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Abstract

We deal with the problem of learning probabilistic models ofterrain surfaces from
sparse and noisy elevation measurements. The key idea is to formalize this as a
regression problem and to derive a solution based on nonstationary Gaussian pro-
cesses. We describe how to achieve a sparse approximation ofthe model, which
makes the model applicable to real-world data sets. The mainbenefits of our model
are (1) that it does not require a discretization of space, (2) it also provides the un-
certainty for its predictions and (3) it adapts its covariance function to the observed
data, allowing more accurate inference of terrain elevation at points that have not
been observed directly.
As a second contribution, we describe how a legged robot equipped with a laser
range finder can utilize the developed terrain model to plan and execute a path over
rough terrain. We show how a motion planner can use the learned terrain model to
plan a path to a goal location, using a terrain-specific cost model to accept or reject
candidate footholds.

1 Introduction

Terrain models are used to represent the distribution of surface elevation in an environment. They
are applied in numerous areas, such as weather forecasting,city planning, geological surveys,
computer game development and also outdoor robotics. This paper focuses on terrain modeling in
robotics applications, in which the task is to statistically model a set of noisy elevation samples for
the purpose of planning and executing motion plans. The approach, however, is formulated in a
general form, such that it can be applied in other domains as well.
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Figure 1: Our quadruped robot is equipped with a laser sensor in order to observe its local surrounding. By bending its leg joints,
it is able to acquire dense 3D scans of the environment.

As a motivating scenario, consider the situation depicted in Fig. 1. Our quadruped robot, specifi-
cally the Boston Dynamics LittleDog, is equipped with a laserrange finder as its primary sensor.
It faces the task of planning and executing a path over rough terrain. In this paper, we assume
that the true terrain elevation is a well-definedfunctionof 2D locations. Overhanging structures,
which would violate this assumption, can be dealt with by considering mixtures of terrain models
or by other means—as will be outlined later in the paper. Acquiring and representing models of
such terrain is a challenging task. First of all, terrains are defined over a continuous space such
that the space of all models has in principle infinitely many dimensions. Discretizing this space,
for example with a grid representation, can result in modelsof enormous size and can introduce a
strong bias due to an improper choice of grid resolution. Furthermore, we must rely on the robot’s
noisy sensors to gather information about the world, which requires statistical inference in the con-
tinuous and high-dimensional space of the model. The amountof noise in the range measurements
is comparatively high due to a number of factors including the noise of the light-weight sensor that
was required, accumulated calibration errors and the fact that the position of the robot cannot be
known perfectly. Standard discretizations do not allow theinference process to take advantage of
correlations between measurements, resulting in a loss of information that leads to noisier terrain
estimates, in turn leading to the selection of statically unstable and kinematically infeasible con-
figurations of the robot. Finally, we wish to be able to deal with a varying data density, to balance
smooth inference of the terrain against the preservation ofdiscontinuities and to make sensible
predictions about unseen parts of the terrain.

To this aim, we developed a novel, probabilistic terrain modeling approach based on a Gaussian



Figure 2: Online visualization of the scanning procedure using the controller application of our implemented system. The robot
bends its legs to acquire a 3D scan (left) and learns a probabilistic terrain regression model (right). The terrain elevations are color
coded, ranging from green/blue (lowest elevation) to pink/red (highest).

process (GP) formulation that adapts its generalization behavior to local structure in the terrain
and that can be learned efficiently using a decomposition of the model into smaller, overlapping
sub-models. As a result, our model deals with noisy data in a statistically sound manner, does not
require a discretization of space and provides estimates ofthe predictive uncertainty so that predic-
tions about unseen locations can be treated more cautiouslyin further processing. An additional
distinctive advantage of our model is that it also yields an estimate of the terrain gradient and its
uncertainty. The terrain gradient is an important feature for selecting stable foothold locations for
the legged robot.

As a second contribution of this paper, we describe how the terrain mapping approach was im-
plemented on the legged robot depicted in Fig. 1 to enable it to autonomously sense and traverse
rough terrain. Specifically, we discuss how the system was calibrated, how our locally adaptive
GP model allows us to select safe foothold locations and how to plan a path to a goal location.
Figure 2 shows screen shots of our controller application insome example situations, i.e., during
scan acquisition (left) and terrain adaptation (right). Tothe best of our knowledge, we describe
here the first legged robotics system to autonomously sense,plan and traverse a terrain surface of
the given complexity.

In the following, we first relate our approach to other works in the literature. In Sec. 3, we formalize
terrain modeling as a nonparametric regression problem, describe how to adapt to local terrain
structure and show how to increase the time and space efficiency of the approach by factorizing
the model into overlapping submodels. Sec. 4 presents our experimental evaluation on real and
simulated data and Sec. 5 documents the integration and evaluation of the terrain mapper on our
quadruped robot.

2 Related Work

Terrain modeling and map building are central tasks within robotics and other disciplines. A broad
overview of methods used for modeling terrain data was givenby Hufentobler (2004). Elevation



maps (or “elevation grids”) have been used as an efficient data structure for representing dense
terrain data (Bares et al., 1989; Pfaff and Burgard, 2005; Parra et al., 1999; Hygounenc et al.,
2004). The central idea is to partition the input space into quadratic cells of equal size and to
merge observations falling in the same cell to a single elevation value. Grids allow for constant
time access to the elevation data and the time required to update the cells is linear in the number
of measurements. Extensions to more flexible 3D representations have been addressed in recent
work (Pfaff and Burgard, 2005). Multi-level surface maps (Triebel et al., 2006) allow for modeling
of both overhanging structures and vertical objects.

The general problem of grid-based approaches is the choice of the cell size as well as how to adapt
the grid resolution locally. Choosing a too large cell size limits the representable complexity of
the underlying terrain. A small cell size, on the other hand,may lead to many under-determined
cells where uncertainties are high, or even cells without any observations, for which no prediction
can be made. Consequently, there has also been much work on filling gaps in grid maps. Dif-
ferent smoothing methods can be applied. Bi-linear and othermeans of local interpolation (Rees,
2000; Polidori and Chorowicz, 1993) are often used to preprocess dense and accurate data. Within
robotics, Fr̈uh et al. (2005), who addressed the automated acquisition ofthree-dimensional city
models, applied local interpolation to fill gaps in the acquired data. Triangle-based interpolation,
e.g. based on Delaunay tessellation (Delone and Novikov, 1993; Barber et al., 1996), is similar to
bi-linear interpolation, but can be applied more readily topoints that are not distributed equidis-
tantly.

As sensors for acquiring terrain elevation data, laser range finders are a popular choice, as they
measure the geometry of the environment directly and accurately. Kweon and Kanade (1992) used
laser sensors to sense terrain elevation and a grid model to build maps. Geometric reasoning is
used in their approach to model the uncertainty in the grid. Huber and Hebert (1999) deal with the
problem of aligning multiple scans and discuss how to handleresolution limits. Millimeter-wave
radar was used by Foessel et al. (2001) to learn occupancy grid-based terrain models.

Miller (2002) fused the measurements from a laser range finder and a calibrated camera mounted
on a helicopter to construct terrain models. Another camera-based approach was proposed recently
by Kolter et al. (2009), who equipped a quadruped robot with astereo-camera system and dealt
with the problem of how to infer a dense elevation map of the terrain from the sparse stereo-
correspondences. Popular approaches from the computer vision literature that do not require a
stereo setup are to extract 3D shape from shading (Bors et al.,2003) or from shadows (Daum and
Dudek, 1998).

An alternative approach to dealing with non-flat terrain within robotics is to assume a parametric
model of terrain types and to learn the parameters of the model to predict the vehicle dynam-
ics (Iagnemma et al., 2004). Brooks and Iagnemma (2009) proposed to learn classifiers for terrain
types and Wellington et al. (2005) presented a generative model to infer layers of terrain types
including hidden obstacles.

In parallel work to ours, Hadsell et al. (2009) developed a different kernel-based approach to
terrain reconstruction for robotics applications, that explicitly takes the constraints induced by the
perceived free space into account. By the time of writing, documentation of their work was not
available yet.



The terrain regression algorithm presented in this paper builds on the Gaussian process (GP) model
(see, e.g., Rasmussen and Williams (2006) for an overview andadditional references). Compared
to grid-based representations it has the advantage of not assuming a fixed discretization of space
and of providing a sound and direct way of estimating predictive uncertainties. The explicit model
of uncertainty that a GP provides has led to their successfulapplication in a wide range of other ap-
plications areas such as for developing positioning systems using cellular networks (Schwaighofer
et al., 2004).

Within robotics, GP models have recently become popular, for instance for measurement model-
ing (Brooks et al., 2006) or for model-based failure detection (Plagemann et al., 2007), because
they naturally deal with noisy measurements, unevenly distributed observations and they fill small
gaps in the data with high confidence while assigning higher predictive uncertainty in sparsely
sampled areas.

This work follows up on Lang et al. (2007), where we proposed the first GP-based approach to
terrain regression in robotics. This work simplifies and extends the original approach in several
respects. First, we exchanged the iterative procedure for fitting local lengthscales by an analytic
link function and second, we show how to scale to large data sets by dividing the model into a
set of overlapping submodels. We also extend Plagemann et al. (2008b) by (1) documenting the
first walk of a quadruped robot over rocky terrain using own elevation observations only and (2)
by giving additional technical details about all parts of the approach—including how to learn the
model from data in Sec. 3.1, a description of our calibrationprocedure in Sec. 5.1 and a discussion
of the individual parts in Sec. 4.5.

In a parallel line of research (Plagemann et al., 2008a), we are investigating how tojointly learn all
parameters in nonstationary Gaussian process models as opposed to decoupling the optimization of
local lengthscales from the hyperparameter search done in this work. While the joint approach has
been demonstrated to solve a number of relevant regression problems, including terrain regression
tasks, it is not ready yet to be applied to larger data sets andin time-constrained settings.

Our work builds on the nonstationary covariance function introduced by Paciorek and Schervish
(2004), see also the references in there, but several other approaches for specifying nonstationary
regression models can be found in the literature. For instance, Sampson and Guttorp (1992) map a
nonstationary spatial process (not based on GPs) into a latent space, in which the problem becomes
approximately stationary. Schmidt and OHagan (2003) followed this idea and used GPs to imple-
ment the mapping. Similar in spirit, Pfingsten et al. (2006) proposed to augment the input space
by an additional latent input to tear apart regions of the input space that are separated by abrupt
changes of the function values.

Additional approaches to nonstationary regression have been developed for the task of learn-
ing to control robotic manipulators. Approaches such as locally weighted projection regression,
LWPR (Vijayakumar and Schaal, 2000; Vijayakumar et al., 2005), the Bayesian approach by Ting
et al. (2006) and others address similar problems as the approach presented in this paper. Fur-
thermore, Kim et al. (2005), see also references in there, used mixtures of stationary Gaussian
processes with a random (Bayesian) partition model and, recently, Nguyen-Tuong et al. (2008)
proposed a distance-based measure for partitioning the data set and producing weighted predic-
tions.



Sparse approximations to GP models, see e.g. Quinonero-Candela and Rasmussen (2006), provide
a way of making the approach substantially more time and space efficient. Recently, they have
been combined intimately with the mixture of expert approach Snelson and Ghahramani (2007)
using stationary covariance functions. In principle, suchsparse approximation techniques could be
combined with approaches to nonstationary regression to build an alternative, efficient nonstation-
ary model—e.g., following Schmidt and OHagan (2003), who map the nonstationary process into
a latent space where it becomes approximately stationary. Shen et al. (2005) proposed to group
similar matrix-vector multiplications during GP learningand inference usingkd-trees to speed up
computations.

Legged robot locomotion has been studied intensively in thepast. Overviews and descriptions of
approaches can be found in Hauser et al. (2008) or Siegwart and Nourbakhsh (2004), among others.
The goal is to build versatile robots that are able to traverse uneven terrain as robustly, quickly and
easily as humans or animals do. This would enable the development of, e.g., autonomous disaster
assistant robots or versatile mobile transportation systems. The two major problems still to be
solved are (a) perception of the surrounding terrain and (b)planning and executing appropriate
motion sequences. This paper primarily deals with the perception problem (sensing, representing
and reasoning about terrain) and it gives a description of how the developed algorithms have been
integrated into a complete quadruped system that can plan and execute paths across a perceived
terrain.

3 Terrain Mapping as a Regression Problem

Traversable surfaces can be characterized by a functionf : R
2 → R, f(x) = z, wherex = (x, y)

indexes a location in the 2D plane andz denotes the corresponding terrain elevation in the direction
opposing the gravity vector. The task in terrain mapping is to recover the true elevation functionf
from a set of noisy elevation measurementsD = {xi, zi}

n
i=1. In other terms, we wish to model the

relationship between variablesxi and dependent variableszi. This is calledregression analysisin
statistics.

The most common approach for solving regression problems isto assume a parametric form off ,
e.g., linear, piece-wise linear, or polynomial and to fit theparameters to the observed data. In
this paper, we take a different approach and model the dependency nonparametrically using the
Gaussian process (GP) model [see, for example, (Rasmussen and Williams, 2006) or the references
in Sec. 2]. Gaussian processes can be seen as a generalization of the Gaussian distribution to
the space of functions. Analogously to the Gaussian distribution, which defines the distribution
of a finite-dimensional variable in terms of a mean value and acovariance matrix, a Gaussian
process defines the distribution of an (infinite-dimensional) function in terms of a mean function
and a covariance function. The relationship between the twomodels becomes apparent from the
following definition.

In the Gaussian process model,any finite setof samples{z1, . . . , zn} is jointly Gaussian dis-
tributed,

p(z1, . . . , zn | x1, . . . ,xn) ∼ N (µ, K) , (1)

with meanµ ∈ R
n and covariance matrixK. µ is typically assumed0 andK is specified in terms



of a parametric covariance functionk and a global noise variance parameterσ2
n,Kij = k(xi,xj) +

σ2
nδij. Intuitively, the covariance function describes how closely related several target valueszi are

given their corresponding input vectorsxi. For the most common choices of covariance functions,
similar input vectorsxi andxj lead to a large covariance valuek(xi,xj), which in turn leads
to more highly correlated target valueszi andzj. Thus, the covariance function can be seen as
defining the smoothness ofz w.r.t. tox.

In Bayesian terminology, the covariance functionk represents the prior knowledge about the target
distribution as it does not depend on the observed target valueszi in D. A common choice in
practice is the squared exponential (SE) covariance function

k(xi,xj) = σ2
f exp

(

−
1

2

2
∑

d=1

(xi,d − xj,d)
2

ℓd

)

, (2)

whereσf denotes the amplitude (or signal variance) andℓd is the characteristic lengthscale of di-
mensiond, i.e., thescaleof the dimension. These parameters, along with the global noise variance
σ2

n, are known as the hyperparameters of the process and denotedasΘ = (σf , ℓ, σn). Intuitively,
the hyperparameters define the smoothness of the functions modeled by the process as well as the
noise level which leads to the observed function values.

Predictions about unobserved locations can be made analytically in the Gaussian process model.
Since any set of samples from the process is jointly Gaussiandistributed, the prediction of a new
target valuez∗ at a given locationx∗ can be performed by conditioning then+1-dimensional joint
Gaussian of{z1, . . . , zn, z

∗} on the known target values of the training set{z1, . . . , zn}. This yields
a predictive Gaussian distributionz∗ ∼ N (µ∗, v∗) defined by

µ∗ = E(z∗) = k
T
(

K + σ2
nI
)

−1
z , (3)

v∗ = V (z∗) = k∗ + σ2
n − k

T
(

K + σ2
nI
)

−1
k , (4)

with K ∈ R
n×n, Kij = k(xi,xj), k ∈ R

n, kj = k(x∗,xj), k∗ = k(x∗,x∗) ∈ R and the training
targetsz ∈ R

n. Note that it is straightforward to predict an entirevectorof elevation valuesµ∗

and the corresponding uncertaintiesv
∗ instead of scalar valuesµ∗ andv∗. Details are given, for

example, by Plagemann (2008) or Rasmussen and Williams (2006).

3.1 Locally Adaptive Gaussian Processes

A limitation of the standard GP framework is the assumption of constant lengthscalesℓ over the
whole input space. Intuitively, the lengthscales describethe area in which observations strongly
influence one another. For terrain models, one would like to use locally varying lengthscales to
account for the different situations. For example, in flat plains, each terrain elevation is strongly
correlated to the elevations in its neighborhood. Conversely, in high-variance, “wiggly” terrain and
at discontinuities, the terrain elevations are correlatedover very short distances only. To address
this problem ofnonstationarity, an extension of the squared exponential (SE) covariance function
was described by Paciorek and Schervish (2004). It takes theform

k(xi,xi) = |Σi|
1

4 |Σj|
1

4

∣

∣

∣

∣

Σi + Σj

2

∣

∣

∣

∣

−
1

2

· exp

[

−(xi − xj)
T

(

Σi + Σj

2

)

−1

(xi − xj)

]

. (5)
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Figure 3: Left: The parametric functionℓ(xi) links local terrain characteristics (represented by the “tensor trace”, see text) to
lengthscales. Right table: Placing ahyper-GP(HGP) over the latent lengthscales reduces the prediction error w.r.t. toweighted
averaging(WA) for different levels of omitted data points.

Here, each input locationx is assigned alocal covariance matrixΣ and the covariance between
two targetszi andzj is calculated by averaging between the two local kernels at the input locations
xi andxj. In this way, the local characteristics at both locations influence the modeled covariance
of the corresponding target values. Note the similarity between Eq. (5) and Eq. (2). For the
(stationary) squared exponential covariance function in Eq. (2), we have constant lengthscalesℓd,
while Eq. (5) allowsvariable lengthscales contained in the matricesΣi.

We now face the question of how to adapt the latent variables{Σi}
n

i=1 to the observed data. The
related problem of adapting smoothing kernels to local image structure has been well studied by
the computer vision community. Although image processing algorithms are typically designed
for dense and uniformly distributed data, we can nevertheless use findings from the field to solve
the terrain regression task. Middendorf and Nagel (2002) present a technique for iterative kernel
adaptation in the context of optical flow estimation in imagesequences. Their approach builds on
the concept of the so calledgray-value structure tensor(GST), which captures the local structure of
an image or image sequence by building the locally weighted outer product of gray-value gradients
in the neighborhood of the given image location. Translatedto the terrain regression task, we
consider theelevation structure tensor(EST)

EST(xi) := (∇z)i(∇z)
T

i (6)

as introduced originally by Lang et al. (2007). Here,· denotes the locally weighted averaging
operator. This yields a tensor, representable as a2×2 real-valued matrix, which describes how the
terrain elevation changes in the local neighborhood of location xi. Intuitively, the local kernelsΣi

in Eq. (5) should be related to theinverseof EST(xi) to favor strong smoothing in flat areas and
little smoothing across strong edges, see also Middendorf and Nagel (2002) for a discussion. Lang
et al. (2007) present several iterative algorithms to adapttheΣi in this way. We take a more direct
approach and define

T (xi) = trace( EST(xi) ) = trace
(

(∇z)i(∇z)
T

i

)

(7)

and

ℓ(xi) =

{

a · T (xi)
−1 if a · T (xi)

−1 < ℓmax

ℓmax else
(8)



to get a single scalar representation of the terrain’s localcharacteristics at locationxi. This local
lengthscaleℓ(xi) is small in high variance terrain and large in flat parts.ℓ(xi) is bounded by
ℓmax to prevent lengthscales from going to infinity in the extremecase of noise-free, flat regions.
The parametera, which defines the proportional relationship between locallengthscales and the
inverse ESTs, is learned in parallel to the search for the GP’s hyperparameters – as described below.
Finally, we set the local kernelsΣi to the isotropic kernelsΣi = ℓ2(xi) · I (i.e., a diagonal matrix
with eigenvaluesℓ(xi)). The left diagram in Fig. 3 visualizesℓ(xi) for different parameter settings.

To be able to make elevation predictions at arbitrary locations, we need to evaluate the covariance
function at arbitrary locations and, thus, need to have local kernels at any point in the input space.
We are only able to calculate gradients and kernels directlywhere we have sufficient elevation
observations in the local neighborhood. Whereas Lang et al. (2007) use weighted averaging to
calculate kernels in regions with few or no observations, wepropose to instead put another GP
prior on the local kernels’ parameters. We call this ahyper-GP, since its predictions are used as
hyperparameters for the GP that models the elevations. The notation for the hyper-GP as well as
for the elevation GP is visualized in Fig. 4.

Figure 4: The notation used in this paper. The left diagram depicts a 1D elevation function, which maps locationsxi to elevations
f(xi) and the noisy observationszi. The right diagram visualizes the corresponding (latent) lengthscale function, which links
locationsxi to lengthscalesℓi.

The hyper GP represents the functionx → ℓ(x) for the lengthscales of the elevation process. As
the lengthscales have to be positive, we transform its training data set into log space. The hyper
GP itself uses an isotropic lengthscaleℓh, which can be treated as an additional hyperparameter
of the model. At inference time, we calculate the most likelylengthscale given by the mean pre-
diction of the hyper GP and use the resulting kernels for elevation predictions of the elevation GP.
The improvement in elevation prediction using the hyper GP (HGP) with respect to the weighted
averaging (WA) approach of Lang et al. (2007) is shown in the table in Fig. 3. We give the results
for three different fractions of points removed from a representative training set. As can be seen
from the measured values, HGP leads to a large reduction in mean squared prediction error (76.2%,
68.4% and 44.8% for the three different data densities respectively).

Learning our model from given training data consists of two parts: (1) learning a small number of
system parameters [e.g., the global noise levelσn or the factora in the link functionℓ(x)] and (2)
analytically calculating local lengthscales according toEq. (8) and the actual GP model according
to Eq. (3) and (4). In our system, the first part is implementedas an outer loop, in which the
system parameters are adapted using random sampling. An alternative way would be to derive the
gradient of the models data likelihood w.r.t. the system parameters and to apply gradient descent-
based optimization. The general schema of such an approach is outlined in (Plagemann et al.,
2008a). For this work, we chose the sampling-based variant,since it is easier to implement and
it has to be executed only once, whenever drastic changes to the operational environment occur.
Part two of the learning procedure involves just basic linear algebra and the inversion of the GPs
covariance matrix. Since the latter can be a computationally expensive operation for large matrices,



we describe in the following how to divide a single, large model into several smaller parts—which
leads to a substantial reduction in time and space complexity.

3.2 Model Tiling

Learning a Gaussian process model involves inverting then×n covariance matrixK [see Eq. (3)],
wheren is the number of data points in the training set, no matter which covariance function
is used. This implies a cubic asymptotic time complexity, which limits the applicability of the
standard model to small and medium-sized data sets. It is therefore not surprising that much
research has been dedicated to the question of how to achievesparse approximationsof GP models
that are (a) substantially more time and space efficient and (b) retain a high prediction accuracy
(see Sec. 2 for an overview of approaches).

For terrain regression, where the space is typically explored in an incremental manner, we propose
to use an ensemble of overlapping GPs, where every sub-modelis assigned to a specific region in
the input space. Mixtures of GPs were first introduced by Tresp (2000) as a variant of the general
mixture of experts model of Jacobs and Jordan (1991). This allows us to create, update and discard
submodels—which we callmodel tiles—on the fly as needed. An efficient 2D indexing function is
used to determine for every surface point the set of affectedtiles.

The tiling approach is motivated by the insight that our kernel functions are inherently local (the
standard squared exponential as well as its nonstationary extension). Thus, if the ”support region”
of the kernel (i.e., where it is most active) is appropriately smaller than the tiles, there is a minimal
loss of model precision. This can be shown nicely using the concept of theequivalence kernelfor
Gaussian process regression (Sollich and Williams, 2004).Under this view, the GP mean predic-
tions, Eq. (3), are expressed as dot productsµ∗ = h(x∗)T

z of the vector of target valuesz and
weight vectorsh(x∗). Here, the weight functionh(x∗), aka the equivalent kernel (EK), depends
both on the query locationx∗ and on the covariance functionk. Due to the inversion of the covari-
ance matrix in Eq. (3), the EK is not straightforward to calculate even for the simple case of the
stationary squared exponential [see Eq. (2)]. Sollich and Williams (2004) derive an approximation
for this case, which shows that the EK is strongly localized and, thus, disregarding target valuesz
that lie far away from the query pointx∗ introduces a minimal error forh(x∗)T

z. This observation
is indeed the basis for many Gaussian process approximations, such as that of Shen et al. (2005).
Numerical experiments revealed that our nonstationary covariance function as defined in Eq. (5)
is stronger or equally localized compared to the stationarysquared exponential components it is
composed of. Thus, we can safely apply the tiled approximation outlined above to both the latent
lengthscale process as well as to the nonstationary elevation process. For ease of implementation,
we use the same tiling and indexing for both processes—but this is not necessary in general.

Concretely, we assume rectangular tiles that overlap with their neighboring tiles by a fractionw
of their side length. The exact placement and size of the tiles has little influence on the regression
results, as long as reasonable bounds are met. These bounds are explored and evaluated in the
experimental section. In principle, the size of the individual tiles could be linked analytically to
the lengthscales of the covariance function at the respective locations and this is a topic of ongoing
research. In this work, we treatw as a constant parameter. For a prediction at input locationx, we
determine the GP segment which we consider most likely to have the best approximation forx,



Figure 5: Left: Real terrain board used for evaluation. The side lengths of the board are approximately 60 cm. Right: The ground
truth elevation structure of the terrain known from manufacturer specifications (in meters).

i.e., the segment which has a center that is the shortest Euclidean distance tox.

The asymptotic time complexity of the tiled GP approach can be estimated as follows. Let us
assume (1) that every segment contains at most a fractionc of all training datan and (2) that
segments overlap by a fractionv of their inputs. Every segment then uniquely coverscn− cnv =
cn(1− v) of the training data, which makes it necessary to usen

cn(1−v)
= (c(1− v))−1 segments to

cover the whole input space. Since the complexity of building a single segment GP isO ((cn)3),
the complexity of the whole model turns out to beO((c(1 − v))−1 · (cn)3) = O(c2(1 − v) · n3).
If the segment sizec is now set anti-proportionally ton (which corresponds to a constant segment
size) and the segment overlapv is held constant, the overall complexity is linear inn.

In Sec. 4.3 of the following experimental evaluation, we show that the tiles can be resized to
trade off time efficiency against prediction accuracy—depending on the requirements in the given
application.

4 Experiments

The goal of this experimental evaluation and the following case study on legged robot locomotion
in Sec. 5 is to demonstrate the usefulness of the approach formodeling real terrain data. We
show that our locally adaptive Gaussian process model is more accurate than conceptually simpler
approaches such as stationary GPs or elevation grid maps. Weadditionally analyze the benefits of
our tiling approach introduced in Sec. 4.3 with respect to runtime and accuracy performance.

As the evaluation metric, we consider the mean squared prediction error (MSE), which is defined
as MSE:= m−1

∑m

i=1(f(xi)−µi)
2 ,wherem is the number of test points,µi denotes the predicted

mean elevation at locationxi andf(xi) is the respective true elevation. The following experiments
were conducted in a batch setting, that is, full data sets were recorded and then randomly split into
training and test sets, respectively. As discussed in Sec. 4.5, our algorithm is not restricted to the
batch setting in principle.



In the first experiment, in which we compare to the standard Gaussian process model, we
additionally consider the negative log predictive density(NLPD). This measure is defined as
NLPD := m−1

∑m

i=1 log pmodel(f(xi)|xi), wherepmodel(·|xi) stands for the predictive distribution
at locationxi andf(xi) is the true elevation value. In contrast to the MSE, the NLPD also takes
the spread of the predictive distribution into account and,thus, arguably is a better measure for
comparing predictive distributions. However, since the MSE is more widely used in the literature,
since it is easier to interpret and since the NLPD is not available for simpler benchmarks such as
bi-linearily interpolated grids, we use the MSE as the primary measure in the remainder of the
section.

All experiments were conducted using a C/C++ implementation on a Linux desktop PC with a
single 2 GHz CPU. The linear algebra subroutines were optimized using the UMFPACK pack-
age (Davis, 2004).

4.1 Adapting to Local Terrain Structure

In the first experiment, we evaluated the performance of the GP terrain regression model using
the standard squared exponential (SE) covariance functionagainst our nonstationary covariance
function with local lengthscale adaption. To this aim, we considered the rocky terrain depicted in
the left image in Fig. 5 and simulated 2 500 laser observations from a single viewpoint using the
known elevation values depicted in the right diagram in the same figure. We uniformly selected
4 350 points from the true terrain for evaluation. We then conducted Monte Carlo search in the
parameter space of the covariance functions and on the parameters of the adaption procedure. In a
preliminary run over 34 000 configurations, we determined general ranges for the parameters and
in a secondary search, we evaluated 10 000 configurations in the predetermined ranges. A scatter
plot of the results in terms of MSE and NLPD is given in the top left diagram in Fig. 6.

The (red) boxes in the diagram depict the error values for randomly sampled parameter vectors
in the standard GP model and the (cyan) crosses show the results for our nonstationary extension,
respectively. The goal is to minimize the MSE (error of the mean predictions) and also the NLPD
(which considers the entire predictive distribution). It can be seen from the diagram that the non-
stationary covariance function is able to achieve better MSEs of predictions w.r.t. the ground truth
and also better NLPDs. The improvements in terms of NLPD is notable in particular—for the nor-
mal distribution, an NLPD difference of 0.5 corresponds to an absolute error of up to one standard
deviation, which is a substantial mismatch.

To give a visual impression of these results in terms of regression functions, we plot the predictive
distributions for three different settings in Fig. 6. The top right panel shows a cut through the
regression surface obtained using our locally adaptive GP model. The x-axis points to the right,
elevations are plotted upwards and the y-coordinate is fixed. On the secondary axis (scale on
the right-hand side of the diagram), we give the adapted local lengthscales and the respective
tensor traces. As can be seen from the plot, the GP fits the observed data well and produces a
large predictive uncertainty in un-observed areas. This result corresponds to the optimal parameter
vector marked by the large black cross in the top left diagramin Fig. 6.

The two lower panels in Fig. 6 show the same cut for the standard Gaussian process model. The
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Figure 6: Top left: The Monte Carlo search for the stationary GP’s parameters (red boxes) and for the nonstationary GP’s (bright
crosses). The selected optima, which minimize the MSE as well as the NLPD error, are marked by a large black box and by a
large black cross, respectively. Top right: Regression model learned using our locally adaptive GP approach. Here, we visualize a
vertical cut through the terrain surface (y is fixed,x varies on the horizontal axis in meters, terrain elevation on the vertical axis, in
meters). We also give the adapted lengthscales below the curve using a second vertical axis. Bottom: Regression results obtained
using the standard, stationary GP model for two different settings of the constant lengthscale parameter (left: large lengthscale,
right: small lengthscale).

left panel shows the results for a comparably large, constant lengthscale parameter (the respective
errors are marked in the upper left diagram by a large black box), while a smaller lengthscale
parameter is used for the right-hand panel. It can be seen from the two plots that none of these
settings yields the tight data fit of the locally adaptive model in the upper right panel. This is due
to the fact that a GP with a stationary covariance function cannot fit all parts of a function (e.g.,
smooth, wiggly and discontinuous ones) well.

4.2 Alternative Adaptive Models on Benchmark Data

In Sec. 3.1, we proposed to adapt the local lengthscales depending on the local terrain gradients.
We evaluated in a second experiment, how this compares to other regression approaches which also
adapt their scales locally. It should be noted that there is no ”correct” lengthscale, which can be
compared against as the ground truth. Rather, the lengthscales are latent variables (or parameters,
depending on the viewpoint) in our model. Other models that have similarscalevariables may set
these to different values to achieve optimal performance. Thus, we evaluate theprediction errors
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of the different approaches on an independent test set to assess how well the data is modeled.

As the test data set, we use thesinebumpsscenario depicted in the left diagram in Fig. 7. This is
a benchmark data set frequently used to evaluate nonstationary regression approaches (Dimatteo
et al., 2001; Paciorek and Schervish, 2004). It consists of asine functiony = sin(x) and several
“bumps” generated by an additive term2 · exp(−30 · (x− c)2)). For each of 30 independent runs,
we generated 600 training points and 200 independent test points per input space unit.

The different models compared were our terrain-gradient based, tiled adaptation scheme (denoted
asLA-GP A), locally weighted projection regression,LWPR(Vijayakumar et al., 2005) and a dif-
ferent, non-tiled, locally adaptive GP model,LA-GP B(Plagemann et al., 2008a). The regression
results in terms of the average time requirements for learning and prediction (in seconds) and mean
squared prediction errors are given in the table in Fig. 7; standard deviations are given in brackets.

For LWPR, we optimized the parameters as suggested in Klanke and Vijayakumar (2008). Con-
cretely, we searched for initial valued for the distance metric D by increasing the parameter in
10% steps from 1 000 to 100 000 and found the optimum at approximately 17 500. Afterwards,
we searched for a learning rate parameterα in 10% steps between 0.01 and 100 and found the
optimum at approximately 0.66.LA-GP Buses the same nonstationary covariance function as pro-
posed in this paper. Instead of linking the local lengthscales to the function gradient, it treats them
as free parameters, which are optimized w.r.t. the data-likelihood of the training set. As expected,
this approach can fit the data better—but it is also more demanding computationally and has not
been made scaleable to larger data sets yet (e.g., using sparse approximations or model tiling as
proposed in this paper).

4.3 Splitting the Terrain into Overlapping Sub-Models

We evaluated the benefits of segmenting the input space to a set of overlapping tiles. To this aim, we
applied different tile sizes to the terrain model analyzed in the first experiment (see Sec. 4.1). We
measured the prediction accuracy in the innermost0.0025m2 of a tile while linearly increasing the
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tile area and thereby also the amount of training data of the associated GP. The first three diagrams
in Fig. 8 give a visual impression of the effects that different tile sizes have on the regression
function in its center. Increasing the tile size from0.03m2 (top left) to0.056m2 (bottom left) does
not lead to a notable improvement. On the other hand, settingthe segment size too small (e.g.,
0.0025m2 in the top right diagram) leads to an increased prediction error. See also the caption of
the figure.

The quantitative relationship of the prediction error and time requirements for training depending
on the size of the tiles is given in the lower right diagram in Fig. 8. It can be seen that with
an increasing tile size, the prediction error (MSE) decreases quickly and almost converges as the
area reaches0.03m2. The runtime, however, continues to grow cubically with thesegment size
beyond this point. It is relatively straight-forward to construct a joint cost function that includes
the prediction error and the time requirements and which weights both quantities depending on the
requirements of the application.

The runtime requirements for learning from approximately 100 000 points using our C++ imple-
mentation are on the order of 1.5 seconds with overlapping stationary GPs and 3 seconds with
overlapping nonstationary GPs. It is not possible to process data sets of this size with regular GPs
that do not utilize sparse approximations.



Figure 9: Our quadruped robot scans the surface of a terrain board by bending its legs to sweep the scan line of a back-mounted
laser range finder over the terrain surface.

Figure 10: Left: Top view on the set of elevation measurements obtained by the real robot (the true terrain is depicted in Fig. 5).
Right: A grid-map approximation of this data set. The elevation values are color-coded ranging from purple/dark (0cm) to yel-
low/bright (approx. 7cm). .

4.4 Mapping Accuracy on Real Terrain

We evaluated our terrain model with a real quadruped robot ina situation similar to the one depicted
in Fig. 9. The robot, calledLittleDog, was developed by Boston Dynamics. We have equipped the
robot with a Hokuyo URG laser scanner. A high-resolution motion capture system, the Vicon
MX, yields estimates of the robot pose using measurements from reflective markers attached to the
robot’s body. The laser sensor is mounted to the back of the robot in a25◦ angle facing towards the
ground so that 3D range scans can be recorded by executing a tilt motion using the front and rear
legs. The evaluation in this section concentrates on the question of how accurately the elevation
structure of the terrain board can be recovered from a singlesuch 3D scan.

We evaluated our locally adaptive GP approach using scans ofa rocky terrain surface acquired
by the quadruped robot against a known ground-truth model ofthe terrain acquired using a high-
accuracy metrology system. Figure 5 depicts the true elevation structure of this terrain (see the
caption for details). The left diagram in Fig. 10 shows a top view on the raw set of laser endpoints
that were acquired by the robot when it executed a tilt motion. It can be seen from the uneven
distribution of points that parts of the terrain are not sampled densely due to occlusions and a larger
distance to the sensor location (which was located towards the bottom right w.r.t. the diagram).

The state-of-the-art way of representing such data for further processing, such as path planning, is
to build an elevation grid map (see Sec. 2 for a discussion). Aprobabilistic elevation grid map is
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Figure 11: Mapping results using the bi-linearily filled elevation grid model (left) and the mean predictions of our adapted GP
model (center). The predictive uncertainties of our model are visualized in the right diagram (discretized to three classes for better
readability). These uncertainties correspond to the errorbars in the slice-view visualization in Fig. 6.

built by discretizing the x-y space and by fitting 1D Gaussians to the elevation samples falling into
the grid cells respectively. The result of this operation isdepicted in the right diagram in Fig. 10.
We compare the accuracy of this model as well as its bi-linearly filled completion to our adapted,
tiled Gaussian process model. Alternative, non-sparse regression models were not able to deal
with the amount of data in this test (approx. 100 000 points) and the standard, stationary Gaussian
process model was not competitive due to the problems discussed in Sec. 4.1.

Bi-linear interpolation is the extension of linear interpolation to bi-variate functions. The result
of such an operation applied to an incomplete elevation gridmap is depicted in the left diagram
in Fig. 11. The results obtained by our locally adapted GP approach are depicted in the middle
diagram. Here, we plot the mean predictions for terrain elevations. The predictive uncertainties
of our model are visualized in the right-most diagram in thisfigure. For better visibility, we
discretized the uncertainties to three classes: high, medium and low predictive uncertainty. These
estimates can be utilized in the cost function of a path planner as described in Sec. 5.3 to avoid
uncertain areas.

We quantitatively compared the prediction errors of our locally adapted GP model to the baseline
elevation grid model models and to a bi-linearily interpolated, dense grid. In Fig. 12, we give
the squared error of elevation predictions averaged over 10000 samples drawn randomly from the
terrain. The error-bars give the standard deviations of theindividual sample sets. To assess the
influence of the grid resolution for the two grid-based models, we tested six different numbers of
cells per grid dimension (x-axis). Since the standard elevation grid does not make predictions in
occluded or less densely sampled areas, its performance wasevaluated on its occupied cells only.

It can be seen from the diagram that our locally adapted GP model predicts the true terrain elevation
as accurately as the elevation grid at its optimal resolution. More importantly, the GP model
achieves this accuracy averaged over all test points, whilethe grid model is evaluated on occupied
cells only.
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4.5 Discussion

In Sec. 5, we will describe our integrated system for a quadruped robot that scans the terrain, plans
a path to a goal location and executes the plan autonomously.Before that, we discuss the basic
properties of the locally adapted, tiled GP model as they became apparent from this part of the
evaluation.

As a first remark, no algorithm can predict the elevation at unseen locations perfectly correct and,
thus, a prediction error of zero is not attainable in general. Rather, the goal is to minimize the
prediction error as much as possible in different situation: (1) in densely sampled ares, (2) in
areas containing some measurements and (3) in unobserved areas. While all reasonable mapping
approaches output a high model uncertainty in unobserved areas (including probabilistic elevation
grids, Gaussian processes, etc.), the behavior in areas with a high or a medium sampling density
is quite different. Stationary Gaussian processes, on the one hand, cannot represent natural terrain
with its locally changing smoothness well, even if it is sampled densely (see, e.g., the lower plots
in Fig. 6). Elevation grids, on the other hand, cannot deal with medium or low sampling densities
well, because they either contain a large number of empty cells at a high grid resolution, or they
introduce a strong bias by averaging over too large areas at alow grid resolution.

Our locally adaptive, tiled GP model can be seen as combiningthe benefits of elevation grids
and Gaussian processes. The nonstationary covariance function allows the model to adapt well to
densely sampled parts of the elevation function, while the tiled approximation avoids the cubic run-
time complexity of the standard Gaussian process model. Compared to grid maps, the GP-based
approaches provide a sound way of extrapolating the observed parts of the elevation function to
unobserved locations and of estimating the respective predictive uncertainty. To achieve maximal
robustness in practice, a system would use the uncertain predictions only to guide the search for
potential paths towards promising areas. The critical decisions, however, such as actual foot place-



ments, would be based on the most recent and trustworthy sensor measurements. In our approach,
this can be achieved by continuously updating the model as data arrives. There exists a large body
of work on the topic of online updates in Gaussian process models [see, e.g., Csato and Opper
(2002)]. Such an extension is applicable in principle, but has not been implemented in the current
system. As such, our current implementation supports online adaptation only on the tiling level:
new tiles are created on-the-fly as needed, but existing, already instantiated and learned tiles are
not updated with newly arriving data.

A certain limitation of the current system is that it assumesthat the true terrain elevation is a well-
definedfunctionof 2D locations. This means that overhanging structures, which would violate this
assumption, cannot be dealt with directly. The two most promising directions for dealing with such
situation are (1) to take a hybrid approach in which the environment is represented by a discrete
set of 2D terrain models, each of which is placed at an arbitrary location in 3D space, or (2) to
consider mixtures of Gaussian process models along the lines of, e.g., Tresp (2000) or Rasmussen
and Ghahramani (2002).

Another possible extension to the current system would be toadapt the size of the tiles to the local
situations, e.g., depending on the local data density or on the adapted local lengthscales. In this
work, we chose a conservative global partitioning, which can be implemented more easily.

5 Case Study: Legged Robot Locomotion

In this section, we describe how the proposed terrain model was integrated into our quadruped
robot to enable it to scan a terrain surface, select footholds and plan a trajectory to a goal location
that is collision-free and statically stable.

The advantages of using legged robots over traditional wheeled robots are the ability to move in
rough and unstructured terrain and to step over obstacles. Without accurate knowledge of the
terrain, these advantages cannot be realized as motion planners require a model of terrain height
for computing stability and avoiding collisions. Our overall planning approach is an adaptation of
the probabilistic roadmap algorithm (Kavraki et al., 1996). Our simplified model of the quadruped
robot is a body with four two-link legs and point feet. The planning algorithm is a search for
motions of single legs from static stance to static stance that maintain static stability over uneven
terrain. We first randomly sample a set of potential footholds across the terrain, which are used to
generate a graph of potential “stances”, that is, statically stable and kinematically feasible positions
of the robot. Graph search is then used to find a sequence of stances from the start to the goal; the
sequence of stances can then be converted to series of planned joint angles.

5.1 Calibration

One of the critical issues in most robotic systems and in our setup particularly, is the calibration of
the individual sensors. Already small errors in the transformation between the laser sensor and the
robot, for instance, can lead to large inconsistencies in the collected data set. Note that this paper
does not address the problem of simultaneous localization and mapping. Rather, we deal with the
terrain inference problem here and assume reasonably accurate knowledge of the robot’s pose.
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Figure 13: Left: The physical setup used to calibrate the robot. Right: Convergencebehavior of the calibration error.

The specifics of the Vicon system used to track the robot’s position required us to automatically
infer the time offsets between the laser data and pose measurements and to calculate the six de-
gree of freedom transformation between a known position of the robot and the actual laser sensor
position at the same time. To compute both these calibrationquantities, we recorded a 3D range
scan of three orthogonal boards placed in front of the robot (side lengths approximately 1m). The
physical setup is depicted in the left image in Fig. 13.

We optimized the seven parameters of the transformation (6Dlaser configuration w.r.t the robot
and a 1D time offset) in a sampling-based fashion similar to simulated annealing (Kirkpatrick et al.,
1983). Here, random parameter samples are evaluated using apredefined objective function. In our
setting, this is the average squared error of the laser end points relative to the known calibration
pattern, that is, the board surfaces. To be more robust against wrong data associations caused
by strong miscalibration in the beginning of the optimization procedure, we discard laser end
points that fall close to the boundaries of the boards. In each iteration, we sample a new parameter
vector from a Gaussian distribution centered at the currentoptimum. The variance of this Gaussian
(which is comparable to thetemperaturevariable in simulated annealing) defines from which area
new parameter samples should be drawn around the current optimum. This variance is reduced by
a fixed delta after each iteration. By decreasing the temperature level gradually over time, accurate
calibration parameters are typically obtained within 300-800 iterations. The convergence of the
calibration error during a typical run is visualized in the right diagram in Fig. 13.

5.2 Sampling Footholds

Let us assume that the planning problem is to find a motion planthat is essentially a futtock
(midline) motion across the uneven terrain from the start position to the goal. This assumption
will allow us to simplify the sampling to examining potential footholds around the straight line to
the goal, selecting footholdsφ = (x, y, z) according to some regular discretization around the line
of intended motion. We do this without loss of generality; wecan easily support more complex



Figure 14: Parts of a plan generated by our algorithm including the underlying cost function, which depends on the terrain gradient
and the uncertainty about elevation predictions estimated by the Gaussian process model. The red line (filled boxes) depicts the
trajectory of the center of body, the other lines (stars and empty boxes) visualize feet motions. The cost function is color coded
ranging from black (low costs) to yellow/light-gray (high costs). Axis dimensions are given in meters.

scenarios by choosing different sampling strategies. The sampling problem is outside the scope of
this paper but has been discussed by Hsu et al. (2005) and others.

Each sampled foothold is evaluated with respect to a cost function and rejected if the expected cost
is above some threshold. The cost function may consist of many features including terrain elevation
and roughness. In this work we considered only the uncertainty in the terrain model (i.e., the GP
predictive uncertainty) at the sampled footholdφ and the terrain gradient (i.e., slope). The terrain
slope can be calculated analytically from the learned GP, which is an additional advantage of the
Gaussian process approach. An example of a cost function including a set of selected footholds
and a path is given in Fig. 14.

5.3 Planning with Stance Graphs

We next generate feasible stances of the robot from the discrete set of footholds. A stance is an
assignment of each footi to a foothold,φi = (xi, yi, zi), such that it is kinematically feasible for
the robot to place its feet at each of the four footholds and remain statically stable. Note that de-
termining whether a stance is feasible or not is not directlycomputable from a set of foot positions
because the feet do not provide a unique description of the pose of the robot. The robot has 18 de-
grees of freedom total: six degrees of freedom of the center of the body(x, y, z, roll, pitch, yaw)
and the three joints(hipx, hipy, knee) in each leg. Under the assumption that the positions of the
feet are fixed, the feet constitute 12 constraints, leaving six unconstrained degrees of freedom, cor-
responding to the position of the center of body. A stancesi is therefore an assignment of feet to
footholdsφ1..4 and a selection of a center of body positionξ.

Given an assignment of the center of the body position for a set of foot positions, the known
kinematics can be used to recover the joint angles of the legsand determine if the pose is consistent
with the dimensions of the leg links and the limits on the joint angles. Given knowledge of the joint
angles and that the stance is kinematically feasible, the center of mass can then be determined; if
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Figure 15: An example stance graph generated from the set of foothold locations. Each stance node (yellow) is connected to four
foothold nodes (blue). Each two connected stance nodes have three stance legs in common.

the projection of the center of mass onto the ground plane lies outside the support polygon (the
convex hull of the four feet on the ground plane), then the stance is not statically stable and the
robot will fall.

In assigning the position of the center of body for a given setof foot positions, we would ideally
choose a center of body that provides static stability. Unfortunately, no closed form solution exists
for finding a feasible and stable center of body and the problem is in general non-convex. We
therefore use a heuristic search strategy around the centroid of the support polygon. If none of the
sampled centers of body provide a kinematically feasible and stable solution to the robot position
given the foot positions, then the foot positions are rejected as an infeasible stance.

The feasible stances constitute nodes in a stance graph, to which we then add edges between pairs
of stancessi and sj when a feasible motion exists to transform the robot from thestart stance
si (foot positions and center of body) to the end stancesj (see Fig. 15). This problem is also
underdetermined, in that an arbitrarily complex motion maybe required to move from one stance
to another. We therefore simplify this problem to consider motions consisting of a stance phase,
during which the robot shifts its center of body to remain stable while stepping and a foot swing
phase during which a foot is moved from one foothold to another.

Once the stance graph has been built, we use standard breadth-first search to find the shortest fea-
sible sequence of stances from the start stance to a goal stance that gives a center of body position
with someǫ of the desired goal position, in practice, combining the search process with the stance
graph generation. Additionally, we add a gait-order constraint, so that the plan must consist of a
well-formed gait in which footi is followed by footi + 1 mod 4. By augmenting each stance
variable with an additional foot-ordering variableψ, this gait-ordering constraint dramatically im-
proved the planning speed. Finally, we also use a hash table to prune the search, such that if
two different routes are found to the same stance nodes, then the search along the longer path is
terminated. The full planning algorithm is given in Algorithm 1.



Algorithm 1 The Planning Process.
Require: Terrain model, start stances0 and goalxg.

Sample footholdsΦ using terrain model
InitializeQ← s0
while Q is not emptydo
s← popQ
for all φ do
s′ ← s
Update position of foot to move,φ(ψ(s′))← φ in s′

Update foot to move,ψ(s′)← ψ(s′) + 1 mod 4
Search for new center of body positionξ(s′)
if ||ξ(s′)− xg|| < ǫ then

return Parents[s′].
end if
if ξ(s′) existsthen

Set parent,π[s′] = s
PushQ← s′

end if
end for

end while
return nil

5.4 Terrain Mapping and Path Planning

In this section, we describe an evaluation of our probabilistic terrain model in conjunction with the
described trajectory planning algorithm. The first experimental setup was to sample 1 000 random
starting locations in front of the terrain board depicted inFig. 5 and to pick corresponding goal
locations behind it. The resulting paths were approximately two meters long, starting in a flat area
and leading over the terrain board to another flat area behindit. Concretely, the lateral offsets
(y-coordinate) of the start and end locations w.r.t. a straight trajectory over the terrain board were
sampled from a uniform distribution over [-10 cm, 10cm].

For each of the location pairs and each of three alternative terrain mapping algorithms (our locally
adaptive GP approach, the elevation grid and the interpolated elevation grid), the planner generated
a set of footholds and searched for the best path towards the goal location. We then evaluated (1)
the maximal path length that could be constructed given the kinematic constraints of the robot and
(2) the errors of the elevation predictions at the selected foothold locations. An example plan and
the cost function computed from the underlying terrain model are depicted in Fig. 14

Fig. 16 summarizes our results. The left bar plot shows the maximal length of generated plans and
the right plot gives the mean squared errors (scaled by10−3) of elevation predictions at the planned
footholds. It can be seen from the left diagram that it was always possible to plan the maximal path
of 2 meters using the interpolated grid and the locally adapted GP model. Using the sparse grid,
however, the plans never exceeded a length of 1.6 meters, which is not surprising given the large
number of unknown cells which prohibit foot placements. As can be seen from the the mean
squared error values in the right diagram, the locally adapted GP model better predicts the true
terrain elevations at the chosen foothold locations than the interpolated grid model, which means
that there is a lower risk of failure when executing these plans. Finally, Fig. 17 shows snapshots
from a video documenting our real robot traversing the terrain board using the Gaussian process
model learned from own elevation measurements. Figure 18 gives the corresponding trajectory
taken by the robot during an autonomous walk over the terrainboard in this experiment.



Figure 16: Evaluation of 1 000 plans generated using the different terrain models. The left bar plot shows the maximal length of
generated plans and the right plot gives the mean squared errors (scaled by10−3) of elevation predictions at the planned footholds.

6 Conclusions and Outlook

In this paper, we presented a novel, probabilistic terrain mapping approach based on nonstationary,
tiled Gaussian processes. Our system balances smoothing against the preservation of structural
features and it is capable of accurately predicting elevations in the presence of noise and it also
estimates the uncertainty of its predictions. As an application scenario, we considered the terrain
mapping problem for a legged robot equipped with a laser range finder. We document the key parts
of an implemented system—including physical setup, calibration, foothold selection and trajectory
planning—that was able to traverse a rocky terrain using ownrange measurements only.

In the future, we plan to apply alternative ways of learning the nonstationary GP model (Plagemann
et al., 2008a) and to evaluate the difference in modeling accuracy. We would also like to address the
more general SLAM problem, in which the robot does not assumeknowledge of its own position.
Future work could also consider a reinforcement learning variant of our foot trajectory planning
along the lines of Neumann et al. (2007) using specific rewardfunctions to learn obstacle avoid-
ance or stable and energy-efficient movements. Furthermore, we would like to extend our model
towards online model updates beyond the existing capabilities of adding and exchanging entire
model segments and we intend to evaluate whether variable segment size would lead to additional
benefits.
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Figure 17: Snapshots of a video documenting the walk over the terrain using the learned terrain model from own elevation obser-
vations (from top left to bottom right).
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