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Summary. We present a kinodynamic planning methodology for a high-impedance
quadruped robot to negotiate a wide variety of terrain types with high reliability.
We achieve motion types ranging from dynamic, double-support lunges for efficient
locomotion over extreme obstacles to careful, deliberate foothold and body pose se-
lections which allow for precise foothold placement on rough or intermittent terrain.

1 Introduction

Legged robots such as RHex [1] can handle many types of extreme terrain
with impressive robustness, but an approach that is blind to the upcoming
terrain is inherently incapable of precise foothold selection. On the other hand,
position-controlled robots which are capable of precise foot placements have
thus far been able to traverse significantly rough terrain only by using rela-
tively slow, crawling gaits [10, 8, 6], typically enabled by decoupling body and
leg movements, e.g., [11]. Robots such as the Raibert hopper [9] demonstrate
that simple control principles can stabilize a dynamic legged machine and al-
low it to select foot placement on mildly rough and intermittent terrain [3].
This has been generalized for a dynamic quadruped [2] as well. However, the
control problem of how to make the gaits of such robots adaptable to varying
terrain has not yet been addressed adequately in the literature. There has
been surprisingly little work on kinodynamic planning of underactuated gaits
with the careful foot placement necessary for rough terrain on real robots.

In our approach to the foothold selection and dynamic motion planning
tasks for legged locomotion, we first design a family of simple, low-level motion
strategies which can achieve either slow, careful footsteps or fast, dynamic
motions, as required by the upcoming terrain. A high-level planner can then
select from among these low-level options to obtain an appropriate trade-off
between speed and accuracy to travel across rough terrain.

The platform we use to demonstrate this approach is a small, point-footed
quadruped robot called LittleDog, which is made by Boston Dynamics and is
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currently used as part of the DARPA-sponsored Learning Locomotion project.
The goal of the project is to develop a walking controller which enables the
robot to traverse a variety of rough terrain both quickly and robustly. The
LittleDog robot has 12 motors with large gear ratios, two at each hip and one
at each knee. The high gear ratios (85:1) make the joints so stiff that the robot
can hold its own weight in an upright stance even when the power is switched
off. The body has a mass of 1.8 kg, which is significantly greater than the
mass of each leg (at 0.25 kg). The robot has a variety of sensors which include
(most notably) encoders at each of the 12 joints, an IMU, 3-axis force sensors
at each foot, and current, voltage and temperature sensors. Additionally, it
operates within a Vicon motion capture (mocap) environment which provides
6-DOF position information for the robot body and for the terrain with a
50 ms latency; a sub-millimeter accuracy terrain map is provided. The robot
has a 1 kHz internal PD control loop on desired joint trajectories. All other
control is done by an external computer in a 100 Hz loop through a wireless
connection.

Fig. 1. LittleDog walks carefully on pegs.

When exact foot placement is critical, we can use the stiff joints of the
robot to position the body and legs carefully, as shown in Figure 1. For more
dynamic motions, the velocity and power limits do not allow for a truly bal-
listic, airborne “jump”. However, by carefully planning the desired ground
reaction forces, we can achieve repeatable, bipedal “lunging” motions which
allow the front legs to clear gaps or vertical obstacles or to initiate a climb
where there is a step in terrain height, as depicted in Figures 2, 5 and 8.

Fig. 2. LittleDog climbs a step dynamically.
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2 Technical Approach

Planning ground reaction forces is central to our methodology. For slow mo-
tions, such as the peg-walking in Figure 1, we use the standard, quasi-static
crawling gait [7] in which the projection of the center of mass (COM) of the
robot is always within the support polygon. Slow walking is performed se-
quentially by first moving the body into a 3-legged support polygon and then
moving the remaining “swing” leg.

As the speed of walking increases, we account for accelerations of the body
to ensure the zero-moment point (ZMP) remains in the support polygon at
all times. One strategy to achieve this is a preview control method introduced
in [5] and later developed for bipedal robot walking in [4]. If we assume the
center of mass has a constant height and neglect rotational accelerations, we
can decouple the x and y motions and can derive the simple relationship be-
tween the motion of the COM, xm (or ym), and the corresponding ZMP, xzmp

(or yzmp). Referring to the left-hand images in Figure 3, the ZMP location
must satisfy (xm − xzmp)(z̈m + g) = zmẍm. When the COM remains at a
constant height, z = zm, z̈m = 0, and this simplifies to the following:

xzmp =
xmg − zmẍm

g
(1)

To model dynamic lunging motions where the body intentionally rotates –
for instance, to clear an obstacle or to complete a step of a pacing gait –
we must enhance the planar model from [4] to include both the mass and
rotational inertia of the robot body. Because the legs have considerably less
inertia than the body, we model them as massless. With this simplification, our
dynamic model of the robot is essentially a “brick”. We ignore the orientations
of the individual joints and model only the relative location of the ground
contact point with respect to the body, as illustrated at right in Figure 3.
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Fig. 3. 2D models of robot during laterally-symmetric dynamic motions. Leftmost
image is the “cart-table model” from Figure 3 of [4] (reproduced with permission
of the first author), which corresponds to fully-actuated motions at constant height
(center). In underactuated lunging (at right), the modeled ground contact is a point.

Note that if we are given a prescribed (and twice differentiable) xm(t)
trajectory over time, we can use Equation 1 to solve (trivially) for ZMP loca-
tion. This is the forward problem for ZMP planning. The inverse prob-
lem involves first specifying a desired xzmp trajectory and then solving for
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a particular trajectory of mass, xm(t), such that we minimize error in ZMP
tracking over time. In the inverse problem, positions of the mass, xm, at the
start and at the end of a desired xzmp(t) trajectory typically coincide with the
end conditions on the locations of the ZMP, so the robot is in a stable, zero-
acceleration configuration both before and after the particular planned motion
trajectory. During the intervening trajectory, the ZMP location is dominated
in the short term by the ẍ term (which can vary rapidly) and in the long term
by the x position itself. Because of the sign difference in the influence of x
and ẍ (i.e., in xmg−zmẍm

g ), these short-term and long-term goals are at odds;
we will generally have to shift the ZMP in the opposite direction from our
eventual goal. There are a variety of ways to solve control problems of this
type; the preview control solution [5, 4] is simply the one we prefer to use.

The preview control method augments this inherently second-order system
(i.e., a simple mass and inertia being pushed around) by including acceleration
as an additional state. By using acceleration as a state variable, we can create
a state-space model which has the ZMP itself as a desired output, and we can
then use a linear-quadratic cost – mostly on the desired output, with a small
additional cost on actuation effort – to solve for the required x trajectory over
time which will minimize our cost function. Performing this for both (x, z)
and (y, z) relationships independently results in a way to generate x(t) and
y(t) trajectories automatically for whatever overall speed we deem prudent,
based on how rough the terrain is.

What is exciting and somewhat unexpected is that we can also plan double-
support motions reliably using this same, basic preview control strategy. For a
dynamic lunging motion, there is no longer a support polygon, since the robot
balances precariously on just two feet during a motion. Our planning now re-
quires a ZMP which is precisely on the line connecting these two feet for a
short duration (about 0.3 sec). We will simultaneously open the inter-leg an-
gle between the support legs and the body quickly during our ZMP-balancing
time window. Figure 3 (right) illustrates such a motion with a 2D planar
model. Although rotational accelerations now clearly violate our assumptions
in Equation 1, pinning the gross motion of the center of mass to the idealized
preview control solution in fact goes a long way toward decoupling the calcu-
lations for the x motion of the body versus its orientation angle, α: the overall
motion of the mass in x essentially balances an inverted pendulum system.
Commanding an additional hip angle on top of the nominal motions obtained
from the inverse kinematics solution for the x motion generates an additional,
rotational momentum. This motion acts to destabilize this planned equilib-
rium, but if these motions are commanded to happen rapidly enough, then
1) the body successfully does pitch upward and 2) the additional moments
caused by pitching the body shift both the COM and the “fictitious ZMP”
forward of the line of double-support stance, stabilizing the total motion to
ensure the robot lands by falling forward rather than backward.

Similar tactics are employed to achieve a fast, stable dynamic walking gait.
When walking, we utilize a “diagonal” gait, in which a single body movement
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accompanies two leg steps: a front leg step, followed by a back leg on the
diagonally-opposing side. As the body accelerates from rest to the front swing
foot, the ZMP moves in the direction opposite the acceleration. By design,
the ZMP still remains within the support triangle, however. As the body
decelerates with the front leg still in the air, the robot enters a brief double-
support phase during which it is rocked onto the front foot which is about
to touch down. The entire motion produces a fast gait and ensures that feet
are unloaded before they are lifted off the ground, enhancing the dynamic
stability of the system and allowing for dynamic walking over rough terrain.
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Fig. 4. The inverse (left) and forward (right) problems ZMP trajectory.

At left in Figure 4 is an example of a solution to the inverse problem for
the 1D motion of a point mass which is at a height of zm = 0.135 m; the
preview control model used is described in more detail in [4]. The desired
ZMP trajectory in this example is a step function, going from 0 to 0.1 m at
t = 1 second. The center of mass moves monotonically from the 0 to 0.1 m
while the ZMP exhibits some overshoot, going somewhat outside of this 0-
0.1 m range. The magnitude of the overshoot in ZMP is only about 5 mm
while the distance to the edge of the support polygon is typically on the order
of 5 cm (10x further). However, there are two significant penalties to be paid
for such an overly-cautious solution. First, calculating the inverse solution
in real-time is computationally expensive, which would result in significant
pauses between steps on the real robot. Second, the actual time required
to move the mass is significantly slower (approximately 1.0 seconds) than it
needs to be. To optimize our speed in fast walking, we deliberately plan for
more aggressive excursions of the ZMP to achieve motions of the mass which
are approximately twice as fast as the inverse solution shown in Figure 4. The
solution we use is a smooth half-cosine wave shape motion for the mass, timed
such that the ZMP moves nearly as cleanly from one support polygon to the
next as for the inverse solution while overshoot (i.e. extra push-off and braking
by the stance legs) is allowed for additional speed. At right in Figure 4 is a
forward solution of the following form:

xm = x0 + (xf − x0) ∗ 1/2 ∗ (1− cos(π/Tcos)) (2)
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where x0 and xf are the initial and final positions of the mass, respectively.
Note that both the trajectories of both xm and xzmp are each half-cosine
waves. From Equation 1, we find that the peak overshoot in ZMP occurs for
the mass trajectory in Equation 2 comes at both t = 0 and at t = Tcos. Solving
for the discursion of the ZMP at t = 0, we find:

xzmp(0) =
−zm

g
ẍm =

−zm

g

(xf − x0)
2

(
π

Tcos

)2

(3)

3 Results

We apply the dynamic locomotive behaviors described in the previous section
to negotiate a wide variety of terrain type. Some examples are shown in Fig-
ure 5. We calculated the average speed of crossing the terrains as the robot
moves from start to goal over a distance of 1.2 meters. The speed ranged
from 5.6 cm/sec (for very rocky terrain) to 12.5 cm/sec when walking on flat
terrain. For a sense of scale, the leg length is approximately 16 cm when fully
extended and about 12 cm in a nominal stance pose with a slight bend at the
knee. The body is approximately 20 cm in length.

There are two classes of terrain in which our method yields the most
significant speed improvement over a crawl gait solution. One is for inter-
mittent obstacles, including the thin, vertical (“jersey”) barriers and the gap
obstacles, as illustrated in Figure 5. Here, swinging both front legs over the
obstacle in a double-support lunge allows us to perform at over twice speed of
a statically-stable crawl. The second type of terrain where dynamic planning
greatly improves speed is for rough terrain where a) footholds are flat enough
to avoid significant slippage and b) the path between footholds do not present
significant vertical obstacles. Here, there is little risk of collisions with terrain
features which would knock us off course during an open-loop trajectory; we
cross such rough terrain at over 80% of our speed on flat terrain.

Fig. 5. LittleDog traversing various terrain dynamically.

In addition to the speed benefits of planning dynamic, double-support
motions on the terrain types mentioned, we also report significant reliability.
For the terrain types where we plan for the fastest speeds (gaps, jersey barrier
and modular boards), we observe success rates at or above 95% at top speeds.
For such terrain, it is worth noting that success requires appropriate clearance
of the upcoming obstacle and joint trajectories that are not near the saturation
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limits (primarily in joint velocity). For example, although the peak angle of
pitch during a double support lunge had some variability, as shown in Figure 6,
the duration of the motion was repeatable enough to ensure we attained our
desired end pose as the robot rotated back onto all four feet after clearing an
obstacle. The problems of finding mid-air trajectories for the non-support feet
which would avoid collisions and would end in an appropriate configuration
at landing were relatively simple, as compared with planning the dynamic
motions of robot body and the corresponding joint trajectories for the two
legs used in double support. For fast, double-support walking, repeatability
also depended critically on avoiding unexpected collisions with the terrain or
other situations (such as steep terrain footholds) which would unexpectedly
knock the robot body and/or stance feet off the planned path. Despite the
open-loop control strategy we employ within a particular diagonal gait step,
the dynamic motions at the heart of our strategy were quite repeatable.
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Fig. 6. Data showing pitch for 40 consecutive lunge trials.

Data presented in Figure 6 come from executing a lunging behavior re-
peatedly. Executing identical open-loop joint trajectory plans experimentally
yields highly-repeatable results. For walking, ZMP preview control provides
an automatic mechanism for generating the (x, y) trajectory of the COM
over a wide range of speeds of travel. More surprisingly, we have success-
fully extended this approach beyond its intended domain to aid in decoupling
the linear and rotational motions of the dog during double-support dynamic
lunges. Our experimental repeatability in controlling motions which are in-
herently dynamic and underactuated is a particularly exciting and enticing
result toward the development of field-ready legged robotics.

Our results for the dynamic, diagonal leg-support walking gaits were also
quite repeatable. By reasoning about the physics of the robot mass and inertia
during double support, we were successful in scaling the speeds of motions such
that accelerations remained low enough to maintain a ZMP within the support
polygon during the triple-support phase at the start and end of motion while
also moving the body rapidly enough to avoid accumulating excessive pitch
during the double-support transient.



8 Katie Byl, Alec Shkolnik, Sam Prentice, Nick Roy and Russ Tedrake

There are two key ideas we employed in successfully scaling the speed of
this walk for a variety of different terrains. First, swing leg trajectories were
slowed down whenever the terrain connecting two sequential footholds pre-
sented vertical obstacles which might cause collisions. The curving path one
must plan to avoid an obstacle is inherently longer than the near-straight
start-to-goal path used for the feet when walking on flat terrain. Also, joint
trajectories were intentionally executed more slowly on more extreme ter-
rain, to ensure that joint velocities were not saturated, which would cause
potentially dangerous deviations from the path foot trajectory on bumpy or
stepwise terrain.

The second key idea was maintaining the same characteristic double-
support transition time even as each particular leg trajectory slowed down.
The effect of the mass and inertia of the leg was not significant in our ex-
periments, so that the overall body motions and allowable double-support
transients remained essentially constant (at about 0.25 sec in duration) over
the various terrain boards we tested. Our most significant speed improvements
from using this dynamic double-support gait came when the quarter-second
transition was a significant fraction of a two-legged motion, but the same
reasoning allowed for steady, repeatable walking over a wide range of overall
speeds on rough terrain.

−0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

Time after initiation of double support (sec)

P
itc

h 
an

gl
e 

(d
eg

re
es

)

 

 

Impact expected at 0.25 sec

T
cos

 = 0.8 sec

T
cos

 = 0.6 sec

T
cos

 = 0.5 sec

8o pitch

Fig. 7. Predicted pitching (nose-down) motion during double support phase.

4 Discussion

Many of the most successful bipedal robots to date (e.g., Honda’s ASIMO,
Kawada’s HRP-2, and KAIST’s Hubo, to name a few) are based on motion
planning and feedback stabilization strategies which regulate the zero-moment
point (ZMP) of the ground reaction forces to be safely inside the supporting
polygon. This regulation is accomplished with high-gain servo motors, but
is aided by direct measurements of the ground reaction forces through load
cells in the feet. The methods presented here can be interpreted as extending
the ZMP-style motion planning into dynamic regimes where the supporting
polygon is a line, and the distance between the ZMP and the edge of the
support polygon (aka the ZMP-margin) is at best identically zero.

Perhaps the most important lesson here is that this reasoning about ground
reaction forces proved to be relevant and powerful despite the fact that our
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robot was seemingly missing all of the prerequisites for force control. Specifi-
cally, recall that commands here were delivered over a low-bandwidth (100 Hz)
command interface to highly-geared (stiff) position-controlled joints on the
robot. Furthermore, we did not have an accurate dynamic model of the robot,
nor accurate force sensors in the feet; no load cell feedback was used in gen-
erating these motions. In fact, it is the gross motion of the center of mass
that dominates the production of ground reaction forces, and desired center
of mass trajectories can be tracked nicely with stiff position control. This
idea is presumably well-understood by the ZMP-walking community, but is
perhaps an under-appreciated aspect of the success of their robots.

5 Future Work

Our future aim is to plan for arbitrary final footholds for the front feet and (es-
pecially) for initial footholds. Figure 8 shows LittleDog climbing particularly
extreme terrain, using the same lunge used to climb a step (Figure 2). This
sequence currently executes with approximately 70% reliability. Our current
dynamic climbing motion also requires that all four feet of the dog are initially
on flat, even terrain. A significant goal in generalizing foothold selection is to
achieve bounding over rough terrain. This task is particularly difficult because
the front and back feet have wide separation, meaning significant energy is
lost in impact when the front feet of our non-compliant quadruped hit the
ground.

Fig. 8. LittleDog using a dynamic lunge to get onto elevated rough terrain.

6 Conclusions

In this paper, we present a reasoned approach for planning highly-repeatable
dynamic motions for a quadruped robot which lacks either passive compliance
or sensory feedback bandwidth – two typical approaches for achieving dynamic
gaits. Instead of using such natural or control-based compliant dynamics, we
reason about a simplified physical model of the robot body to design planned
ground forces and body motions which are compatible for underactuated,
double-support phases in motion. If saturation limits (primarily in velocity)
of the robot are carefully avoided, the high impedance of the robot ensures
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that planned joint trajectories are executed with high fidelity, and planned un-
deractuated trajectories result in good repeatability over each short (0.3 sec)
double-support phase. Interspersing double-support phases with three-legged
support periodically corrects for any small deviations (e.g., in pitch) to keep
the overall trajectory of the robot near a higher-level set of pre-planned, nomi-
nal gait poses. This straight-forward strategy allows us to negotiate significant
examples of rough terrain (gaps, hurdles, etc.) at over twice the speed of a
traditional “crawl” gait. Equally significant and perhaps less intuitively, we
obtain more reliable results by using this careful reasoning about the ground
reaction forces and body motions than in using a crawl gait. Although, a crawl
gait is often assumed to be a “conservative” strategy on rough terrain, vio-
lations of the static assumption and swing-leg collisions with terrain become
more probable as speed increases – both resulting in unexpected moments
which may topple the robot. Our approach provides a practical solution to
the dual goals of increasing both speed and reliability of locomotion while
also enabling efficient negotiation of significant terrain obstacles.
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