3 | An Introduction to
Relational Databases

3.1 Introduction

As explained in Chapter 1, the emphasis in this book is very much on the relational
approach. In particular, the next part of the book, Part II, covers the theoretical founda-
tions of that approach—namely, the relational model—in depth. The purpose of the
present chapter is just to give a preliminary and very informal introduction to the mate-
rial to be addressed in Part II (and to some extent in subsequent parts also), in order to
pave the way for a better understanding of those later parts of the book. Most of the
topics mentioned will be discussed again more formally, and in much more detail, in
those later chapters.

3.2 Relational Systems

We begin by defining a relational database management system (“relational system”
for short) as a system in which, at a minimum:

1. The data is perceived by the user as tables (and nothing but tables); and

2. The operators at the user’s disposal—e.g., for data retrieval—are operators that
generate new tables from old, and those operators include at least SELECT (also
known as RESTRICT), PROJECT, and JOIN.

This definition, though still very brief, is slightly more specific than the one given
in Chapter 1. .

A sample relational database, the departments-and-employees database, is shown
in Fig. 3.1. As you can see, that database is indeed “perceived as tables” (and the mean-
ing of those tables is intended to be self-explanatory). Fig. 3.2 shows some sample
SELECT, PROJECT, and JOIN operations against that database. Here are (very loose!)
definitions of those operations:

m The SELECT operation (also known as RESTRICT) extracts specified rows
from a table.
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DEPT DEPT# DNAME BUDGET
D1 Marketing 10M
D2 Development 12M
D3 Research 5M
*
EMP EMP# ENAME DEPT# SALARY
E1 Lopez | D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito | D2 35K

FIG. 3.1 The departments-and-employees database (sample values)

s The PROJECT operation extracts specified columns from a table.

The JOIN operation joins together two tables on the basis of common values in a
common column.

Of the three examples, the only one that seems to need any further explanation is
the JOIN example. First of all, observe that the two tables DEPT and EMP do indeed
have a common column, namely DEPT#, so they can be joined together on the basis of

SELECT (RESTRICT): Result: DEPT# DNAME BUDGET
DEPTs where BUDGET > 8M D1 Marketing 10M
D2 Development 12M
PROJECT : Result: DEPT# BUDGET
DEPTs over DEPT#, BUDGET D1 10M
D2 12M
D3 5M
JOIN:
DEPTs and EMPs over DEPT#
Result: | DEPT# DNAME BUDGET | EMP# | ENAME SALARY
D1 Marketing 10M | E1 Lopez 40K
D1 Marketing 10M | E2 Cheng 42K
D2 Development 12M | E3 Finzi 30K
D2 Development 12M | E4 Saito 35K

FIG. 3.2 SELECT, PROJECT, and JOIN (examples)
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common values in that column. That is, a given row from table DEPT will join to a
given row in table EMP—to produce a new, wider row—if and only if the two rows in
question have a cornmon DEPT# value. For example, the DEPT and EMP rows

DEPT# DNAME BUDGET EMP# ENAME DEPT# SALARY

Dl Marketing 10M El Lopez Dl 40K

(column names shown for explicitness) can be joined together to produce the result row

'DEPT# | DNAME BUDGET | EMP# ENAME SALARY

D1 Marketing 10M | E1 Lopez 40K

because they have the same value, D1, in the common column. The set of all possible
such joined rows constitutes the overall result. Observe that the common (DEPT#)
value appears just once, not twice, in each result row. Observe too that since no EMP
row has a DEPT# value of D3 (i.e., no employee is currently assigned to that depart-
ment), no row for D3 appears in the result, even though there is a row for D3 in table
DEPT. \

One point that Fig. 3.2 clearly illustrates is that the result of each of the three oper-
ations is another table. This is the relational property of closure, and it is very impor-
tant. Basically, because the output of any operation is the same kind of object as the
input—they are all tables—so the output from one operation can become input to-an-
other. Thus it is possible (for example) to take a projection of a join, or a join of two
restrictions, etc., etc. In other words, it is possible to write nested expressions—i.e.,
expressions in which the operands themselves are represented by expressions, instead
of just simple table names. This fact in turn has numerous important consequences, as
we will see later (both in this chapter and in many subsequent ones).

Note: When we say that the output from each operation is another table, it is very
important to understand that we are talking from a conceptual point of view. We do not
necessarily mean to imply that the system actually has to materialize the result of every
individual operation in its entirety. For example, suppose we are trying to compute a
restriction of a join. Then, as soon as a given row of the join is constructed, the system
can immediately apply the restriction to that row to see whether it belongs in the final
result, and immediately discard it if not. In other words, the intermediate result that is

. the output from the join might never exist as a fully materialized table in its own right
at all. As a general rule, in fact, the system tries very hard not to materialize intermedi-
ate results in their entirety, for obvious performance reasons.

Another point that Fig. 3.2 also clearly illustrates is that the operations are all set-
at-a-time, not row-at-a-time; that is, the operands and results are all entire tables, not
just single rows, and tables contain sets of rows. For example, the JOIN in Fig. 3.2
operates on two tables of three and four rows respectively, and returns a result table of
four rows. This set processing capability is a major distinguishing characteristic of
relational systems (see further discussion in Section 3.6 below). By contrast, the oper-
ations in nonrelational systems are typically at the row- or record-at-a-time level. 3
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Let us return to Fig. 3.1 for a moment. There are a few additional points to be made
in connection with the sample database of that figure:

g First, note that the “relational system” definition requires only that the database be
perceived by the user as tables. Tables are the logical structure in a relational sys-
tem, not the physical structure. At the physical level, in fact, the system is free to
use any or all of the usual storage structures—sequential files, indexing, hashing,
pointer chains, compression, etc.—provided only that it can map those structures
into tables at the logical level. Another way of saying the same thing is that tables
represent an abstraction of the way the data is physically stored—an abstraction in
which numerous storage-level details, such as stored record placement, stored re-
cord sequence, stored data encodings, stored record prefixes, stored access struc-
tures such as indexes, and so forth, are all hidden from the user.

Incidentally, the term “logical structure” in the foregoing paragraph is in-
tended to encompass both the conceptual and external levels, in ANSI/SPARC
terms. The point is that—as explained in Chapter 2—the conceptual and external

levels in a relational system will be relational, but the internal or physical leve] will
not. In fact, relational theory as such has nothing to say about the internal level at
all; it is, to repeat, concerned with how the database looks to the user.

m  Second, relational databases like that of Fig. 3.1 satisfy a very nice property: The

entire information content of the database is represented in one and only one way,
namely as explicit data values. This method of representation (as explicit values in
column positions in rows in tables) is the only method available in a relational
database. In particular, there are no pointers connecting one table to another. For
example, there is a connection between the D1 row of table DEPT and the E1 row
of table EMP, because employee E1 works in department D1; but that connection
is represented, not by a pointer, but by the appearance of the value D1 in the
DEPT# position of the EMP row for E1. In nonrelational systems, by contrast, such
information is typically represented by some kind of pointer that is explicitly visi-
ble to the user.

Note: When we say there are no pointers in a relational database, we do not
mean that there cannot be pointers at the physical level—on the contrary, there
certainly can be pc7)inters at that level, and indeed there certainly will be. But as
already explained, all such physical storage details are concealed from the user in
arelational system.

®  Finally, note that all data values are atomic (or scalar). That is, at every row-and-

column position in every table there is always exactly one data value, never a group of
several values. Thus, for example, in table EMP (considering the DEPT# and EMP#
columns only, and for clarity showing them in that left-to-right order), we have

DEPT# EMP#

D1 El
D1 E2
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instead of

DEPT# | EMP#

Dl El,E2

Column EMP# in the second version of this table is an example of what is
usually called a repeating group. A repeating group is a column, or combination
of columns, that contains several data values in each row (different numbers of
values in different rows, in general). Relational databases do not allow repeating
groups; the second version of the table above would not be permitted in a relational
system. (The reason for this apparent limitation is basically simplicity. See Chap-
ters 4 and 19 for further discussion.)

We close this section by remarking that the definition given for “relational system”
at the beginning of the section is only a minimal definition (it is taken from reference
[3.1], and is essentially the definition that was current in the early 1980s). There is, of
course, far more to a relational system than we can or need to describe in the present
section. In particular, please note that the relational model consists of much more than
just “tables plus SELECT, PROJECT, and JOIN.” See Section 3.4. )

3.3 A Note on Terminology

If it is true that a relational database is basically just a database in which the data is
perceived as tables—and of course it is true—then a good question to ask-is: Why
exactly do we call such a database relational anyway? The answer is simple: “Relation”
is just a mathematical term for a table (to be precise, a table of a certain specific kind—
details to be discussed in Chapter 4). Thus, for example, we can say that the depart-
ments-and-employees database of Fig. 3.1 contains two relations.

Now, in informal contexts it is usual to treat the terms “relation” and “table” as if
they were synonymous; indeed, the term “table” is used much more frequently than the
term “relation” in such contexts. But it is worth taking a moment to understand why the
latter term was introduced in the first place. Briefly, the explanation is as follows.

m  As already indicated, relational systems are based on what is called the relational
model of data. The relational model, in turn, is an abstract theory of data that is
based on certain aspects of mathematics (principally set theory and predicate
logic).

m The principles of the relational model were originally laid down in 1969-70 by Dr.
E. F. Codd, at that time a researcher in IBM. It was late in 1968 that Codd, a math-
ematician by training, first realized that the discipline of mathematics could be
used to inject some solid principles and rigor into a field—database management—
that, prior to that time, was all too deficient in any such qualities. Codd’s ideas
were first widely disseminated in a now classic paper, “A Relational Model of Data
for Large Shared Data Banks” (see reference [4.1] in Chapter 4).
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Since that time, those ideas—by now almost universally accepted—have had a
wide-ranging influence on just about every aspect of database technology, and in-
deed on other fields as well, such as the fields of artificial intelligence, natural
language processing, and hardware system design.

Now, the relational model as originally formulated by Codd very deliberately made
use of certain terms, such as the term “relation” itself, that were not familiar in IT
circles at that time, even though the concepts in some cases were. The trouble was,
many of the more familiar terms were very fuzzy—they lacked the precision necessary
to a formal theory of the kind that Codd was proposing.

s FExample: Consider the term “record.” At different times that single term can mean
either a record occurrence or a record type; a COBOL-style record (which allows
repeating groups) or a flat record (which does not); a logical record or a physical
record; a stored record or a virtual record; and perhaps other things as well.

The formal relational model therefore does not use the term “record” at all; instead,
it uses the term “tuple” (short for “n-tuple”), which was given a precise definition by
Codd when he first introduced it. We do not give that definition here; for present pur-
poses, it is sufficient to say that the term “tuple” corresponds approximately to the
notion of a flat record instance (just as the term “relation” corresponds approximately
to the notion of a table). When we move on (in Part II) to study the more formal aspects
of relational systems, we will make use of the formal terminology, but in this chapter
we are not trying to be very formal, and we will mostly stick to terms such as “table,”
“row,” and “column” that are reasonably familiar.

3.4 The Relational Model

So what exactly is the relational model? A good way to characterize it is as follows: The
relational model is @ way of looking at data—that is, it is a prescription for a way of
representing data (namely, by means of tables), and a prescription for a way of manip-
ulatmg such a representation (namely, by means of operators such as JOIN). More pre-
01sely, the relational model is concerned with three aspects of data: data structure, data
integrity, and data manipulation. The structural and manipulative aspects have al-
ready been illustrated; to illustrate the integrity aspect (very superficially, please note!),
we consider the departments-and-employees database of Fig. 3.1 once again. In all like-
lihood, that database would be subject to numerous integrity rules; for example, em-
ployee salaries might have to be in the range 25K to 95K, department budgets might
have to be in the range 1M to 15M, and so on. However, there are certain rules that the
database must obey if it is to conform to the prescriptions of the relational model. To be
specific:

1. Each row in table DEPT must include a unique DEPT# value; likewise, each row

in table EMP must include a unique EMP# value.

2. Each DEPT# value in table EMP must exist as a DEPT# value in table DEPT (to
reflect the fact that every employee must be assigned to an existing department).
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Columns DEPT# in table DEPT and EMP# in table EMP are the primary keys for
their respective tables. Column DEPT# in table EMP is a foreign key, referencing the
primary key of table DEPT. Note: The reader might already have noticed that we indi-
cate primary keys by double underlining in our figures (see, e.g., Fig. 3.1). We will
follow this convention throughout this book. ' .

A word of warning is appropriate at this point. The relational model is, as already
indicated, a theory. Note carefully, however, that (as suggested at the end of Section
3.2) it is not necessary for a system to support that theory in its entirety in ordér to
qualify as relational according to the definition. Indeed, so far as this writer is aware,
there is no product on the market today that supports every last detail of the theory.
This is not to say that some parts of the theory are unimportant; on the contrary, every
detail of the theory is important, and important, moreover, for genuinely practical rea-
sons. Indeed, the point cannot be stressed too strongly that the purpose of the theory is
not just “theory for its own sake”; rather, the purpose is to provide a base on which to
build systems that are 100 percent practical. But the sad fact is that the vendors have
not yet really stepped up to the challenge of implementing the theory in its entirety. As
a consequence, the relational products of today all fail, in one way or another, to deliver
on the full promise of relational technology.

Note: When we say that every detail of the theory is important, we do not mean to
imply that every portion of the theory is as important as every other. The fact is, some
portions are not as widely accepted as others; indeed, there are some, such as the treat-
ment of missing information, that are still subject to a considerable degree of contro-
versy. Details of such matters are beyond the scope of the present chapter; see Parts I
and V of this book (especially Chapters 5 and 20) for further discussion.

3.5 Optimization

As explained in Section 3.2, relational operations such as SELECT, PROJECT, and
JOIN are all set-level operations. As a consequence, relational languages such as SQL
are often said to be nonprocedural, on the grounds that users specify what, not how—
i.e., they say what they want, without specifying a procedure for getting it. The process
of “navigating” around the stored database in order to satisfy the user’s request is per-
formed automatically by the system, not manually by the user. For this reason, rela-
tional systems are sometimes referred to as automatic navigation systems. In non-
relational systems, by contrast, such navigation is generally the responsibility of the
user. A striking illustration of the benefits of automatic navigation is shown in Fig. 3.3,
which contrasts a certain SQL INSERT statement with the “manual navigation” code
the user might have to write to achieve an equivalent effect in a nonrelational system.
Despite the remarks of the previous paragraph, it has to be said that “nonprocedu-
ral” is not a very satisfactory term—common though it is—because procedurality and
nonprocedurality are not absolutes. The best that can be said is that some language A is
either more or less procedural than some other language B. Perhaps a better way of
putting matters would be to say that relational languages such as SQL. are at a higher
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INSERT INTO SP ( S#, P#, QTY )
VALUES ( 's4', 'P3', 1000 ) ;

MOVE 'S4' TO S# IN S
FIND CALC S
ACCEPT S-SP-ADDR FROM S-SP CURRENCY
FIND LAST SP WITHIN S$S-SP
while SP found PERFORM
ACCEPT S-SP-ADDR FROM S-SP CURRENCY
FIND OWNER WITHIN P-SP
GET P
IF P# IN P < 'P3'
leave loop
END-IF
FIND PRIOR SP WITHIN S-SP
END-PERFORM
MOVE 'P3' TO P# IN P
FIND CALC P o
ACCEPT P-SP-ADDR FROM P-SP CURRENCY
FIND LAST SP WITHIN P-SP
while SP found PERFORM
ACCEPT P-SP-ADDR FROM P-SP CURRENCY
FIND OWNER WITHIN S-SP
GET S
IF S# IN S < 'S4’
leave loop
END-TIF
FIND PRIOR SP WITHIN P-SP
END-PERFORM
MOVE 1000 TO QTY IN SP
FIND DB-KEY IS S-SP-ADDR
FIND DB-KEY IS P-SP-ADDR
STORE SP
CONNECT SP TO S-SP
CONNECT SP TO P-SP

FIG. 3.3 Automatic vs. manual navigation

level of abstraction than programming languages such as C and COBOL (or data sub-
languages such as are typically found in nonrelational DBﬁSS, come to that—see Fig.
3.3). Fundamentally, it is this raising of the level of abstraction that is responsible for
the increased productivity that relational systems can provide.

Deciding just how to perform the automatic navigation referred to above is the
responsibility of a very important DBMS component called the optimizer. In other
words, for each relational request from the user, it is the job of the optimizer to choose
an efficient way to implement that request. By way of an example, let us suppose the
user issues the following request:

RESULT := ( EMP WHERE EMP# = 'E4' )} [ SALARY ]

Explanation: The expression in parentheses (“EMP WHERE ...”) requests a re-
striction of the EMP table to just the row where EMP# is E4. The column name in
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square brackets (“SALARY™) then requests a projection of the result of that restriction
over the SALARY column. Finally, the assignment operation (“:=") requests the result
of that projection to be assigned to table RESULT. In other words, RESULT is a sin-
gle-column, single-row table that— after the request has been executed—will contain
employee E4’s salary. (We are making use here of the syntax for relational operations
to be described in detail in Chapter 6. Note too, incidentally, that we are implicitly

making use of the relational closure property—we have written a nested expression, in
which the input to the projection operation is the output from the restriction operation.)
Now, even in this very simple example, there are probably at least two ways of E

performing the necessary data access:

1. By doing a physical sequential scan of (the stored version of) table EMP untll the
required record is found;

2. If there is an index on (the stored version of) the EMP# column of that table—f
which in practice there probably will be, because it is the primary key, and. most

systems in fact require an index on the primary key—then by using that 1ndex and
thus going directly to the E4 data.

The optimizer will choose which of these two strategies to adopt. More generally,
given any particular relational request, the optimizer will make its choice of strategy for
implementing that request on the basis of such considerations as the following:

m  Which tables are referenced in the request (there may be more than one if, e.g.,
there are any joins-involved)

How big those tables are

What indexes exist

How selective those indexes are

How the data is physically clustered on the disk

What relational operations are involved

and so on. To repeat, therefore: User requests specify only what data the user wants, not
how to get to that data; the access strategy for getting to the data is chosen by the
optimizer (“automatic navigation”). Users and user programs are thus independent of
such access strategies, which is of course essential if data independence is to be
achieved.

We will have a lot more to say about the optimizer in Chapter 18.

3.6 The Catalog

As explained in Chapter 2 (Section 2.8), every DBMS must provide a catalog or dic-
tionary function. The catalog is the place where—among other things—all of the var-
ious schemas (external, conceptual, internal) and all of the corresponding mappings
(external/conceptual, conceptual/internal) are kept. In other words, the catalog contains
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detailed information (sometimes called descriptors) regarding the various objects that
are of interest to the system itself. Examples of such objects are tables, indexes, users,
integrity rules, security rules, and so on. Descriptor information is essential if the sys-
tem is to be able to do its job properly. For example, the optimizer uses catalog infor-
mation about indexes (see Chapter 18), as well as much other information, to help it
decide how to implement user requests. Likewise, the security stibsystem uses catalog
information about users and security rules (see Chapter 15) to grant or deny such re-
quests in the first place.

Now, one of the nice features of relational systems is that, in such a system, the
catalog itself consists of tables (more precisely, system tables, so called to distinguish
them from ordinary user tables). As a result, users can interrogate the catalog in exactly
the same way as they interrogate their own data. For example, the catalog will typically
include two system tables called TABLES and COLUMNS, the purpose of which is to
describe the tables known to the system and the columns of those tables. (We say “typ-
ically” because the catalog is not the same in every system; this is because the catalog
for a particular system necessarily contains a good deal of information that is specific
to that system.) For the departments-and-employees database, the TABLES and
COLUMNS tables might look in outline as shown in Fig. 3.4.

Note: It would be more accurate to say that the TABLES and COLUMNS tables
describe the named tables known to the system, as opposed to the unnamed tables that
result from the evaluation of some relational expression. Note too that the category
“named tables” includes the catalog tables themselves—i.e., the catalog is self-describ-
ing. The entries for the catalog tables themselves are not shown in Fig. 3.4, however.

Now suppose some user of the departments-and-employees database wants to
know exactly what columns the DEPT table contains (obviously we are assuming that
for some reason the user does not already have this information). Then the expression

TABLES TABNAME | COLCOUNT ROWCOUNT | .....
DEPT 3 3 o
EMP 4 4 ...

COLUMNS TABNAME COLNAME | .....
DEPT DEPT# | .....
DEPT DNAME | .....
DEPT BUDGET | .....
EMP EMP# | ...,
EMP ENAME | .....
EMP DEPT# | .....
EMP SALARY | .....

FIG. 3.4 Catalog for the departments-and-employees database (in outline)
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( COLUMNS WHERE TABNAME = 'DEPT' ) [ COLNAME ]

provides exactly what is required. Note: If we had wanted to keep the result of this
query in some more permanent fashion, we could have assigned the value of the expres-
sion to some other table, say RESULT, as in the example in Section 3.5. However, we
will omit this final assignment step from most of our examples (both here and in later
chapters). ;

Here is another example: “Which tables include a column called EMP#?”

( COLUMNS WHERE COLNAME = 'EMP#' ) [ TABNAME ]
Exercise for the reader: What does the following do?

{( { TABLES JOIN COLUMNS )
WHERE COLCOUNT < 5 ) [ TABNAME, COLNAME ]

3.7 Base Tables and Views

We have seen that, starting with a given set of tables such as DEPT and EMP, relational
expressions allow us to obtain further tables from that given set—e.g., by joining two
of the given tables together. It is time to introduce a little more terminology. The orig-
inal (given) tables are called base tables; a table that is obtained from those base tables
by means of some relational expression is called a derived table. Thus, base tables have
independent existence, while derived tables do not—they depend on the base tables.
Observe, therefore, that a derived table is, precisely, a table that is defined in terms of
other tables—ultimately, in terms of base tables—and a base table is, precisely, a table
that is not a derived table. '

Now, relational systems obviously have to provide a means for creating the base
tables in the first place. In SQL, for example, this function is performed by the
CREATE TABLE statement (TABLE here meaning, very specifically, a base table).
And base tables obviously have to be named (indeed, their name is specified in the
statement that creates them). Most derived tables, by contrast, are not named. However,
relational systems usually support one particular kind of derived table, called a view,
that does have a name. A view is thus a named table that—unlike a base table—does
not have an independent existence of its own, but is instead defined in terms of one or
more underlying named tables (base tables or other views).

An example is in order. The statement

CREATE VIEW TOPEMPS AS
( EMP WHERE SALARY > 33K ) [ EMP#, ENAME, SALARY ] ;

might be used to define a view called TOPEMPS. When this statement is executed, the
expression following the AS—which s in fact the view definition—is not evaluated but
is merely “remembered” by the system in some way (actually by saving it in the cata-
log, under the specified name TOPEMPS). To the user, however, it is now as if there
really were a table in the database called TOPEMPS, with rows and columns as shown
in the unshaded portions (only) of Fig. 3.5 below. In other words, the name TOPEMPS
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TOPEMPS EMP#

El
E2
B3
E4

FIG. 3.5 TOPEMPS as a view of base table EMP (unshaded portions)

denotes a virtual table, viz. the table that would result if the view-defining expression
were actually evaluated.

Note carefully, however, that although we say that the name TOPEMPS denotes
“the table that would result if the view-defining expression were actually evaluated,”
we definitely do not mean to suggest that it refers to a separate copy of the data—i.e.,
we do not mean to suggest that the view-defining expression actually is evaluated. On
the contrary, the view is effectively just a window into the underlying table EMP. Fur-
thermore, of course, any changes to that underlying table will be automatically and
instantaneously visible through that window (provided, of course, that those changes
lie within the unshaded portion of EMPY); likewise, changes to TOPEMPS will automat-
ically and instantaneously be applied to the real table EMP, and hence of course be
visible through the window.

Here then is an example of a query involving view TOPEMPS:

( TOPEMPS WHERE SALARY < 42K ) [ EMP#, SALARY ]

The result will look like this:

EMP# SALARY

E1l 40K
E4 35K

Operations against a view like that just shown are effectively handled by replacing
references to the view by the expression that defines the view (i.e., the expression that
was saved in the catalog). In the example, therefore, the expression

( TOPEMPS WHERE SALARY < 42K ) [ EMP#, SALARY )
is modified by the system to become

( ( EMP WHERE SALARY > 33K ) [ EMP#, ENAME, SALARY ] )
WHERE SALARY < 42K ) [ EMP#, SALARY ]

’
which, after a certain amount of rearrangement (see Chapter 18), can be simplified to just
( EMP WHERE SALARY > 33K AND SALARY < 42K ) [ EMP#, SALARY ]

And this expression evaluates to the result shown earlier. In other words, the original
oOperation against the view is effectively converted into an equivalent operation against
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the underlying base table. That equivalent operation is then executed in the normal way ‘

(more accurately, optimized and executed in the normal way).

Now, the view TOPEMPS is very simple, consisting as it does just of a row- and-
column-subset of a single underlying base table. In principle, however, a view defini-
tion—since it is essentially just a named relational expression—can be of arbitrary
complexity. For example, here is a view whose definition includes a join of two under-

lying base tables:

CREATE VIEW JOINEX1 AS
( ( EMP JOIN DEPT ) WHERE BUDGET > 7M ) [ EMP#, DEPT# 1 ;

We will return to the general question of view definition and view processing in
Chapter 17. )

Incidentally, we can now explain the remark in Chapter 2 (Section 2.2) to the effect
that the term “view” has a rather specific meaning in relational contexts that is not
identical to the meaning ascribed to it in the ANSI/SPARC architecture. At the external
level of that architecture, the database is perceived as an “external view,” defined by an
external schema (and different users can have different external views). In relational
systems, by contrast, a view (as explained above) is, specifically, a named, derived,
virtual table. Thus, the relational analog of an ANSI/SPARC “external view” is (typi-
cally) a collection of several tables, each of which is a view in the relational sense. The
“external schema” consists of definitions of those views.

Now, the ANSI/SPARC architecture is quite general and allows for arbitrary vari-
ab111ty between the external and conceptual levels. In principle, even the types of data
®structure supported at the two levels could be different—for example, the conceptual
level could be based on relations, while a given user could have an external view of the
database as a hierarchy. In practice, however, most systems use the same type of struc-
ture as the basis for both levels, and relational products are no exception to this general
rule—a view is still a table, like a base table. And since the same type of object is
supported at both levels, the same data sublanguage (usually SQL) applies at both
levels. Indeed, the fact that a view is a table is precisely one of the strengths of
relational systems; it is important in just the same way that the fact that a subset is
a set is important in mathematics. Note: SQL products, and the SQL standard (see
Chapter 8) often seem to miss this point, however, inasmuch as they refer repeatedly to
“tables and views” (with the implication that a view is not a table). The reader is ad-
vised not to fall into this common trap of taking “tables” to mean, specifically, base
tables only.

There is one final point that needs to be made on the subject of base tables
and views, as follows. The base table vs. view distinction is frequently characterized
thus:

m  Base tables “really exist,” in the sense that they represent data that is actually stored
in the database;
m Views, by contrast, do not “really exist” but merely provide different ways of look-
ing at the “real” data.
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However, this characterization, though arguably useful in an informal sense, does
not accurately reflect the true state of affairs. It is true that users can think of base tables
as if they physically existed; in a way, in fact, the whole point of the relational approach
is to allow users to think of base tables as physically existing, while not having to
concern themselves with how those tables are physically represented in storage. But—
and it is a big but!—this way of thinking should not be construed as meaning that a base
table is a physically stored table (i.e., a collection of physically adjacent, physically
stored records, each one consisting of a direct copy of a row of the base table). As
explained in Section 3.2, base tables are best thought of as an abstraction of some
collection of stored data—an abstraction in which all storage-level details are con-
cealed. In principle, there can be an arbitrary degree of differentiation between a base
table and its stored counterpart.

A simple example might help to clarify this point. Consider the departments-and-
employees database once again. Most of today’s relational systems would probably
implement that database with two stored files, one for each of the two base tables. But
there is absolutely no reason why there should not be just one stored file of hierarchic
stored records, each one consisting of department number, name, and budget for some
given department, followed by employee number, name, and salary for each employee
who happens to be in that department.

3.8 The SQL Lahguage

Most current relational products support some dialect of the standard relational lan-
guage SQL. SQL was originally developed in IBM Research in the early 1970s; it was
first implemented on a large scale in the IBM relational prototype System R, and sub-
sequently reimplemented in numerous commercial products, from both IBM and other
vendors. Dialects of SQL have since become an American national (ANSI) standard,
an international (ISO) standard, a UNIX (X/Open) standard, an IBM standard (it forms
the “common database interface” portion of IBM’s System Applications Architecture,
SAA), and a federal information processing standard (FIPS)—see the References and
Bibliography section in Chapter 8. In this section we take a very brief look at the SQL
language.

SQL is used to formulate relational operations (i.e., operations that define and ma-
nipulate data in relational form). We consider the definitional operations first. Fig. 3.6
shows how the departments-and-employees database of Fig. 3.1 might be defined,
using SQL data definition operations,

As you can see, the definition includes one CREATE TABLE statement for each
of the two tables. The CREATE TABLE statement is, as already indicated, an example
of an SQL data definition operation. Each CREATE TABLE statement specifies the
name of the (base) table to be created, the names and data types of the columns of that
fable, and the primary key and any foreign keys in that table (possibly some additional
information also, not illustrated in Fig. 3.6). Refer back to Section 3.4 if you need to
refresh your memory regarding primary and foreign keys.
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CREATE TABLE DEPT
( DEPT# CHAR (2},
DNAME CHAR (20},
BUDGET DECIMAL (7},
PRIMARY KEY ( DEPT# ) } ;

CREATE TABLE EMP
( EMP# CHAR (2},
ENAME CHAR (20},
DEPT# CHAR (2},
SALARY DECIMAL(5),
PRIMARY KEY ( EMP# ),
FOREIGN KEY ( DEPT# ) REFERENCES DEPT ) ;

FIG. 3.6 The departments-and-employees database (SQL data definition)

Having created the tables, we can now start operating on them by means of the
SQL data manipulation operations SELECT, INSERT, UPDATE, and DELETE. In
particular, we can perform relational SELECT, PROJECT, and JOIN operations on the
data, in each case by using the SQL data manipulation statement SELECT. Fig. 3.7
shows how the SELECT, PROJECT, and JOIN examples of Fig. 3.2 could be formu-

SELECT (RESTRICT) : Result: DEPT# DNAME BUDGET
SELECT DEPT#, DNAME, BUDGET D1 Marketing 10M
FROM DEPT D2 Development 12M

WHERE BUDGET > 8M ;

PROJECT: Result: DEPT# BUDGET
SELECT DEPT#, BUDGET Dl 10M
FROM DEPT ; D2 12M

D3 5M
JOIN:

SELECT DEPT.DEPT#, DNAME, BUDGET, EMP#, ENAME, SALARY
FROM DEPT, EMP
WHERE DEPT.DEPT# = EMP.DEPT# ;

Result: | DEPT# DNAME BUDGET EMP# ENAME SALARY
D1 Marketing 10M | E1 Lopez 40K
D1 Marketing 10M | E2 Cheng 42K
D2 Development 12M | E3 Finzi 30K
D2 Development 12M | E4 Saito 35K

FIG. 3.7 SELECT, PROJECT, and JOIN examples in SQL
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lated using SQL. Note: The join example in that figure illustrates the point that quali-
fied names (e.g. DEPT.DEPT#, EMP.DEPT#) are sometimes necessary in SQL to
«disambiguate” column references. If unqualified names were used—i.e., if the
WHERE clause were of the ‘form “WHERE DEPT# = DEPT#’—then the two
«DEPT#” references would be ambiguous (it would not be clear in either case whether
the reference stood for DEPT.DEPT# or EMP.DEPT#).

The reader will observe that the SELECT statement of SQL and the SELECT op-
eration of the relational model are not the same thing! Indeed, SQL supports all three of
the relational operations SELECT, PROJECT, and JOIN (and more besides), all within
its own SELECT statement. For this reason among others, RESTRICT is to be pre-
ferred over SELECT as the name of the relational operation; referring to the two dis-
tinct operations by two distinct names should reduce the chance of confusion between
them. (In fact, RESTRICT was the original name for the relational operation; further-
more, it is an intuitively good name, inasmuch as the operation has the effect of—for
example—restricting the set of departments to just those with a budget in excess of
8M.)

We close this brief discussion of SQL with a few miscellaneous observations:

1. Update operations: Examples of the SQL update operations INSERT, UPDATE,
and DELETE have already been given in Chapter 1. However, the examples in the
body of that chapter happened all to be single-row operations. Like SELECT, how-
ever, INSERT, UPDATE, and DELETE are set-level operations, in general (and
some of the exercises and answers in Chapter 1 did in fact illustrate this point).
Here are some set-level update examples for the departments-and-employees
database: "

INSERT
INTO TEMP ( EMP# )
SELECT EMP#
FROM EMP
WHERE DEPT# = 'D1' ;

This example assumes that we have previously created another table TEMP with
just one column, called EMP#, The INSERT statement inserts into that table em-
ployee numbers for"all employees in department D1.

UPDATE EMP
SET SALARY = SALARY * 1.1
WHERE DEPT# = 'Dl' ;

This UPDATE statement updates the database to reflect the fact that all employees
in department D1 have been given a ten percent salary increase.

DELETE
FROM EMP
WHERE DEPT# = 'D2'";

This DELETE statement deletes all EMP rows for employees in department D2.

2. Catalog: The SQL standard does include specifications for a standard catalog
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called the Information Schema (see Chapter 8). At the time of writing, however,
few products if any have actually implemented the standard Information Schema.

3. Views: Here are SQL analogs of the CREATE VIEW statement for TOPEMPS and
the sample query against that view from Section 3.7:

CREATE VIEW TOPEMPS AS
SELECT EMP#, ENAME, SALARY
FROM EMP
WHERE SALARY > 33K ;

SELECT EMP#, SALARY
FROM TOPEMPS
WHERE SALARY < 42K ;

4. Means of invocation: Most SQL products allow SQL statements to be executed
both (a) “directly,” i.e., interactively from an online terminal, and (b} as part of an
application program (i.e., the SQL statements can be “embedded,” meaning they
can be intermixed with the programming language statements of such a program).
In case (b), moreover, the program can typically be written in a variety of host
languages (C, COBOL, Pascal, PL/I, etc.). X

5. SQL is not perfect: We include numerous SQL examples in this book because SQL
is the standard relational language and because its use and implementation are both
very widespread. But it must be emphasized that SQL is very far from being the
“perfect” relational language: It suffers from numerous sins of both omission and
commission. See Chapter 8 for further discussion.

3.9 The Suppliers-and-Parts Database

Our running example throughout most of this book is the well-known suppliers-and-

parts database. The purpose of this section is to introduce that database, in order to

serve as a point of reference for later chapters. Fig. 3.8 shows a set of sample data

values; subsequent examples will actually assume these specific values, where it makes

any difference. Fig. 3.9 shows the database definition, expressed in a syntax to be ex-

plained in Chapter 4. Note the primary and foreign key specifications in particular.
The intended semantics of the database are as follows.

m  Table S represents suppliers. Each supplier has a supplier number (S#), unique to
that supplier; a supplier name (SNAME), not necessarily unique (though SNAME
values do happen to be unique in Fig. 3.8); a rating or status value (STATUS); and
a location (CITY). We assume that each supplier is located in exactly one city.

m Table P represents parts (more accurately, kinds of part). Each kind of part has a
part number (P#), which is unique; a part name (PNAME); a color (COLOR); a
weight (WEIGHT); and a location where parts of that type are stored (CITY). We
assume—where it makes any difference—that part weights are given in pounds.

S | S#¥ | SNAME | STATUS | CITY Sp
S1 | Smith 20 | London
$2 | Jones 10 | Paris
s3 | Blake 30 | Paris
s4 | Clark 20 | London
S5 | Adams 30 | Athens

P P# PNAME COLOR WEIGHT CITY
Pl | Nut Red 12 | London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 | Rome
p4 Screw Red 14 | London
P5 | Cam Blue 12 Paris
P6 | Cog Red 19 | London

S# | P# | QTY
S1 | P1 | 300
Sl | P2 | 200
S1 | P3 | 400
Sl | P4 | 200
sl | P5 | 100
sl | P6 | 100
S2 | P1 | 300
S2 | P2 | 400
S3 | P2 | 200
S4 | P2 | 200
S4 | P4 | 300
S4 | P5 | 400

'FIG. 3.8 The suppliers-and-parts d

atabase (sample values)

CREATE BASE RELATION S

( S# DOMAIN (
SNAME DOMAIN (
STATUS DOMAIN (
CITY DOMAIN - (

)

PRIMARY KEY ( S#

CREATE BASE RELATION P

( P# DOMAIN (
PNAME DOMAIN (
COLOR DOMAIN (
WEIGHT DOMAIN {
CITY DOMAIN (

)

"PRIMARY KEY ( P#

(- S# DOMAIN (
P# DOMAIN (
QTY DOMAIN (

" PRIMARY KEY ( S#,
" FOREIGN KEY. ( S#')
- FOREIGN KEY (. P# )

CREATE DOMAIN S# CHAR(5) ;
CREATE DOMAIN NAME CHAR (20} ;
CREATE DOMAIN STATUS NUMERIC(5) ;
CREATE DOMAIN CITY CHAR(15) ;
CREATE DOMAIN P# CHAR(6) ;
CREATE DOMAIN COLOR CHAR(6) ;
CREATE DOMAIN WEIGHT NUMERIC(5) ;
CREATE DOMAIN QTY NUMERIC(9) ;

S# ),
NAME ),
STATUS ),
CITY ) )

i

P# ),
NAME ),
COLCR 1},
WEIGHT ),
CITY ) )

7

CREATE BASE RELATION SP

S# ).

P¥ ), -
QTY ) )

P# )

REFERENCES - S
REFERENCES P ;

FIG. 3.9 The suppliers-and-parts database (data definition)
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We also assume that each kind of part comes in exactly one color and is stored in
a warehouse in exactly one city.

m Table SP represents shipments. It serves in a sense to connect the other two tables
together. For example, the first row of table SP in Fig. 3.8 connects a specific
supplier from table S (namely, supplier S1) with a specific part from table P
(namely, part P1)—in other words, it represents a shipment of parts of kind P1
by the supplier called S1 (and the shipment quantity is 300). Thus, each shipment
has a supplier number (S#), a part number (P#), and a quantity (QTY). We assume
that there can be at most one shipment at any given time for a given supplier and a
given part; for a given shipment, therefore, the combination of S# value and P#
value is unique with respect to the set of shipments currently appearing in the SP
table. '

We remark that (as already pointed out in Section 1.3) suppliers and parts can be -
regarded as entities, and a shipment can be regarded as a relationship between a par-
ticular supplier and a particular part. As also pointed out in Section 1.3, however, rela-
tionships are best regarded as just a special case of entities. One advantage of relational
databases is precisely that all entities, regardless of whether they are in fact relation-
ships, are represented in the same uniform way—namely, by means of tables, as the "
example shows. ,

One final remark: The suppliers-and-parts database is of course extremely simple, .
much simpler than any real database is likely to be in practice; most real databases will
involve many more entities and relationships than this one does. Nevertheless, it is at
least adequate to illustrate most of the points that we need to make in the next few parts
of the book, and (as already stated) we will use it as the basis for most—not all—of our
examples in the next few chapters. And another editorial comment: There is of course
nothing wrong with using more descriptive names such as SUPPLIERS, PARTS, and
SHIPMENTS in place of the rather terse names S, P, and SP used above; indeed, de-
scriptive names are generally to be recommended in practice. But in the case of suppli-
ers-and-parts specifically, the three tables are referenced so frequently in the chapters 3
that follow that very short names seemed desirable. Long names tend to become irk-
some with much repetition. '

3.10 Summary

This brings us to the end of our short overview of relational technology. Obviously we
have barely scratched the surface of what by now has become a very extensive subject, .
but the whole point of the chapter has been to serve as a gentle introduction to the much
more comprehensive discussions that follow in the remainder of the book. Even so, we ‘
have managed to cover quite a lot of ground. Here is a summary of the major topics we i
have discussed.
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A relational database is a database that is perceived by its users as a collection of
relations or tables. All values in a relation are atomic or scalar (there are no repeating
groups). A relational system is a system that supports relational databases and opera-
tions on such databases, including in particular the operations RESTRICT (often
called SELECT), PROJECT, and JOIN. These operations, and others like them, are
all set-level. The closure property of relational systems means that the output from
every operation is the same kind of object as the input (they are all relations), which
implies that we can write nested relational expressions.

The formal theory underlying relational systems is called the relational model.
The relational model is concerned with logical matters only, not physical matters. It
addresses three aspects of data—data structure (or objects), data integrity, and data
manipulation (or operators). The objects are basically the tables; the integrity portion
has to do with primary and foreign keys; and the operators are RESTRICT,
PROJECT, JOIN, etc.

The optimizer is the system component that determines how to implement user
requests (which are concerned with “what,” not “how™). Since relational systems there-
fore assume responsibility for “navigating” around the stored database to locate the
desired data, such systems are sometimes described as automatic navigation systems.
Optimization and automatic navigation are prerequisites for data independence in a
relational system. '

The catalog is a set of system tables that contain descriptors for the various items
that are of interest to the system (base tables, views, indexes, users, etc.). Users can
interrogate the catalog in exactly the same way they interrogate their own data.

A derived table is a table that is derived from other tables by means of somie rela-
tional expression. A base table is a table that is not a derived table. A view is a named
derived table, whose definition in terms of other tables is kept in the catalog. Users can
operate on views in much the same way as they operate on base tables. The system
implements operations on views by replacing references to the name of the view by the
expression that defines the view, thereby converting the operation into an equivalent
opetation on the underlying base tables. We will refer to this method of implementation
as the substitution method.

The standard language for interacting with relational databases is SQL. The SQL
operation for creating a new base table is CREATE TABLE. The SQL retrieval oper-
ation is SELECT (often referred to as SELECT - FROM - WHERE); this operation
provides the functionality of the relational RESTRICT, PROJECT, and JOIN opera-
tions, and more besides. The SQL update operations are INSERT, UPDATE, and
DELETE. SQL is extremely important from a commercial point of view but is very far
from being the “perfect” relational language.

Finally, the base example for much of the remainder of this book is the suppliers-
and-parts database. It is worth taking the time to familiarize yourself with this exam-
ple now, if you have not already done so. That is, you should at least know which
f:olumns exist in which tables and what the primary and foreign keys are (it is not so
Important to know exactly which scalar values occur where!).
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By way of conclusion, let us try to relate the material discussed in this chapter to Exercises
the components of the ANSI/SPARC architecture discussed in Chapter 2. The corre-
spondence is not entirely clearcut, as will be seen, but it can nevertheless be useful as 3.1 Define the following terms:
an aid to understanding. automatic navigation primary key
base table projection
1. Base tables correspond to the ANSI/SPARC conceptual level. catalog relational database
2. Views correspond to the ANSI/SPARC external level, as already explained in Sec- S@ure relational DBMS
. ) erived table relational model
tion 3.7. Note: Actually, most relational products on the market today muddy the foreign key restriction
external/conceptual distinction somewhat, because they allow users to operate di- join set-level operation
rectly on base tables as well as on views. optimization view

. The relational model has nothing to say regarding the ANSI/SPARC internal level.
In principle—as explained in Section 3.2—the system is free to employ any stor-
age structures it likes at the internal level, provided only that it can abstract from
those storage structures and present the data at the conceptual level in pure tabular
form. Unfortunately, this is another area where today’s products have muddied the
waters somewhat: Most of those products tend to map one base table to one stored
file, and are far too inflexible with respect to the degree of difference they can
tolerate between the two. In other words, those products do not provide as much
data independence as we would really like, or as relational systems are theoreti-
cally capable of providing.

Note: Itis at least true, however, that user requests—i.e., SQL statements—in
those products make no direct reference to access structures such as indexes. As a
result, the DBA or DBMS can create and destroy such structures freely, for perfor-
mance and tuning reasons, without invalidating existing applications. (At least, this
is true in the SQL standard, though here again some products unfortunately violate
the pr1n01ple and do not conform to the standard in this regard.)

. SQLisa typlcal (in fact, the standard) data sublanguage. As such, it includes both

a data definition language (DDL) component and a data manipulation language
(DML) component. As already indicated, the SQL DML can operate at both the

external and the conceptual level. The SQL DDL, similarly, can be used to define -

objects at the external level (views), the conceptual level (base tables), and even—
in most systems, though not in the standard—the internal level (e.g., indexes).
Moreover, SQL also provides certain “data control” facilities—that is, facilities
that cannot really be classified as belonging to either the DDL or the DML. An
example of such a facility is the GRANT statement, which allows one user to grant
certain access privileges to another (see Chapter 15).

. Application programs in an SQL system can access the database from a host lan-
guage such as COBOL by means of embedded SQL statements (see Chapter 8).
Embedded SQL represents a “loose coupling” between SQL and the host language.
Basically, any statement that can be used in interactive SQL can be used in embed-
ded SQL also. In addition, certain special statements, also discussed in Chapter 8,
are provided for use in the embedded environment only.

S
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Sketch the contents of the catalog tables TABLES and COLUMNS for the suppliers-and-
parts database.

As explained in Section 3.6, the catalog is self-describing—i.e., it includes entries for the
catalog tables themselves. Extend Fig. 3.4 to include the necessary entries for the TABLES
and COLUMNS tables themselves.

Here is a query on the suppliers-and-parts database. What does it do?
RESULT := ( ( S JOIN SP ) WHERE P# = 'P2' ) [ S#, CITY ]

Suppose the expression on the right-hand side of the assignment in Exercise 3.4 is used in
a view definition:
CREATE VIEW V AS

( ( S JOIN SP ) WHERE P# = 'P2' ) [ S#, CITY ] ;

Now consider the query
ANSWER := ( V WHERE CITY = 'London’ ) [ S# ]

What does this query do? Show what is involved on the part of the DBMS in processing this
query.
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Both approaches are needed, and in this paper Codd gives evidence to suggest that the
necessary foundation for both is provided by relational technology.
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for the user’s own tables are omitted). It is obviously not possible to give precise COL-
COUNT and ROWCOUNT values.

N

TABLES TABNAME COLCOUNT ROWCOUNT | ..... ‘

TABLES (>3) (>2) | ...,

COLUMNS (>2) (>5) | «..nn
COLUMNS TABNAME COLNAME | .....

TABLES TABNAME | .....

TABLES COLCOUNT | .....

TABLES ROWCOUNT | .....

COLUMNS TABNAME | .....

COLUMNS COLNAME | .....

.
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3.4 The query retrieves supplier number and city for suppliers who supply part P2.

3.5 The meaning of the query is: “Retrieve supplier number for London suppliers who supply

part P2."’ The first step in processing the query is to replace the name V by the expression
that defines V, giving:

{ ( ( ( S.JOIN SP ) WHERE P# = 'P2' ) [ S#, CITY ] )

WHERE CITY = 'London' ) [ S# ]
This simplifies to:
( (S WHERE CITY = 'London’ ) JOIN ( SP WHERE Dk = 'D2 Y ) [ s# ]

For further discussion and explanation, see Chapters 17 and 18.
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