values (left) and the set of laser end points (second plot) recorded by the robot standing on the bottom right
corner w.r.t. the diagram and performing a tilt motion. The next two diagrams depict the elevation grid model and its bilinear completion. The rightmost
diagram gives the mean predictions of our adapted GP model.

right diagram of Fig. 8. It can be seen from the diagram

that the nonstationary covariance function is able to achieve

both better mean squared error (MSE) of predictions w.r.t. the

ground truth and also better negative log predictive likelihood

(NLPD) that also takes into account the predicted variances.

Fig. 8 shows a cut through the respective regression surfaces

of the stationary (left panel) and nonstationary (middle panel)

models. It can clearly be seen that the stationary GP model

(left diagram) needs to select an extremely small lengthscale

parameter in order to represent the sharp edges. It is thus not

able to smooth flatter and more sparsely sampled regions.

In contrast, the nonstationary covariance function (middle

diagram) decreases the lengthscale only at the cliffs and

where no gradients are observed. It is thus able to account for

the highly varying parts at the first ascent and for the higher

uncertainties in the occluded parts, while still smoothing in

the flat regions.

B. Splitting the Terrain into Overlapping Sub-Models

We evaluated the benefits of segmenting the input space

in overlapping tiles. To do so, we applied different tile sizes

to the terrain model analyzed in the previous experiment. We

measured the prediction accuracy in the innermost 0.0025m2

of a tile while linearly increasing the tile area, and thereby

also the amount of training data of the associated GP. The

upper left diagram of Fig. 7 shows that with an increasing

tile size, both MSE and NLPD quickly decrease and almost

converge as the area reaches 0.003m2. The runtime, however,

continues to grow cubically with the segment size beyond

this point. The remaining three diagrams in Fig. 7 give a

visual impression of the effects that different tile sizes have

on the regression function in its center. Increasing the tile

size from 0.03m2 (lower left) to 0.056m2 (lower right) does

not lead to a notable improvement.

The runtime requirements for learning from approx.

100,000 points using our C++ implemenation are in the order

of 1.5 sec. with overlapping stationary GPs and 3 sec. with

overlapping nonstationary GPs.

C. Mapping Accuracy on Real Terrain

We evaluated our terrain model with a real quadruped

robot in a situation similar to the one depicted in Fig. 1 The
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Fig. 7. Mean squared error (MSE), negative log predictive likelihood
(NLPD) of the inner 0.0025m2 of the segment and train time (relative plot,
scale omitted), for different segment areas (left). Values are linearly scaled
to fit in plot. Plots of prediction for segment sizes 0.0025m2, 0.03m2, and
0.056m2.

robot, called LittleDog, was developed by Boston Dynamics.

We have equipped the dog with a Hokuyo URG laser scanner.

A high-resolution motion capture system, the Vicon MX,

yields estimates of the robot pose using measurements from

reflective markers attached to the robot’s body. The laser

sensor is mounted to the back of the robot in a 25◦ angle

facing towards the ground, such that (a) terrain elevation

measurements can be acquired while executing plans and (b)

3D range scans can be recorded by executing a tilt motion

using the front and rear legs. The evaluation in this section

concentrates on the question of how accurately the elevation

structure of the terrain board (approximately 0.6m × 0.6m)

can be recovered from a single such 3D scan.

1) Calibration: Note that our system is not performing

simultaneous localization and mapping; we are only ex-

amining the terrain inference problem and assume accurate

knowledge of the pose of the laser. The specifics of the

Vicon system used to track the dog position required us to

automatically infer the time offsets between the laser data

and pose measurements, and to calculate the 6 degree of

freedom transformation between a known position of the dog

and the actual laser sensor position at the same time. In order

to compute both these calibration quantities, we recorded a
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3D range scan of three orthogonal boards placed in front

of the robot (side lengths approximately 1m) and optimi-

zed the 7 parameters of the transformation in a sampling-

based fashion similar to simulated annealing. Here, random

parameter samples are evaluated using a predefined objective

function; additionally, a temperature variable defines from

which area new parameter samples should be drawn around

the current optimum. As the objective function, we chose the

sum of squared distances of laser end points to the board

surfaces. By decreasing the temperature level gradually over

time, accurate calibration parameters are typically obtained

within 300-800 iterations.

2) Mapping Rough Terrain: We evaluated our adapted GP

approach using scans of a rocky terrain surface acquired by

the quadruped robot against a known ground-truth model

of the terrain acquired using a high-accuracy metrology

system. The left diagram of Fig. 6 depicts the true elevation

structure of this terrain (see the caption for details). The

second diagram gives the raw set of laser endpoints that were

acquired by the robot when it executed a tilt motion. It can be

clearly seen from the uneven distribution of points that parts

of the terrain are not sampled densely due to occlusions and a

larger distance to the sensor location (which was towards the

bottom right w.r.t. the diagram). An elevation grid map can

be built from this training set of surface points by discretizing

the x-y space and by fitting 1D Gaussians to the elevation

samples falling into the grid cells respectively. The result of

this operation is depicted in the middle diagram of Fig. 6.

A standard way of filling gaps in grid maps without

altering the known cells is called bilinear interpolation, i.e.,

the extension of linear interpolation to bivariate functions.

The result of such an operation applied to an incomplete

elevation grid map is depicted in the fourth diagram of Fig. 6,

the results obtained by our adapted GP approach are depicted

in the rightmost diagram. Here, we plot the mean predictions

for terrain elevations. A vertical cut through this surface is

given in the middle diagram of Fig. 8. Such a visualization

highlights how our model is able to produce uncertainties in

the predictions. These uncertainties are utilized in the cost

function of the planner described in Section IV to avoid

uncertain areas.

We compared the prediction errors of our adapted GP

model to the baseline models Elevation Grid and Interpo-

lated Elevation Grid. In Fig. 9, we give the squared error of

elevation predictions averaged over 10,000 samples drawn

randomly from the terrain. The error-bars give the standard

deviations of the individual sample sets. To assess the

influence of grid resolution for the two grid-based models,

we tested six different numbers of cells per grid dimension

(x-axis). Since the standard elevation grid does not make

predictions in occluded or less densely sampled areas, its

performance was evaluated on its occupied cells only. It can

be seen from the diagram that our adapted GP model is as

good as the elevation grid at optimal resolution, although

its performance measure additionally includes predictions of

unobserved elevations.

D. Path Planning using Real Terrain Data

In order to evaluate the practical usefulness of our ap-

proach, we tested our terrain models in combination with the

trajectory planner described in Section IV. The experimental

setup was to sample 1,000 random starting locations in front

of the terrain and to pick goal locations behind it. For each of

these location pairs and each of the three alternative terrain

models, the planner generated a set of footholds and searched

for the best path towards the goal location. We then evaluated

(a) the maximal path length that could be constructed given
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Fig. 9. Errors of elevation predictions by the different models depending
on the number of grid cells used. The elevation grid (without interpolation)
was evaluated on occupied cells only.



Fig. 10. Evaluation of 1,000 plans generated using the different terrain
models. The left bar plot shows the maximal length of generated plans and
the right plot gives the mean squared errors (scaled by 10−3) of elevation
predictions at the planned footholds.

the kinematic constraints of the robot, and (b) the errors of

the elevation predictions at the selected foothold locations.

An example plan and the corresponding cost function that

was computed from the underlying terrain model are depicted

in Fig. 4

Fig. 10 summarizes our results. It can be seen from the

left diagram that it was always possible to plan the maximal

path of 2 meters using the interpolated grid and the adapted

GP model. Using the standard grid, however, the plans never

exceeded a length of 1.6 meters, which is not surprising

given the large number of unknown cells which prohibit foot

placements. As can be seen from the the mean squared error

values on the right diagram, the adapted GP model better

predicts the true terrain elevations at the chosen foothold

locations than the interpolated grid model, which means that

there is a lower risk of failure when executing these plans.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we considered the terrain mapping problem

for a legged robot equipped with a laser range finder. We

demonstrated the use of a nonparametric Bayesian regression

approach, Gaussian processes, for reliably modeling rough

terrain. Our extended model balances smoothing against

the preservation of structural features and is capable of

accurately predicting elevations in the presence of noise even

at unobserved locations. These features allow us to plan foot

trajectories of a quadruped robot to reach a goal location. We

showed in experiments with data acquired using a real robot

that this nonparametric terrain modeling approach could infer

the terrain more reliably, leading to better planning than grid-

based terrain models.

In the future, we plan to apply alternative ways of learning

the nonstationary GP model [13] and to evaluate the diffe-

rence in modeling accuracy. We would also like to address

the more general SLAM problem, in which the robot does

not assume knowledge of its own position. Future work could

also consider a reinforcement learning variant of our foot

trajectory planning along the lines of Neumann et al. [9]

using specific reward functions to learn obstacle avoidance

or stable and energy-efficient movements.
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