218

7.11.36 sx

7.11.37 g%

7.11.38-39

7.11.40 gx

7.11.41 gx

7.11.42 px

7.11.43 sx

7.11.44 g%

7.11.45 CITYX WHERE S

7.11.46 px

71147 (s

7.11.48 (SX AS XS#, SY AS YS#) WHERE S (S#:SX) AND S (S#:SY)

WHERE EXISTS STATUSX EXISTS STATUSY

(S (S#:SX, STATUS:STATUSX) AND
S (S#:'Sl', STATUS:STATUSY) AND
STATUSX < STATUSY)
WHERE EXISTS CITYX
(J (J#:J%, CITY:CITYX) AND
FORALL CITYY (IF J (CITY:CITYY)

THEN CITYY 2 CITYX)

Solutions omitted.

WHERE J (J#:JX) AND
NOT EXISTS SX EXISTS PX
(SPJ (S#:SX, P#:PX, J#:JX) AND
S (S#:8X, CITY:'London') AND
P (P#:PX, COLOR:'Red'))
WHERE J (J#:JX)
AND FORALL SX (IF SPJ (S#:8X, J#:JX)
THEN SX = 'S1')
WHERE P (P#:PX)
AND FORALL JX (IF J (J#:JX, CITY:'London'’
THEN SPJ (P#:PX, J#:JX)
WHERE S (S#:8X)
AND EXISTS PX FORALL JX
(SPJ (S#:8X, P#:PX, J#:J%))
WHERE J (J#:JX)
AND FORALL PX (IF SPJ (S#:'Sl1l', P#:PX)

THEN SPJ (P#:PX, J#:JX

(CITY:CITYX)

OR P (CITY:CITYX)

OR J (CITY:CITYX)
WHERE EXISTS SX (SPJ (S#:SX, P#:PX) AND
S (S#:SX, CITY:'London'’
OR EXISTS JX {(SPJ (J#:JX, P#:PX) AND
J (J#:JX, CITY:'London'
X, PX) WHERE S (S#:SX) AND P (P#:PX)

AND NOT SPJ (S#:8X, P#:PX)

AND FORALL PZ

(

Part Il. The Relational Mo

The SQL Language

)

8.1 Introduction
As mentioned in the introduction to this part of the book, SQL is very far from being a
faithful implementation of the relational model. Nevertheless, it is the standard rela-
tional language, it is supported by just about every product on the market today, and so
every database professional needs to know something about it. Hence this chapter.

The first thing that must be said is that SQL is an enormous language. The standard
document itself [8.1] is well over 600 pages long. As a consequence, it is not possible
in a book of this nature to treat the subject exhaustively; all we can hope to do is de-
scribe major aspects in a reasonably comprehensive manner, but the reader is warned
that our discussions are necessarily sketchy and superficial in many places. In particu-
lar, we have not hesitated to omit material that is irrelevant to the purpose at hand, nor
to make significant simplifications in the interests of brevity. More complete (but still
tutorial) descriptions can be found in references [8.5-8.7].

The plan of the chapter is as follows. Following this introductory section, Section
8.2 treats SQL’s data definition facilities and Sections 8.3-8.4 treat SQL’s data manip-
ulation facilities (Section 8.3 covers retrieval operations and Section 8.4 update opera-
tions). Sections 8.5-8.7 then focus on three key SQL constructs, namely table expres-
sions (including in particular select expressions), conditional expressions, and scalar
expressions, respectively. Next, Section 8.8 describes the special considerations that
apply to “embedded” SQL (i.e., the facilities for embedding SQL statements in a host
language program). Section 8.9 presents a brief summary. Note: Additional aspects of

)
)

))

))

))

(IF SPJ (S#:SX, P#:PZ) THEN SPJ (S#:SY, P#:PZ)) SQL, having to do with matters such as recovery, concurrency, etc., will be described
AND briefly in subsequent chapters devoted to those topics.
(IF SPJ (S#:SY, P#:PZ) THEN SPJ (S#:SX, P#:PZ)))

A few further preliminary remarks are in order. First, our discussions are all at the
level of the current standard [8.1] known informally as “SQL/92,” also as “SQL-92” or
just “SQL2”; the official name is International Standard Database Language SQL
(1992). The presentation is loosely based on material from reference [8.5], though it has
been considerably revised to suit the needs of the present book. Please note also that:

n The “#” character, much used in our example domain and column names, is in fact

not legal in SQL/92.

220 Part Il The Relational Mo

TR

' A C
m Weuse the semicolon *;” as a statement terminator, but SQL/92 actually prescri
such a terminator only in the case of embedded SQL, and then only for certain hog
languages. o o
m We often use names for syntactic categories that are different from those of
standard, because the standard terminology is often not very apt. '

th

Although our discussions are all at the SQL/92 level, we should make it clear t

no product actually supports the whole of SQL/92 at the time of writing. Instead, prod
ucts typically support what might be called “a superset of a subset” of SQL/92. In o
words, any given product, while it fails to support certain aspects of the standard, wil
at the same time probably go beyond the standard in certain other respects. IBM’s DB
product, for example, certainly does not support all of the SQL/92 integrity features
but it does go beyond the standard in its rules regarding view updatability. :
One final introductory remark: SQL uses the terms table, row, and column in plact

of the relational terms relation, tuple, and astribute. For consistency with the SQL stan
dard and SQL products, therefore, we will do likewise in this chapter (and elsewhere i
this book whenever we are concerned with SQL specifically). ‘ -

8.2 Data Definition

In this section we examine the basic data objects and corresponding data definition
language (DDL) statements of SQL. The principal DDL statements are as follows

CREATE TABLE
ALTER TABLE:
DROP TABLE

CREATE DOMAIN
ALTER DOMAIN
DROP DOMAIN

There are also statements for creating and destroying (“dropping”) views, but we defe
discussion of views to Chapter 17.

Domains

SQL’s “domains” are unfortunately a long way from being true relational domains as
described in Chapters 4 and 19; in fact, the two concepts are so far apart that it woul
have been preferable to use some other name for the SQL construct. Almost the sol¢
purpose of domains in SQL is to allow a simple data type specification (such as “S#
CHARC(5)”) to be defined once and then shared by several columns in several bas
tables. For purposes of reference, we list below some of the principal differences be:
tween true domains and the SQL construct (many of these points will not make much
sense until the reader has studied Chapter 19):

m Asalready suggested, SQL domains are really just a syntactic shorthand. They ar
certainly not true user-defined data types.

a There is no requirement that SQL domains even be used—columns in base table

chapter 8 The SQL Language 221

) ©
can be defined directly in terms of the builtin, system-defined data types such as
FLOAT or INTEGER.

g There is no SQL support for “domains on domains”: An SQL domain must be
defined in terms of one of the builtin, system-defined data types, not another user-
defined domain.

s SQL does not provide anything like strong typing. There is no true type checking.
In particular, domains do not “constrain comparisons”—the only requirement on
comparisons is that the comparands must be of the same basic type, i.e., both nu-
meric or both character strings or (etc.). An analogous remark applies to numeric
expressions, character string expressions, bit string expressions, . . . (etc., etc.): In
all cases, domains as such are essentially irrelevant.

s SQL does not support the ability for users to define the operations that apply to a
given domain. ‘)

s SQL does not make a clear distinction between a domain as such (i.e., a user-
defined data type) and the representation of that domain in terms of one of the
system-defined data types.

m SQL does not have any concept of subtypes and supertypes, nor of inheritance.

s Finally, SQL does not even support what is arguably the most fundamental domain
of all, viz. the domain of truth values!

Here is the syntax for creating an SQL domain. Note: As in Chapter 7 we use
square brackets “[”” and “]” to indicate optional material, and we will continue to do SO
throughout this chapter.

CREATE DOMAIN domain data-type
[default-definition]
[domain-constraint-definition-list] ;

Explanation:

1. SQL supports the following scalar data types, most of them self-explanatory. (A
number of defaults, abbreviations, and alternative spellings—e.g., CHAR for
CHARACTER—are also supported. We omit the details here.)

CHARACTER [VARYING 1 (n) INTEGER DATE
BIT [VARYING] (n) SMALLINT TIME
NUMERIC (p,q) FLOAT (p) TIMESTAMP
DECIMAL (p,q) INTERVAL

2. The optional default-definition specifies a default value that applies to every col-
umn that is defined on the domain and does not have an explicit default value of its
“own. It takes the form “DEFAULT defaul?’—where default in turn is a literal, a
reference to a niladic builtin function (e.g., CURRENT_DATE), or NULL.* Note:

A niladic function is a function that takes no arguments.

* We defer detailed discussion of SQL’s support for nulls to Chapter 20. Passing references to nulls in the

present chapter are unavoidable, however.

222 Part Il The Relational Mo
3. The optional list of domain constraint definitions specifies a set of integrity con.
straints that apply to every column defined on the domain. Now, we will explain ip
Chapter 16 that a domain integrity constraint is—or, rather, should be—concep
ally nothing more than an enumeration of the values that go to make up that d
main. SQL, however, allows a domain constraint to involve a truth-valued expres. 2
sion of arbitrary complexity. We leave it as an exercise for the reader to meditate
on some of the unfortunate implications of this unwarranted permissiveness.

Here is an example:
CREATE DOMAIN COLOR CHAR(6) DEFAULT '?272'
CONSTRAINT VALID_COLORS

CHECK (VALUE IN
{ 'Red’, 'Yellow',

Now the CREATE TABLE for base table P, the parts table, might look like this:

‘Blue', 'Green', '??2?'))

’

CREATE TABLE P (... , COLOR COLOR, ...) ;

If the user inserts a row into table P and does not provide a value for the COLOR
column within that row, then the value “???” will be placed in that position by defau
Alternatively, if the user does provide a COLOR value but it is not one of the legal set,

v the operation will fail, of course, and the system will produce a diagnostic that mentions
the VALID_COLORS constraint.

Next, an existing domain can be altered at any time in a variety of Ways by means
of the statement ALTER DOMAIN. Specifically, ALTER DOMAIN allows a new d :
fault definition to be specified for an existing domain (replacing the previous one, if
any) or an existing one to be deleted. It also allows a new integrity constraint to
specified for an existing domain or an existing one to be deleted. The details of these
various options are surprisingly complex, however, and beyond the scope of this book; the
interested reader is referred to reference [8.1] or reference [8.5] for further discussion.

Finally, an existing domain can be destroyed by means of the statement DROP
DOMAIN—syntax:

DROP DOMAIN domain option ;

where option is either RESTRICT or CASCADE. The general idea here is as follow:

(a) If RESTRICT is specified, the DROP will fail if the domain is referenced anywhere;
(b) if CASCADE is specified, the DROP will succeed and will “cascade’ in various
ways (for example, columns that were previously détined on the domain will now
considered to be directly defiried on the domain’s underlying data type instead). Oni
again the details are quite complex, and we omit them here. See reference [8.1]

Chapter 8 The SQL Language 223
a left-to-right column ordering; in the suppliers table S, for example, column S#
might be the first column, column SNAME might be the second column, and so on.

Turning to base tables specifically: Base tables are defined by means of the
CREATE TABLE statement (note, therefore, that the keyword TABLE here refers to a
pase table specifically; the same is true of ALTER TABLE and DROP TABLE, q.v.).
The syntax is as follows:

CREATE TABLE base-table (base-table-element-commalist)

where each base-table-element s either a column-definition or a base-table-constraint-

definition. Each column-definition in turn (there must be at least one such) looks like
this:

column representation [default-definition]

Here representation specifies the relevant data type or domain, and the optional
default—deﬁmtzon specifies a default for the column, overriding any default specified at
the domain level, if applicable. If a given column does not have an explicit default of
its own and does not inherit one from an underlying domain, it is implicitly assumed to-
have a default of NULL—i.e., NULL is the “default default.”

Each base-table-constraint-definitionis one of the following:

m acandidate key definition
m aforeign key definition
m a“check constraint” definition

We proceed to discuss each of these in more detail. Note: Each can optionally be

preceded by the phrase “CONSTRAINT constraint,” thereby providing a name for the
new constraint (the same is true for domain constraints, as we saw in the VALID_

COLORS example earlier). For brevity, we ignore this option in our further discussions
below.

Candidate keys: A candidate key definition takes the form

UNIQUE (column-commalist)

or the form

PRIMARY KEY (column-commalist)

The column-commalist must not be empty in either case. A given base table can have at
most one PRIMARY KEY specification but any number of UNIQUE specifications. In

reference [8.5] for further information.

Base Tables

Before we get into the details of base tables specifically, there are a couple of points

the case of PRIMARY KEY, each specified column is additionally assumed to be NOT
NULL, even if NOT NULL is not specified explicitly (see “Check constraints” below).

Foreign keys: A foreign key definition takes the form

FOREIGN KEY (column-commalist)

be made on the topic of SQL tables in general. First, SQL tables—unlike true re
tions—are allowed to include duplicate rows; they therefore do not necessarily ha
any candidate keys. Second, SQL tables—unlike true relations—are considered to ha

REFERENCES base-table [

[
[

ON DELETE option]
ON UPDATE option]

(column-commalist)

224 Part Il The Relational Mod chapter 8 The SQL Language 225
where option is NO ACTION or CASCADE or SET DEFAULT or SET NULL. CAS-
CADE and SET NULL correspond directly to our CASCADES and NULLIFIES (ref; "'
back to Chapter 5 it you need to refresh your memory); NO ACTION, which is the
default, is similar but not identical to our RESTRICTED (see reference [8.5].for an
explanation of the differences), and SET DEFAULT is self-explanatory. Note: The sec-
ond column-commalist is required if the foreign key references a candldate key that i is
not a primary key.

g A new base table integrity constraint can be specified
g An existing base table integrity constraint can be deleted

We give an example of the first case only:

ALTER TABLE S ADD COLUMN DISCOUNT INTEGER DEFAULT -1 ;

This statement adds a DISCOUNT column (of type INTEGER) to the suppliers base
table. All existing rows in that table are extended from four columns to five; the value
of the new fifth column is minus 1 in every case.

Finally, an existing base table can be destroyed by means of DROP TABLE— syntax:

Check constraints: A “check constraint definition” takes the form

CHECK (conditional-expression)

An attempt to create a row within base table B is considered to violate a check con-
straint for B if it causes the conditional expression specified within that constraint to
evaluate to false. Note that the conditional expression can be arbitrarily complex; it is
specifically not limited to a restriction condition referring just to table B, but can instead
refer to anything in the database. Reference [8.19] offers some critical comments re-
garding this unnecessary generality.

Here is an example of CREATE TABLE:

DROP TABLE base-table option ;

where (as with DROP DOMAIN) oprion is either RESTRICT or CASCADE. If
RESTRICT is specified and the base table is referenced in any view definition or integ-
rity constraint, the DROP will fail; if CASCADE is specified, the DROP will succeed
(destroying the table along with all of its rows), and any referencing view definitions
and integrity constraints will be dropped also.

CREATE TABLE SP The information Schema
(S# S# NOT NULL, P# P# NOT NULL, QTY QTY NOT NULL,
PRIMARY KEY (S#, P#),
FOREIGN KEY (S#) REFERENCES S
’ ON DELETE CASCADE
ON UPDATE CASCADE,
FOREIGN KEY (P#) REFERENCES P
ON DELETE CASCADE
ON UPDATE CASCADE,

CHECK (QTY > 0 AND QTY < 5001)) :

The SQL analog of what is more conventionally known as the catalog is called the
Information Schema. In fact, the familiar terms “catalog” and “schema” are both used
in SQL, but with highly SQL-specific meanings. Loosely speaking, a catalog in SQL
consists of the descriptors for an individual database,* and a schema consists of the
descriptors for that portion of that database that belongs to some individual user. In
other words, there can be any number of catalogs, each divided up into any number of
schemas. However, each catalog is required to include exactly one schema called
INFORMATION_SCHEMA, and from the user’s perspective it is that schema (as al-
ready indicated) that performs the normal “catalog” function.

The Information Schema thus consists of a set of SQL tables whose contents effec-
tively echo, in a precisely defined way, all of the definitions from all of the other sche-
mas in the catalog in question. More precisely, the Information Schema is defined to
contain a set of views of a hypothetical “Definition Schema.” The implementation is
not required to support the Definition Schema as such, but it is required (a) to support
some kind of “Definition Schema,” and (b) to support views of that “Definition
Schema” that do look like those of the Information Schema. Points arising:

We are assuming here that (a) domains S#, P#, and QTY have already been defined,
and (b) S# and P# have been explicitly defined to be the primary keys for tables S and
P, respectively. Also, we have deliberately made use of the convenient shorthand by
which a check constraint of the form : :

CHECK (column IS NOT NULL)

can be replaced by a simple NOT NULL specification in the definition of the column |
in question. In the example, we have thus replaced three slightly cumbersome check
constraints by three simple NOT NULLs.

Next, an existing base table can be altered at any time by means of the ALTER

TABLE statement. The following alterations are supported: 1. The rationale for stating the requirement in terms of two separate pieces (a) and (b)

as just described is as follows. First, existing products certainly do support some-
thing akin to the “Definition Schema.” However, those “Definition Schemas” vary
widely from one product to another (even when the products in question come

A new column can be added
A new default can be defined for an existing column (replacing the previous one

if any)

An existing column default can be deleted

* In the interests of accuracy, we should point out that there is actually no such thing as a “database” in the
SQL standard! Exactly what the collection of data is that is described by a givencatalog is implementation-defined.

®m An existing column can be deleted B
’ owever, it is not unreasonable to think of it as a database.

226 Part Il The Relational IViou hapter 8 The SQL Language 227
First of all, note the use of the symbol <> (not equals) in this example. The usual scalar
comparison operators are written as follows in SQL: =, <>, <, >, <=, and >=.

Next (and much more important), note that—given our usual sample data—this
query will return four rows, not two, even though three of those four rows are identical,
all being of the form (Red,London). SQL does not eliminate redundant duplicate rows
from the result of a SELECT unless the user explicitly requests it to do so via the key-
word DISTINCT, as in: :

from the same vendor). Hence the idea of requiring only that the implementatic
support certain predefined views of its “Definition Schema” makes sense.

2. We should really say “an” (not “the”) Information Schema, since as we have seep,
there is one such schema in every catalog. In general, therefore, the totallitytof da
available to a given user will not be described by a single Information Schema. Tq
simplify our discussion, however, we will continue to talk as if there really were
just one such schema.

SELECT DISTINCT P.COLOR, P.CITY

FROM P

WHERE P.CITY <> 'Paris’
AND P.WEIGHT > 10 ;

It is not worth going into great detail on the content of the Information Schems
here. Instead, we simply list some of the more important Information Schema views, in
the hope that their names alone will be sufficient to give some idea of what that schema
covers (we remark, however, that the TABLES view includes information regarding a'lfl
named tables, views as well as base tables; the VIEWS view contains information for
views only, of course). We deliberately ignore some of the more esoteric features.

This query will return two rows only.

Incidentally, we could perfectly well have omitted the “P.” qualifiers throughout
this example. The general rule regarding name qualification in SQL is that unqualified
names are acceptable if they cause no ambiguity. In our examples, however, we will

SCHEMATA REFERENTIAL_CONSTRAINTS
gggiégs zggcigigﬂgTigiggs generally include all qualifiers, even when they are technically redundant. (Unfortu-
VIEWS ASSERTIONS naFely, however, th.er'e are certain con.texts in which column names are explicitly re-
COLUMNS VIEW TABLE. USAGE quired to be unqualified! An example is the ORDER BY clause—see below.)
TABLE_PRIVILEGES VIEW_COLUMN_USAGE Finally, note that the sequence of rows in a given result table is unpredictable, in
COLUMN_PRIVILEGES CONSTRAINT_TABLE_USAGE eneral, unless the user explicitly requests s i ’

om .
USAGE_PRIVILEGES CONSTRAINT_COLUMN_USAGE 5 ’ puatlyreq e particular sequence, as here:
DOMAIN_CONSTRAINTS CONSTRAINT_DOMAIN_USAGE SELECT DISTINCT P.COLOR, P.CITY

FROM P

WHERE P.CITY <> ‘Paris'
AND P.WEIGHT > 10
ORDER BY CITY DESC ;

In general, the ORDER BY clause takes the form

TABLE_CONSTRAINTS

8.3 Data Manipulation: Retrieval Operations

Now we turn to the data manipulation language (DML) statements of SQL. The prin-
cipal DML statements are SELECT, INSERT, UPDATE, and DELETE. The present
section considers retrieval operations (SELECT) and the next section considers updaté '
operations (INSERT, UPDATE, DELETE). For simplicity, we assume throughout that |
all statements are entered interactively; the special considerations that apply to SQL 3
statements embedded in application programs are discussed in Section 8.8.

A retrieval operation in SQL is essentially just a table expression, of potentially
arbitrary complexity. We do not get into all of that complexity here; rather, we simply
present a set of examples, in the hope that those examples will serve to highlight some
of the most important points. (To facilitate comparisons with the relational algebra and
relational calculus, we also give references to the correspondinig examples in Chapters
6 and 7, where applicable.) A more complete, and more formal, treatment of table ex:
pressions in general is given in Section 8.5. '

ORDER BY order-item-commalist

where '(a}) the commalist must not be empty, and (b) each order-item consists of an
unqualified column name, optionally followed by ASC or DESC (where ASC and
DESC mean ascending and descending, respectively, and ASC is the default).

8.3.2 For all parts, get the part number and the weight of that part in grams.

SELECT P.P#, P.WEIGHT * 454 AS CGMWT
FROM P ;

:Fhe specification AS GMWT introduces an appropriate result column name for the
‘computed column.” The two columns of the result table are thus called P# and
GMWT, respectively. If the AS GMWT specification had been omitted, the corre-
sponding result column would effectively have been unnamed. Observe, therefore, that
SQL does not actually require the user to provide a result column name in such cir(,:um—

8.3.1 Get color and city for “nonParis” parts with weight greater than ten. stances, but we will always do so in our examples

SELECT P.COLOR, P.CITY 8.3.3 Get full details of all suppliers.
FROM P
WHERE P.CITY <> 'Paris’

AND P.WEIGHT > 10 ;

SELECT * — or "SELECT S.*" (i.e., the "*" can be qualified)
FROM S ;

228 Part Il The Relational M° chapter 8 The SQL Language 229

SELECT DISTINCT S.CITY AS SCITY, P.CITY AS PCITY

The result is a copy of the entire S table; the star or asterisk is shorthand for a list of _
FROM S NATURAL JOIN SP NATURAL JOIN P ;

column names in the table(s) referenced in the FROM clause, in the left-to-right orde;
in which those column(s) are defined within those table(s). Notice the comment in th;
example, incidentally (SQL comments are introduced with a double hyphen and ter; i
nate with a newline character).

We remark that the star notation is convenient for interactive querles since it sa
keystrokes. However, it is potentially dangerous in embedded SQL—i.e., SQL withyj,
an application program—because the meaning of the “*” might change (e.g., if ac
umn is added to or dropped from some table, via ALTER TABLE).

Note: In SQL/92 the expression SELECT * FROM T (where T is a table name) ca;
be further abbreviated to just TABLE T.

8.3.6 Get all pairs of supplier numbers such that the two suppliers concerned
. are colocated. (Examples 6.6.5, 7.3.2)

SELECT FIRST.S# AS SA, SECOND.S# AS SB
FROM S AS FIRST, S AS SECOND

WHERE FIRST.CITY = SECOND.CITY

AND FIRST.S# < SECOND.S# ;

Note the explicit range variables FIRST and SECOND in this example. The range
variables have all been implicit in our previous examples (see the annotation to refer-
ence [7.3] if you need to refresh your memory regarding implicit range variables). Note
too that the introduced column names SA and SB refer to columns of the result table,

8.3.4 Get all combinations of supplier and part information such that the sup
and so cannot be used in the WHERE clause.

plier and part in question are colocated. SQL provides several different ways o

formulating this query. We give three of the simplest here. 8.3.7 Get the total number of suppliers.

1. SELECT S.S#, S.SNAME, $.STATUS, S.CITY,
P.P#, P.PNAME, P.COLOR, P.WEIGHT

FROM S, P
WHERE S.CITY = P.CITY ;

2. S JOIN P USING CITY ;
3. S NATURAL JOIN P ;

SELECT COUNT(*) AS N
FROM S ;

The result here is a table with one column, called N, and one row, containing the
: value 5. SQL supports the usual set of aggregate functions (COUNT, SUM, AVG,
MAX, and MIN), but there are a few SQL-specific points the user needs to be aware

The result in each case is the natural join of tables S and P (on cities). of, viz.:

The first of the foregoing formulations—which is the only one of the three that § n Ingeneral, the argument of the function can optionally be preceded by the keyword
would have been valid in SQL as originally defined (the explicit JOIN support wa DISTINCT, to indicate that duplicates are to be eliminated before the function
added in SQL/92)—merits further discussion. Conceptually, we can th_ink‘of that ver. is applied. For MAX and.MIN, however DISTINCT is irrelevant and has no
sion of the query as being implemented as follows: ~ effect..

- The special function COUNT(*)—DISTIN! CT not allowed-— is provided to count

m First, the FROM clause is executed, to yield the Cartesian product S TIMES SP.2
- all rows in a table without any duplicate elimination.

m Next, the WHERE clause is executed, to yield a restriction of that product i
which the two CITY values in each row are equal (in other words, we have no
constructed the equijoin of suppliers and parts over cities).

m Finally, the SELECT clause is executed, to yield a projection of that restriction ove
the columns mentioned in the SELECT clause. The final result is the natural join

Any nulls in the argument column are always eliminated before the function is
e applied, regardless of whether DISTINCT is specified, except for the case of
' COUNT(*) where nulls are handled just like nonnull values.

- ’If the argument happens to be an empty set, COUNT returns a value of zero; the
other functions all return null. (We have argued elsewhere that this behavior is

Loosely speaking, therefore, FROM in SQL corresponds to Cartesian produc /loglcally 1ncorrect—see reference [8.19]—but it is the way SQL is defined.)

WHERE to restrict, and SELECT to project, and the SQL SELECT-FROM-WHER!

represents a projection of a restriction of a product. : 8 3.8 Get the maximum and minimum quantity for part P2.

SELECT' MAX { SP.QTY) AS MAXQ, MIN (SP.QTY) AS MINQ
FROM "~ sp i
WHERE S$P.P¥ = P20

8.3.5 Get all pairs of city names such that a supplier located in the first cit;
supplies a part stored in the second city.

SELECT DISTINCT S.CITY AS SCITY, P.CITY AS PCITY

Ob
S N 5o UoTNG o8 JOTN b USTNG BE serve that the FROM and WHERE clauses here both effectively provide patt of the

argument to the two aggregate functions. They should therefore 1o gically appear within
the argument- enclosing parentheses. Nevertheless, the query is indeed written 4s

Notice that the following is not correct, because it includes CITY as a joining colum:
Shown This unorthodox approach to syntax has significant negative repercussions on

in the second join:

a

230 4 Part Il The Relational Mo

the structure, usability, and orthogonality* of the SQL language. For instance, one iny
mediate consequence is that aggregate functions cannot be nested, with the result th;
query such as “Get the average total-part-quantity” cannot be formulated:without cu
bersome circumlocutions (because the expression AVG(SUM(QTY)) is not-lega]
Further details of such matters are beyond the scope of this book.

8.3.9 For each part supplied, get the part number and the total shipment qu;
tity. (Example 7.5.4)

SELECT SP.P#, SUM (SP.QTY) AS TOTQTY -
FROM SP
GROUP BY SP.P# ; B -

The foregoing is the SQL analog of the relational algebra expression .
SUMMARIZE SP BY (P#) ADD SUM (QTY) AS TOTQTY

Observe in particular that if the GROUP BY clause is specified, expressions in th

SELECT clause must be single-valued per group.
Here is an alternative formulation of the same query:

SELECT P.P#, (SELECT SUM (SP.QTY)
FROM SP
WHERE SP.P# = P.P#) AS TOTQTY

FROM P ;

The ability to use nested select expressions to represent scalar items (e.g., within th
SELECT clause, as here) was added in SQL/92 and represents a major improvem

over SQL as originally defined. In the example, it allows us to generate a result tha
includes rows for parts that are not supplied at all, which the previous formulatio
(using GROUP BY) does not. (The TOTQTY value for such parts will unfortunately b
given as null, however, not zero.) :

8.3.10 Get part numbers for all parts supplied by more than one supplier.

SELECT SP.P#

FROM SP

GROUP BY SP.P#

HAVING COUNT (SP.S#) > 1 ;
The HAVING clause is to groups what the WHERE clause is to rows; in other words
HAVING is used to eliminate groups, just as WHERE is used to eliminate rows. E;

pressions in a HAVING clause must be single-valued per group.

8.3.11 Get supplier names for suppliers who supply part P2. (Examples 6.6.
7.3.3)

* Orthogonality means independence. A language is orthogonal if independent concepts are kept indej
dent, not mixed together in confusing ways. Orthogonality is desirable because the less orthogonal a languag
the more complicated it is and— paradoxically but simultaneously—the less powerful it is.

8.3.12 Get suppliei{ names for supbli
ppliers wh
amples 6.6.2, 7.3.4) P o supply at least one red part. (Ex-

8.3.13 Get supplier numb iers wi ’
834 ers for suppliers with st N
m;xlmum otatus i the s e status less than the current

T

_chapter 8 The SQL Language '
: 231

SELECT DISTINCT S.SNAME
FROM S
WHERE S.S# IN
(SELECT SP.S#
FROM SP
WHERE SP.P# = 'p2')

’

Explanation: This example makes use of what is called a su ‘ j i

a subql'xery is a SELECT-FROM-WHERE-GROUP BY—P?X:I?I?]C‘}I;?(;?ZIS);?; ?lll(:llt]g
pested inside another such expression. Subqueries are typically used to represent th .
of values to be searched via an IN condition, as the example illustrates. The s setset
evaluates the overall query by evaluating the subquery first (at least conce[;tuall)nylm
subquery returns the set of supplier numbers for suppliers who supply part P2)llla;mela;

the set {S1,52,83,84}. The origi D _ ‘
pler one: } original expression is thus equivalent to the following sim-

SELECT DISTINCT S.SNAME
FROM S
WHERE S.S# IN ('s1+, 'g2°, 'S3', 'S4)

7

It is worth pointing out that the original problem—*“Get supplier names for suppli-

ers who supply part P2«
follows: PPy P —Can equally we?l be formulated by means of a join, e.g., as

- SELECT DISTINCT S.SNAME

FROM S, SP i
WHERE .S.S# = Sp.S#

AND SP.P¥ = 'p2"

SELECT DISTINCT S.SNAME
FROM S
WHERE S.S# IN
{ SELECT Sp.s#
FROM SP
WHERE SP.P# IN
{ SELECT P.p#
FROM P
WHERE P.COLOR = 'Red®))

7

SELECT S.S#
FROM s
WHERE S.STATUS <
(SELECT MAX { S.STATUS)
FROM. S')

7

232 : Part Ii The Relational Mo chapter 8 The SQL Language 233

This example involves two distinct implicit range variables, both denoteq by th¢ sa

“FORALL-type” queries typically have to be expressed in terms of a negated existen-
symbol “S” and both ranging over the S table.

tial quantifier, as in this example. ‘ :

‘ It is worth pointing out that expressions such as the one just shown, daunting
 though they might appear at first glance, are easily constructed by a user who is familiar

with relational calculus, as explained in reference [7.6]. Alternatively—if they are still

thought too daunting—then there are several “workaround” approaches that can be

—~

8.3.14 Get supplier names for suppliers who supply part P2. (Same as“ILExamp}
8.3.11)

SELECT DISTINCT S.SNAME

FROM S used that avoid the need for negated quantifiers. In the example, for instance, we nﬁght
FROM SP SELECT DISTINCT S.SNAME
XEERE g:i: z SPE#) VFJECE)gE f SELECT COUNT (SP.P#)
Explanation: The SQL expression “EXISTS (SELECT ... FROM ..) evaluates VF\IEEDI;IE :g.s# = S.8#) = (SELECT COUNT (P.P#)

true if and only if the result of evaluating the “SELECT . . . FRQM .. :” is not ?mpty
In other words, the SQL EXISTS function corresponds to the existential quannﬁerq

relational calculus (but see Chapter 20).

FROM Py ;

(“names of suppliers where the count of the parts they supply is equal to the count of all
- parts”). Note, however, that:
8.3.15 Get supplier names for suppliers who do not supply part P2. (Examp @

L w First, this latter formulation relies—as the NOT EXISTS formulation did not—on
6.6.6,7.3.7)

the fact that no part number appears in relation SP that does not also appear in

SELECT DISTINCT S.SNAME relation P. In other words, the two formulations are equivalent (and the second is

FROM S correct) only because a certain integrity constraint is in effect.
WHERE - NOT E;fIfTS » Second, the technique used in the second formulation to compare two counts was
T e not supported in SQL as originally defined but was added in SQL/92. It is still not
WHERE SP.S# = S.S# supported in all products.
AND SP.P# = 'P2') i m We remark too that what we would really like to do is to compare two tables (see
Alternatively: the discussion of relational comparisons in Chapter 6), thereby expressing the

query as follows:
SELECT DISTINCT S.SNAME

FROM S SELECT DISTINCT S.SNAME

WHERE S.S# NOT IN FROM S
(SELECT SP.S# WHERE (SELECT SP.P#
FROM sp FROM Sp
WHERE SP.P# = ‘'P2') ; WHERE SP.S# = S.S#) = (SELECT P.P#

V FROM P) ;
8.3.16 Get supplier names for suppliers who supply all parts. (Examples 6.6. '

:] SQL does not directly support comparisons between tables, however, and so we
7.3.6) . . i o .
have to resort to the trick of comparing table cardinalities instead (relying on our

SELECT DISTINCT S.SNAME own external knowledge to ensure that if the cardinalities are the same then the

oRE ISTS tables are the same too, at least in the situation under consideration). See Exercise
WHERE (zggngﬁ X 8.8 at the end of the chapter.
SECE)DR/IE ;OT EXISTS 8.3.17 Get part:numbers for parts that either weigh more than 16 pounds or
(SELECT * are supplied by supplier S2, or both. (Example 7.3.9)
FROM SP
WHERE Sp.Gh = S.GH SELECT P.p#
AND SP.P# = P.P¥)) ; FROM P
- ' : WHERE P.WEIGHT > 16
SQL does not include any direct support for the universal quantifier FORALL; henc UNION

234 Part Il The Relational M

SELECT SP.P# /
FROM SP
WHERE SP.S# = ‘82' ;

- 8.4.5 Multi-row DELETE.

DELETE
FROM SP
WHERE ‘London‘ =
{(SELECT S.CITY
FROM S
WHERE S.S# = SP.S#)

Redundant duplicate rows are always eliminated from the result of an unquali e
UNION, INTERSECT, or EXCEPT (EXCEPT is the SQL analog of our MINUS;
However, SQL also provides the qualified variants UNION ALL, INTERSECT ALL
and EXCEPT ALL, where duplicates (if any) are retained. We deliberately omit exam
. ples of these variants. o ‘

This brings us to the end of our list of retrieval examples. The list is rather. lon“
nevertheless, there are numerous SQL features that we ha\je not even; mentioney
The fact is, SQL is an extremely redundant language, in the sense that it almost4a:
ways provides numerous different ways of formulating‘the same query, and spac
simply does not permit us to describe all possible formulations and all poss1b1e oPtlon
even for the comparatively small number of examples we have discussed in th
section.

8.5 Table Expressions

An exhaustive treatment of table expressions would be out of place in this book. For
purposes of reference, however, we do at least give in Fig. 8.1 (overleaf) a fairly com-
plete BNF grammar for such expressions (the grammar is complete except for a few
options having to do with nulls). And we elaborate on one special case—arguably the
most important case in practice—namely, select expressions.

A select expression can be thought of, loosely, as a table expression that does not
involve any UNIONs, EXCEPTs, or INTERSECTs (“loosely,” because, of course,
such operators might be involved in expressions that are nested inside the select expres-
sion). As Fig. 8.1 indicates, a select expression consists of several components; a
SELECT clause, a FROM clause, a WHERE clause, a GROUP BY clause, and a
HAVING clause (the last three of these clauses are optional). We now proceed to ex-
plain each of these components one by one.

8.4 Data Manipulation: Update Operations

As already mentioned, the SQL DML includes three update opera.tions: INSER .
UPDATE (i.e., modify), and DELETE. We content ourselves here with a few simp!
examples, all of them (we trust) self-explanatory. »

8.4.1 Single-row INSERT. The SELECT clause

TNOBRT The SELECT clause takes the form
INTO P (P#, PNAME, COLOR, WEIGHT, CITY)
VALUES (‘'P8', 'Sprocket‘, ‘Pink’, 14, 'Nice') ;

SELECT [ALL | DISTINCT] select-item-commalist

8.4.2 Multi-row INSERT. Explanation:

INSERT

INTO TEMP (S#, CITY)
SELECT S.S#, S.CITY
FROM 3
WHERE S.STATUS > 15 ;

1. The select-item-commalist must not be empty. See below for a detailed discussion
of select-items.

2. If neither ALL nor DISTINCT is specified, ALL is assumed.

3. We assume for the moment that the FROM, WHERE, GROUP BY, and HAVING
clauses have already been evaluated. No matter which of those clauses are speci-
fied and which omitted, the conceptual result of evaluating them is always a table

8.4.3 Multi-row UPDATE.

UPDATE P _ (possibly a “grouped” table—see later), which we will refer to as table T/ (though
o ;EIIJZET:— iexizéigm + 5 the conceptual result is in fact unnamed).
WHERE P.CITY = 'Paris' ;

4. Let T2 be the table that is derived from T/ by evaluating the specified select-items

Multi UPDATE against T/ (see below).
8.4.4 Multi-row .

5. Let T3 be the table that is derived from 72 by eliminating redundant duplicate rows
UPDATE P from 72 if DISTINCT is specified, or a table that is identical to T2 otherwise.
SET CITY = (SELECT $.CITY ' .
FROM S 6. Table 73 is the final result.
WHERE S.S# = 'S5)
WHERE P.COLOR = 'Red‘ ;

We turn now to an explanation of select-items. There are two cases to consider, of

: er 8 The SQL Language 235
Chapt

‘chapter 8 The SQL Language 237

table-expression
ti= join-table-expression L. .
| nonjoin-table-expression N which the second is just shorthand for a commalist of select-items of the first form:
Join-table-expression thus, the first case is really the more fundamental.
ii= table-reference [NATURAL] JOIN
table-reference [ON conditional-expression
| USING (column-commalist)]
| table-reference CROSS JOIN table-reference

| (join-table-expression)

Case 1: The select-item takes the form

scalar-expression [[AS] column]

g The scalar expression will typically (but not necessarily) involve onye or more col-
umns of table T/ (see paragraph 2 above). For each row of T/, the scalar expression

table-reference

ii= table [[AS] range-variable
[(column-commalist)] | is evaluated, to yiel i i
| (table-expression) [AS | range-variable is€ , to yield a scalar result. The commalist of such results (corresponding

to evaluation of all select-items in the SELECT clause against a single row of T1)
constitutes a single row of table 72 (see paragraph 3 above). If the select-item in-
cludes an AS clause, the unqualified name column from that clause is assigned as
the name of the corresponding column of tablé 72* (the optional keyword AS is
just noise and can be omitted without affecting the meaning). If the select-item
does not include an AS clause, then (a) if it consists simply of a (possibly qualified)
column name, that column name is assigned as the name of the corresponding col-
umn of table T2; (b) otherwise the corresponding column of table 72 effectively
has no name.

[(column-commalist)]
| join-table-expression

nonjoin-table-expression
1= nonjoin-table-term
| table-expression UNION [ALL]
[CORRESPONDING [BY (column-commalist)]]
table-term
| table-expression EXCEPT [ALL]
[CORRESPONDING [BY (column-commalist } 1 1
table-term

nonjoin-table-term
o= nonjoin-table-primary
| table-term INTERSECT [ALL]
[CORRESPONDING [BY (column-commalist)]]
table-primary

» [faselect-item includes an aggregate function reference and the select expression
does not include a GROUP BY clause (see below), then no select-item in the
SELECT clause can include any reference to a column of table 7/ unless that col-
umn reference is the argument (or part of the argument) to an aggregate function
reference.

table-term
1= nonjoin-table-term
| join-table-expression

table-primary
1= nonjoin-table-primary
| join-table-expression

Case 2: The select-item takes the form

[range-variable .] *

nonjoin-table-primary
= TABLE table
| table-constructor
| select-expression
| (nonjoin-table-expression)

n If the qualifier is omitted (i.e., the select-item is just an unqualified asterisk), then
this select-item must be the only:select-item in the SELECT clause. This form is
shorthand for a commalist of all of the columns of table T, in left-to-right order.

» If the qualifier is included (i.e., the select-item consists of an asterisk qualified by
arange variable name R, thus: “R.*”), then the select-item represents a commalist
of all of the columns of the table associated with range variable R, in left-to-right
order. (Recall that a table name can and often will be used as an implicit range
variable. Thus, the select-item will frequently be of the form “T.*” rather than
“R.*7)

table-constructor
ii= VALUES row-constructor-commalist

row-constructor
s3= scalar-expression
| (scalar-expression-commalist
| (table-expression) -

select-expression
1= SELECT [ALL | DISTINCT] select-item-commalist
FROM table-reference-commalist
[WHERE conditional-expression]
[GROUP BY column-commalist]
[HAVING conditional-expression]

The FROM Clause
The FROM clause takes the form

select-item
A scalar-expression [[AS | column]
| [range-variable .] *

FROM table-reference-commalist

* Because it is, specifically, the name of a column of table T2, not table T, any name introduced by such an

AS clause cannot be used in the WHERE, GROUP BY, and HAVING clauses (if any) directly involved in the

innStruction of that table 7. It can, however, be referenced in an associated ORDER BY clause, and also in an
outer” table expression that contains the select expression under discussion nested within it.

FIG. 8.1 A BNF grammar for SQL table expressions

238 Part Il The Relational Modg chapter 8 The SQL Language 239
The table-reference-commalist must not be empty. Let the specified table, reference
evaluate to tables A, B, . . . C, respectively. Then the result of evaluating the FR

clause is a table that is equal to the Cartesian product of A, B, . . . C. Note: The Carf
sian product of a single table T is defined to be equal to 7; in other words, it is (¢
course) legal for the FROM clause to contain just a single table reference. -

Let G be the grouped table resulting from the evaluation of the immediately preceding
FROM clause, WHERE clause (if any), and GROUP BY clause (if any). If there is no
GROUP BY clause, then G is taken to be the result of evaluating the FROM and
WHERE clauses alone, considered as a grouped table that contains exactly one group;*
-~ in-other words, there is an implicit, conceptual GROUP BY clause in this case that
speciﬁes no grouping columns at all. The result of the HAVING clause is a grouped
table that is derived from G by eliminating all groups for which the conditional expres-
sion does not evaluate to true.

The WHERE Clause

The WHERE clause takes the form ‘
" Note 1: If the HAVING clause is omitted but the GROUP BY clause is included, the
result is simply G. If the HAVING and GROUP BY clauses are both omitted, the result
is simply the “proper”—i.e., nongrouped—table T resulting from the FROM and
WHERE clauses.

~ Note 2: Scalar. expressions in.a HAVING clause must be single-valued per group (like
scalar expressions in the SELECT clause if there is a GROUP BY clause, as discussed
above). '

Note 3: It is worth mentioning that the HAVING clause is totally redundant—i.e., for

every select expression that involves such a clause, there is a semantically identical
select expression that does not (exercise for the reader!).

WHERE conditional-expression

Let 7 be the result of evaluating the immediately preceding FROM clause. Then the
result of the WHERE clause is a table that is derived from 7 by eliminating all rows fi
which the conditional expression does not evaluate to true. If the WHERE clause °
omitted, the result is simply 7. '

The GROUP BY Clause
The GROUP BY clause takes the form

GROUP BY column-commalist

The column-commalist must not be empty. Let T be the result of evaluating the imm
diately preceding FROM clause and WHERE clause (if any). Each column mention
_in the GROUP BY clause must be the optionally qualified name of a column of 7. T
result of the GROUP BY clause is a grouped table—i.c., a set of groups of row
derived from T'by conceptually rearranging it into the minimum number of groups su
that within any one group all rows have the same value for the combination of column
identified by the GROUP BY clause. Note carefully, therefore, that the result is thus n
a proper table. However, a GROUP BY clause never appears without a correspondi
SELECT clause whose effect is to derive a proper table from that improper intermed
ate result, so little harm is done by this temporary deviation from the pure tabul

A Comprehensive Example

We conclude our discussion of select expressions with a reasonably complex example that
illustrates some (by no means all) of the points explained above. The query is as follows:

For all red and blue parts such that the total quantity supplied is greater than 350
(excluding from the total all shipments for which the quantity is less than or equal
to 200), get the part number, the weight in grams, the color, and the maximum
quantity supplied of that part.

SELECT P.P#,

‘Weight in grams =' AS TEXTL1,
framework. o o P.WEIGHT * 454 AS GMWT,
If a select expression includes a GROUP BY clause, then there are restrictions P.COLOR,

'Max quantity =' AS TEXT2,
MAX (SP.QTY)- AS MQY
FROM .P, SP
WHERE P.P# = SP.P# :
AND (P.COLOR = 'Red' OR P.COLOR = 'Blue‘)
AND SP.QTY > 200
GROUP BY P.P#, P.WEIGHT, P.COLOR
HAVING SUM (SP.QTY) > 350

the form that the SELECT clause can take. To be specific, each select-item in the;
SELECT clause (including any that are implied by an asterisk shorthand) must be singl
valued per group. Thus, such select-items must not include any reference to any ¢
umn of table T that is not mentioned in the GROUP BY clause itself—unless that ref:
erence is the argument, or part of the argument, to one of the aggregate function‘sﬁ .
COUNT, SUM, AVG, MAX, or MIN, whose effect is to reduce some collection
scalar values from a group to a single such value. !
i Explanation: First, note that (as explained above) the clauses of a select expression are

The HAVING Clause conceptually executed in the order in which they are written—with the sole exception

The HAVING clause takes the form

* This is what SQL says, though logically it should say af most one group (there should be no group at all if

HAVING conditional-expression the FROM and WHERE clauses yield an empty table).

240 : Part Il The Relational Mo Chapter 8 The SQL Language : 241
product in Stfap L. Con'siderations such as these are exactly the reason why relational
gystems require an optimizer (see Chapter 18). Indeed, the task of the optimizer in an
SQL system can be characterized as that of finding an implementation procedure that

will produce the same result as the conceptual algorithm sketched above but is more
efficient than that algorithm. :

of the SELECT clause itself, which is executed last. In the examplé, therefore, we ¢
imagine the result being constructed as follows:

1. FROM: The FROM clause is evaluated to yield a new table that is the Cartesi
product of tables P and SP. ’

2. WHERE: The result of Step 1 is reduced by the elimination of all rows that do
satisfy the WHERE clause. In the example, therefore, rows not satisfying the ¢

ditional expression 8.6 Conditional Expressions

P.P# = SP.P# AND
(P.COLOR = 'Red' OR P.COLOR = 'Blue') AND
SP.QTY > 200

- Like table expressions, conditional expressions appear in numerous contexts through-
out the SQL language; in particular, of course, they are used in WHERE clausesg to
qualify or disqualify rows for subsequent processing. Here we discuss some of the most
important features of such expressions. Please note, however, that our treatment is def-
initely not meant to be exhaustive; in particular, we ignore everything to do with nulls
(Conditional expressions, perhaps more than most other parts of the language require;
gigniﬁf:antly extended treatment when the implications and complications of r’lulls are
taken into account, and certain conditional expression formats, not discussed in this
chapter,‘ are provided purely to deal with certain aspects of null support.)

As in the previous section, we begin with a BNF grammar (Fig. 8.2, overleaf). The
reader will see that most conditional expression formats either have already been illus-
trated in earlier sections or else are self-explanatory; here we just offer a few words of

explanation regarding a couple of specific cases, namely MATCH conditions and ali-
or-any conditions.

are eliminated.

3. GROUP BY: The result of Step 2 is grouped by values of the column(s) named
the GROUP BY clause. In the example, those columns are P.P#, P.WEIGHT, a
P.COLOR. Note: In theory P.P# alone would be sufficient as the grouping colu
here, since P.WEIGHT and P.COLOR are themselves single-valued per part n
ber. However, SQL is not aware of this latter fact, and will raise an error conditiof
if P.WEIGHT and P.COLOR are omitted from the GROUP BY clause, becaus
they are mentioned in the SELECT clause. See reference [9.6] in Chapter 9.

4. HAVING: Groups not satisfying the condition

SUM (SP.QTY) > 350
are eliminated from the result of Step 3. 5

5. SELECT: Each group in the result of Step 4 generates a single result row, as fol
lows. First, the part number, weight, color, and maximum quantity are extrac
from the group. Second, the weight is converted to grams. Third, the two lite
strings “Weight in grams =" and “Max quantity =" are inserted at the appropriaf
points in the row. Note, incidentally, that—as the phrase “appropriate points in th
row” suggests—we are relying here on the fact that columns of tables have a left
to-right ordering in SQL. The literal strings would not make much sense if they
not appear at those “appropriate points.”

MATCH Conditions
AMATCH condition takes the form

row-constructor MATCH UNIQUE ¢ table-expression)

Let 7/ be the row thgt results from evaluating row-constructor and let T be the table that
fesults from evaluatu?g table-expression. Then the MATCH condition evaluates to frue
if and only if T contains exactly one row, r2 say, such that the comparison

rl = r2

The final result looks like this:
evaluates to true. Here is an example:

P# TEXT1 GMWT COLOR TEXT2 MQY SELECT Sp. *

Pl | Weight in grams = | 5448 | Red Max quantity = | 300 FROM SP

P5 | Weight in grams = | 5448 | Blue Max quantity = 400 | WHERE NOT (SP.S# MATCH UNIQUE (SELECT S.S# FROM S))
P3 | Weight in grams = | 7718 | Blue Max quantity = | 400 !

é Get shipments .that do not havc? exactly one matching supplier in the suppliers table™).

uch a query might be useful in checking the integrity of the database, because, of

course, there should not be any such shipments if the database is correct’ Note h(;w-

ever, thgt an IN condition could be used to perform the same check. . ’

MAF}ré:Il_;iintally, the UNIQUE c?ln be omitted from MATCH UNIQUE, but then
ecomes synonymous with IN (at least in the absence of nulls).

In conclusion, please understand that the algorithm just described is inten
purely as a conceptual explanation of how the SELECT statement is evaluated. Th
algorithm is certainly correct, in the sense that it is guaranteed to produce the corr
result. However, it would probably be rather inefficient if actually executed. For exan
ple, it would be very unfortunate if the system were actually to construct the Carteslal

242

chapter 8 The 5QL Language 243

conditional-expression
1= conditional-term
| conditional-expression OR conditional-term W

conditional-term
ti= conditional-factor)
| conditional-term AND conditional-factor

conditional-factor
1= [NOT] conditional-primary

conditional-primary
1= simple-condition | (conditional-expression)
simple-condition
1= comparison-condition
| in-condition
| match-condition
| all-or-any-condition
| exists-condition

comparison-condition)
1= row-constructor comparison-operator row-constructor

comparison-operator
pi= =] < | <=1 > >=] <>

in-condition
ti= row-constructor [NOT 1 IN (table-expression)
| scalar-expression [NOT] IN
(scalar-expression-commalist)

match-condition
1= row-constructor MATCH UNIQUE (table-expression)

all-or-any-condition
1= row-constructor
comparison—operatog ALL { table-expression)
| row-constructor
comparison-operator ANY (table-expression)

exists-condition
1= EXISTS (table-expression)

- where comparison-operator is any of the usual set (=, <>, etc.), and qualifieris ALL or
ANY.In general, an all-or-any condition evaluates to true if and only if the correspondt\
ing comparison without the ALL (respectively ANY) evaluates to zrue for all (respec-
tively any) of the rows in the table represented by table-expression. (If that table is
empty, the ALL conditions evaluate to true, the ANY conditions evaluate to Salse.)
Here is an example ("Get part names for parts whose weight is greater than that of every
blue part”):

SELECT DISTINCT PX.PNAME
FROM P AS PX
WHERE PX.WEIGHT >ALL (SELECT PY.WEIGHT

FROM P AS PY
WHERE PY.COLOR = 'Blue') ;

The result looks like this:

PNAME

Cog

Explanation: The nested table expression returns the set of weights for blue parts
namely the set {17,12}. The outer SELECT then returns the name of the only pari
whose weight is greater than every value in this set, namely part P6. In general, of
course, the final result might contain any number of part names (including zero). ’

A word of caution is appropriate here, at least for native English speakers. The fact
is, all-or-any conditions are seriously error-prone. A very natural English formulation
of the foregoing query would use the word “any” in place of “every,” which could
easily lead to the (incorrect) use of >ANY instead of >ALL. Analogous criticisms
apply to every one of the ANY and ALL operators.

8.7 Scalar Expressions

Scal‘ar expressions in SQL are essentially straightforward. We content ourselves in this
section with a list of some of the most important operators that can be used in the
construction of such expressions, and offering a few additional comments on a couple
of those operators—CASE and CAST—whose meaning is perhaps not immediately
apparent. Note that the aggregate functions also can appear within such expressions
since they return a scalar result. Furthermore, a table expression enclosed in parenthe—’

FIG

.8.2 A BNF grammar for SQL conditional expressions

All-or-Any Conditions

An all-or-any condition has the general form

row-constructor
comparison-operator qualifier (table-expression)

ses can also be treated as a scalar value, so long as it evaluates to a table of exactly one
Tow and one column. As mentioned earlier (in the discussion of Example 8.3.9), this
last possibility, which was introduced with SQL/92, represents a major improve;nent
over SQL as originally defined.

Here then is the list of operators, in alphabetic order.

arithmetic operators (+, -, *, /) OCTET_LENGTH
BIT_LENGTH POSITION
CASE SESSION_USER

244 Part Il The Rel{cional Mod?

CAST SUBSTRING
CHARACTER_LENGTH SYSTEM_USER
concatenation (1) TRIM o
CURRENT_USER UPPER

LOWER USER

We now elaborate slightly on the operators CASE and CAST.

CASE Operations

A CASE operation returns one of a specified set of values, dependmg ona spe01f1e
condition. For example:

CASE
WHEN S.STATUS < 5 THEN 'Last resort'
WHEN S.STATUS < 10 THEN 'Dubious'
WHEN S.STATUS < 15 THEN 'Not too good’
WHEN S.STATUS < 20 THEN 'Mediocre!’
WHEN S.STATUS < 25 THEN 'Acceptable’
ELSE 'Fine'
END
CAST Operations
CAST converts a specified scalar value to a spec:1f1ed scalar data type (poss1b1y ause
defined domain). For example: o

CAST ('S8' AS sS#) ‘

Not all pairs of data types are mutually convertible; for example, conversions betwee
numbers and bit strings are not supported. The reader is referred to reference [8.1] f
details of precisely which data types can be converted to which.

8.8 Embedded SQL

As explained in Chapter 3, SQL statements can be executed interactively, or they ca
be executed as part of an application program (in which case the SQL statements ar
physically embedded within the program source code, intermixed with the statemen
of the host language). Up to this point, however, we have ignored the latter case an
have tacitly assumed—where it made any difference—that the language was bein
used interactively. Now we turn our attention to embedded SQL specifically.
The fundamental principle underlying embedded SQL, which we refer to as t!
dual-mode principle, is that any SQL statement that can be used interactively can al
_be used in an application program. Of course, there are various differences of det:
operations in particular require significantly extended treatment in a host program
vironment (see later); but the principle is nevertheless broadly true. (Its converse is no

between a given interactive SQL statement and its embedded counterpart, and retrievall

FIG.8.3 Fragment of a PL/I program with embedded SQL

Chapter 8 The SQL Language ‘ 245

by the way; that is, there are a number of embedded SQL statements that cannot be used
interactively, as we will see.)
Note clearly also that the dual-mode principle applies to the entire SQL language,

“pot just to the data manipulation operations. It is true that the DML operations are far
- and away the ones most frequently used in a programming context, but there is nothing

wrong in embedding (for example) a CREATE TABLE statement in a program, if it
‘makes sense to do so for the application at hand.
Before we can discuss the actual statements of embedded SQL, it is necessary to

_cover a number of preliminary details. Most of those details are illustrated by the pro-

gram fragment shqwn in Fig. 8.3. (To fix our ideas we assume that the host language is
PL/L. Most of the ideas translate into other host languages with only minor changes.)
Points arising: v

1. Eml')edd‘ed SQL statements are prefixed by EXEC SQL, so that they can easily be
distinguished from statements of the host language, and are terminated by a special
terminator symbol (a semicolon for PL/T).

2. An executable SQL statement (from now on we will usually drop the “embedded”)
can appear wherever an executable host statement can appear. Note the qualifier
“executable” here: Unlike interactive SQL, embedded SQL includes some state-
ments that are purely declarative, not executable. For example, DECLARE
CURSOR is not an executable statement (see later), nor are BEGIN and END
DECLARE SECTION (see paragraph 5 below), and nor is WHENEVER (see
paragraph 9 below).

3. SQL statements can include references to host variables; such references must
include a colon prefix to distinguish them from SQL column names. Host variables

EXEC SQL BEGIN DECLARE SECTION ;

DCL SQLSTATE CHAR(5) ;
DCL P# CHAR(6) ;
DCL WEIGHT FIXED DECIMAL(3) ;

EXEC SQL END DECLARE SECTION ;
P# = 'pP2' ; /* for example */ w
EXEC SQL SELECT P.WEIGHT

INTO :WEIGHT

FROM P
WHERE P.P# = :P# ;
IF SQLSTATE = *00000°

THEN ... ;
ELSE ... ;

/* WEIGHT = retrieved value */
/* some exception occurred */

P

246 Part It The k;eﬁlaitional M
can appear in embedded SQL (DML statements only) wherever a literal can appe;
in interactive SQL. They can also appear in an INTO clause on SELECT (see par;
graph 4 below) or FETCH (see later) to designate targets for retneval and in Ce
tain “dynamic SQL” statements (again, see later).

4. Notice the INTO clause on the SELECT statement in Fig. 8.3. The purpose of th
clause is (as just indicated) to specify the target variables into which values are;
be retrieved; the ith target variable mentioned in the INTO clause corresponds
the ith value to be retrieved as specified by the SELECT clause.

5. All host variables that will be referenced in SQL statements must be defmed with;
an embedded SQL declare section, which is delimited by the BEGIN and END
DECLARE SECTION statements.

6. Every embedded SQL program must include a host variable called SQLSTATE
After any SQL statement has been executed, a status code is returned to the pro:
gram in that variable; in particular, a status code of 00000 means that the stateme
executed successfully, and a value of 02000 means that the statement did execu
but no data was found to satisfy the request. In principle, therefore, every SQ
statement in the program should be followed by a test on SQLSTATE, and appn
priate action taken if the value is not what was expected. In practice, however, su
testing is usually implicit. See paragraph 9 below.

7. Host variables must have a data type appropriate to the uses to which they are pu
In particular, a host variable that is to be used as a target (e.g., on 'FETCH) mu
have a data type that is compatible with that of the expression that provides th
value to be assigned to that target; likewise, a host variable that is to be used as 2
source (e.g., on UPDATE) must have a data type that is compatible with that of t
SQL column to which values of that source are to be assigned. Similar remarl
apply to a host variable that is to be used in a comparison, or indeed in any kind
scalar expression. For details of what it means for data types to be compatible
the foregoing sense, the reader is referred to the official standard document [8.1

8. Host variables and SQL columns can have the same name.

9. As already mentioned, every SQL statement should in principle be followed by
test of the returned SQLSTATE value. The WHENEVER statement is provided
simplify this process. The WHENEVER statement has the syntax:

EXEC SQL WHENEVER condition action terminator]

where terminator is as explained in paragraph 1 above, condition is eith
SQLERROR or NOT FOUND, and “action” is either CONTINUE or a GO T
statement. WHENEVER is not an executable statement; rather, it is a directive

* Earlier versions of SQL used a variable called SQLCODE in place of SQLSTATE; SQLSTATE w
added in SQL/92, and SQLCODE is now officially “deprecated,” because most of its values (unlike those
SQLSTATE) are implementation-defined instead of being prescribed by the standard.

chapter 8 The SQL Language

247

the SQL language processor. “WHENEVER condition GO TO label” causes that
processor to insert an “IF condition GO TO label” statement after each executable
SQL statement it encounters; “WHENEVER condition CONTINUE” causes it not
to insert any such statements, the implication being that the programmer will insert
such statements by hand. The two conditions are defined as follows:

NOT FOUND means no data was found

(SQLSTATE = 02000)
an error occurred
(see reference [8.1] for SQLSTATE)

SQLERROR means

Each WHENEVER statement the SQL processor encounters on its sequential scan
through the program text (for a particular condition) overrides the previous one it
found (for that condition).

So much for the preliminaries. In the rest of this section we concentrate on DML

operations specifically. As already indicated, most of those operations can be handled
in a fairly straightforward fashion (i.e., with only minor changes to their syntax). Re-
trieval operations require special treatment, however. The problem is that such opera-
tions retrieve many rows (in general), not just one, and host languages are typically not
equipped to handle the retrieval of more than one row at a time. It is therefore necessary
to provide some kind of bridge between the set-at-a-time retrieval level of SQL and the
row-at-a-time retrieval level of the host; and cursors provide such a bridge. A cursor is
anew kind of SQL object, one that applies to embedded SQL only (because of course
interactive SQL has no need of it). It consists essentially of a kind of pointer that can be
used to run through a collection of rows, pointing to each of the rows in turn and thus
providing addressability to those rows one at a time. However, we defer detailed dis-
cussion of cursors to a later subsection, and consider first those statements that have no
need of them.

Operations Not Involving Cursors

The data manipulation statements that do not need cursors are as follows:

“Singleton SELECT”

INSERT

UPDATE (except the CURRENT form—see later)
DELETE (again, except the CURRENT form—see later)

We give examples of each of these statements in turn.

8.8.1 (Singleton SELECT) Get status and city for the supplier whose supplier
number is given by the host variable GIVENS#.

EXEC SQL SELECT STATUS, CITY

INTO :RANK, :CITY
FROM S
WHERE S# = :GIVENS# ;

S

ol
248 Part Il The Relational Mo chapter 8 The SQL Language 249
We use the term singleton SELECT to mean a select expression* that evaluates t
table containing at most one row. In the example, if there exists exactly one row in ta EXEC SQL ggfggiE SX SEUBEOSN;CZE . ST;TSmee the cursor */
S satisfying the WHERE condition, then the STATUS and CITY values from that r FROM S C

will be assigned to the host variables RANK and CITY as requested, and SQLSTA WHERE S.CITY = :Y ;

will be set to 00000. If no S row satisfies the WHERE condition, SQLSTATE will
set to 02000; and if more than one does, the program is in error, and SQLSTATE wi]]
be set to an error code. :

EXEC SQL OPEN X ; /* execute the query */
DO for all S rows accessible via X ;
EXEC SQL FETCH X INTO :S#, :SNAME, :STATUS ;
- . » * :
8.8.2 (INSERY) Insert a new part (part number, name, and weight given by host /7 fetch next supplier ¢/

variables P#, PNAME, PWT, respectively; color and city unknown) into table

END ; t
EXEC SQL CLOSE X ; /* deactivate cursor X */

EXEC SQL INSERT
INTO P (P#, PNAME, COLOR, WEIGHT, CITY)
VALUES (:P#, :PNAME, DEFAULT, :PWT, DEFAULT) ;

FIG. 8.4 Multi-row retrieval

8.8.3 (UPDATE) Increase the status of all London suppliers by the amount giv

by the host variable RAISE.
resulting set, assigning retrieved values to host variables in accordance with the speci-

fications of the INTO clause in that statement. (For simplicity we have given the host
variables the same names as the corresponding database columns. Notice that the
SELECT in the cursor declaration does not have an INTO clause of its own.) Since
there will be many rows in the result set, the FETCH will normally appear within a loop
(DO ... END in PL/I); the loop will be repeated so long as there are more rows still to
come in that result set. On exit from the loop, cursor X is closed.

Now let us consider cursors and cursor operations in more detail. First, a cursor is
declared by means of a DECLARE CURSOR statement, which takes the general form

EXEC SQL UPDATE S
SET STATUS = STATUS + :RAISE

WHERE CITY = 'London’' ;
If no supplier rows satisfy the WHERE condition, SQLSTATE will be set to 02000

: 8.8.4 (DELETE) Delete all shipments for suppliers whose city is given by t
host variable CITY.

EXEC SQL DELETE
FROM SP
WHERE :CITY =
(SELECT CITY
FROM S -
WHERE S.S# = SP.S#) ;

Again SQLSTATE will be set to 02000 if no rows satisfy the WHERE condition.

EXEC SQL DECLARE cursor CURSOR
FOR table-expression
[ORDER BY order-item-commalist] ;

where table-expression and order-item-commalist are as described earlier in this chap-
ter. For an example, see Fig. 8.4. Note: We are ignoring a few optional specifications
in the interests of brevity. See reference [8.1] or reference (8.5] for further details.

As previously stated, the DECLARE CURSOR statement is declarative, not exe-
cutable; it declares a cursor with the specified name and having the specified table
expression permanently associated with it. The table expression can include host vari-
able references. A program can include any number of DECLARE CURSOR state-
ments, each of which must (of course) be for a different cursor.

Three executable statements are provided to operate on cursors: OPEN, FETCH,
and CLOSE.

Operations Involving Cursors

Now we turn to the question of set-level retrieval—i.e., retrieval of an entire set of
many rows, instead of just one row. As explained earlier, what is needed here is 2
mechanism for accessing the rows in the set one by one, and cursors provide suc
mechanism. The process is illustrated in outline by the example of Fig. 8.4, which
intended to retrieve supplier details (S#, SNAME, and STATUS) for all suppliers in the
city given by the host variable Y.

Explanation: The DECLARE X CURSOR . .. statement defines a cursor called X
with an associated table expression as specified by the SELECT that forms part of tha
DECLARE. That table expression is not evaluated at this point; DECLARE CURSOR
is a purely declarative statement. The expression is evaluated when the cursor
opened. The FETCH statement is then used to retrieve rows one at a time from

1. The statement

EXEC SQL OPEN cursor ;

opens or activates the specified cursor (which must not currently be open). In ef-
fect, the table expression associated with the cursor is evaluated (using the current
values for any host variables referenced within that expression); a set of rows is
thus identified and becomes the current active set for the cursor. The cursor also

* It is not quite a select expression as defined in Section 8.5, owing to the presence of the INTO clause.

250 Part Il Thetﬁelational Mod

identifies a position within that active set, namely the position just before the firs
row in the set. (Active sets are always considered to have an ordering, so that th
concept of position has meaning. The ordering is either that defined by the ORDE]
BY clause, or a system-determined ordering in the absence 'of such a clause.)

2. The statement
EXEC SQL FETCH cursor INTO host-variable-commaligst ;
advances the specified cursor (which must be open) to the next row in the active se
and then assigns values from that row to host variables as specified in the INT

clause. If there is no next row when FETCH is executed, then SQLSTATE is set t
02000 and no data is retrieved. : :

3. The statement

EXEC SQL CLOSE cursor ;

closes or deactivates the specified cursor (which must currently be open). The cur
sor now has no current active set. However, it can subsequently be opened again

in which case it will acquire another active set—probably not exactly the same set §
as before, especially if the values of any host variables referenced in the cursof |

declaration have changed in the meantime. Note that changing the values of thos
host variables while the cursor is open has no effect on the current active set.

Two further statements can include references to cursors. These are the
CURRENT forms of UPDATE and DELETE. If a cursor, X say, is currently posi
tioned on a particular row, then it is possible to UPDATE or DELETE the “current o
X,” i.e., the row on which X is positioned. For example: '

EXEC SQL UPDATE S
SET STATUS = STATUS + :RAISE
WHERE CURRENT OF X ;

UPDATE . . . WHERE CURRENT and DELETE . . . WHERE CURRENT are nol
permitted if the table expression in the cursor declaration would define a nonupdatable
view if it were part of a CREATE VIEW statement (see Chapter 17).

Dynamic SQL

Dynamic SQL consists of a set of embedded SQL facilities that are provided specific
ally to allow the construction of generalized, online, and possibly interactive applica
tions. (Recall from Chapter 1 that an online application is an application that sﬁpport(
access to the database from an online terminal.) Consider what a typical online applica:
tion has to do. In outline, the steps it must go through are as follows. '

1. Accept a command from the terminal.

2. Analyze that command.

3. Issue appropriate SQL statements to the database.

4, Return a message and/or results to the terminal.

N

chapter 8 The SQL Language . ‘ 251

If the set of commands the program can accept is fairly small, as in the case of

' , (perhaps) a program handling airline reservations, then the set of possible SQL state-

ments to be issued will probably also be small and can be “hardwired” into the program,
In this case, Steps 2 and 3 above will consist simply of logic to examine the input
command and then branch to the part of the program that issues the predefined SQL
statement(s). If, on the other hand, there can be great variability in the input, then it
might not be practicable to predefine and “hardwire” SQL statements for every possible
command. Instead, it is probably much more convenient to construct the necessary

* SQL statements dynamically, and then to compile and execute those constructed state-

ments dynamically. The facilities of dynamic SQL are provided to assist in this process.
The two principal dynamic statements are PREPARE and EXECUTE. Their use is
illustrated in the following (unrealistically simple but accurate) example.

DCL SQLSOURCE CHAR VARYING (65000)

SQLSOURCE = 'DELETE FROM SP WHERE SP.QTY < 300' ;
EXEC SQL PREPARE SQLPREPPED FROM :SQLSOURCE ;
EXEC SQL EXECUTE SQLPREPPED ;

Explanation:

1. The name SQLSOURCE identifies a PL/I varying length character string variable
in which the program will somehow construct the source form (i.e., character string
representation) of some SQL statement—a DELETE statement, in our particular
example.

2. The name SQLPREPPED, by contrast, identifies an SQL variable, not a PL/I vari-
able, that will be used (conceptually) to hold the compiled form of the SQL state-

ment whose source form is given in SQLSOURCE. The names SQL.SOURCE and
SQLPREPPED are arbitrary, of course.

3. The assignment statement “SQLSOURCE = . . . ;” assigns to SQLSOURCE the

source form of an SQL DELETE statement. In practice, of course, the process of
constructing such a source statement is likely to be much more complex—perhaps
involving the input and analysis of some request from the end-user, expressed in
natural language or some other form more “user-friendly” than plain SQL.

4. The PREPARE statement then takes that source statement and “prepares” (i.e.,
compiles) it to produce an executable version, which it stores in SQLPREPPED.
3. Finally, the EXECUTE statement executes that SQLPREPPED version and thus

causes the actual DELETE to occur. SQLSTATE information from the DELETE
is returned exactly as if the DELETE had been executed directly in the normal way.

Note that since it denotes an SQL variable, not a PL/I variable, the name
SQLPREPPED does not have a colon prefix when it is referenced in the PREPARE and

EXECUTE statements. Note too that such SQL variables are not explicitly declared.

Incidentally, the process just described is exactly what happens when SQL state-

ments themselves are entered interactively. Most systems provide some kind of inter-

active SQL query processor. That processor is in fact just a particular kind of general-

252 : | Part Il The Relational Mog chapter 8 The SQL Language 253
= The basic SELECT clause itself, including the use of DISTINCT, scalar ex-

ized online application; it is ready to accept an extremely wide variety of input, viz. an
pressions, the introduction of result column names, and “SELECT *”

valid (or invalid!) SQL statement. It uses the facilities of dynamic SQL to constru
suitable SQL statements corresponding to its input, to compile and execute those co
structed statements, and to return messages and results back to the terminal.

For more information regarding dynamic SQL, see reference [8.1] or reference [8.5

» The FROM clause, including the use of range variables and the use of table
references within the FROM clause that are more complex than just a simple
table name

= The WHERE clause, including the use of subqueries and the EXISTS function

» The GROUP BY and HAVING clauses, including the use of the aggregate
functions COUNT, SUM, AVG, MAX, and MIN

We also gave a conceptual evaluation algorithm (i.e., an outline of a formal def-
inition) for select expressions.

3. We briefly described the update operations INSERT, UPDATE, and DELETE.

8.9 Summary

This concludes our survey of the major features of the SQL standard (“SQL/92”)'. W
began by discussing the basic data objects. To review, the principal DDL statemen
are as follows: '
Next, we gave more details of (a) table expressions (including a BNF grammar);
(b) conditional expressions (again including a BNF grammar, and elaborating on
MATCH conditions and all-or-any conditions in particular); and (c) scalar expres-
sions (elaborating on the operators CASE and CAST). We also stressed the point that
a select expression that evaluates to a single-column, single-row table can be used as a
scalar value (e.g., within a SELECT or WHERE clause).

Finally, we described the principal features of embedded SQL. The basic idea
behind embedded SQL is the dual-mode principle, i.e., the principle that (insofar as
possible) any SQL statement that can be used interactively can also be used in an ap-
plication program. The major exception to this principle arises in connection with
multi-row retrieval operations, which require the use of a cursor to bridge the gap
between the set-at-a-time retrieval level of SQL and the row-at-a-time retrieval level of
host languages such as PL/I. (Perhaps this is the place to mention that the SQL standard
[8.1] also supports Ada, C, COBOL, Fortran, MUMPS, and Pascal in addition to PL/L.)
Following a number of necessary (though mostly syntactic) preliminaries—includ-
ing in particular a brief explanation of SQLSTATE—we considered those operations,
namely singleton SELECT, INSERT, UPDATE, and DELETE, that have no need
for cursors. Then we turned to the operations that do need cursors, and discussed
DECLARE CURSOR, OPEN, FETCH, CLOSE, and the CURRENT forms of
UPDATE and DELETE. (The standard refers to the CURRENT forms of these oper-
ators as positioned UPDATE and DELETE, and uses the term searched UPDATE and
DELETE for the nonCURRENT or “out of the blue” forms.) Finally, we gave a very
brief introduction to the concept of dynamic SQL, mentioning the PREPARE and
EXECUTE statements in particular.

CREATE DOMAIN CREATE TABLE
ALTER DOMAIN ALTER TABLE
DROP DOMAIN DROFP TABLE

Two further DDL statements, CREATE and DROP VIEW, are discussed in Chapter 1

1. Regarding domains, we stressed the point that domains in SQL are very far fro
being true relational domains; in fact, SQL domains are basically little more than
shorthand. More precisely, they provide (a) domain-level data type specification
(b) domain-level default definitions, and (c) domain-level integrity constrain
We summarized SQL’s scalar data types, but omitted much of the complexity (u
warranted complexity, in this writer’s opinion) that attaches to other aspects
SQL-style domains. ' ‘

2. Regarding base tables, we first pointed out that SQL tables in general differ fro
true relations in at least two respects: They permit duplicate rows, and they have
left-to-right ordering to their columns. Base tables in particular have one or more
columns, zero or more declared candidate Keys (of which at most one can be d -
clared to be the primary key), zero or more declared foreign keys, and zero or
more declared check constraints. The following foreign key delete and update:
rules are supported: NO ACTION, CASCADE, SET DEFAULT, and SET NULL.

We also briefly described the Information Schema, which consists of a set of
prescribed views of a hypothetical “Definition Schema.”
Next we moved on to discuss data manipulation operations. To be specific:

1. We described retrieval operations (which basically means table expressions).
Usually such an operation consists of a single select expression, but various kinds
of explicit JOIN expressions are also supported, and join expressions and sele
expressions can be combined together in arbitrary ways using the UNIO
INTERSECT, and EXCEPT operators. We also mentioned: the use of ORDE
BY to order the table resulting from a table expression (of any kind).

Exercises

8.1 Give an SQL data definition for the suppliers-parts-projects database.

8.2 Write a sequence of DROP statements that will have the effect of destroying all of the

2. Regarding select expressions in particular, we described: contents of the suppliers-parts-projects database.

254 Part It The Relational M

8.3 In Section 8.2 we described the CREATE TABLE statement as defined by the SQL s
dard [8.1]. Many commercial SQL products support additional options on that statemep
however, typically having to do with indexes, disk space allocation, and other implementatig
matters, and thereby undermining the objectives of physical data independence and in
system compatibility. Investigate any SQL product that might be available to you. Do th
foregoing criticisms apply to that product? Specifically, what additional CREATE TA 3

options does that product support?
8.4 Once again, investigate any SQL product that might be available to you. Does that produ
support the Information Schema? If not, what does its catalog support look like?
8.5 Show that SQL is relationally complete (see Chapter 6), in the sense that, for any arbitr.
expression of the relational algebra, there exists a semantically equivalent SQL expre
sion. ' ‘
8.6 Does SQL have equivalents of the relational EXTEND and SUMMARIZE operation
8.7 Isthere an SQL equivalent of the relational assignment operation?
8.8 Are there SQL equivalents of the relational comparison operations?
8.9 Give as many different SQL formulations as you can think of for the query “Get suppli
names for suppliers who supply part P2” (see Examples 8.3.11 and 8.3.14).

8.10 There are two formally equivalent approaches to the manipulative part of the relation
model, the calculus and the algebra. One implication is that there are therefore two styl
on which the design of a query language can be based. For example, QUEL is (at lea
arguably) calculus-based, and so is QBE; by contrast, the language ISBL of the syste
PRTV [6.8] is algebra-based. Is SQL algebra-based or calculus-based?

8.11 Give SQL solutions to Exercises 6.13-6.48. '

8.12 Give SQL formulations for the following update problems. ! ;
(a) Insert a new supplier S10 into table S. The name and city are Smith and New Yor

respectively; the status is not yet known. i
(b) Change the color of all red parts to orange.
(c) Delete all projects for which there are no shipments. ‘ g

8.13 Using the suppliers-parts-projects database, write a program with embedded SQL stateme:
to list all supplier rows, in supplier number order. Each supplier row should be immel
ately followed in the listing by all project rows for projects supplied by that supplier;
project number order. ‘

8.14 Given the tables

CREATE TABLE PARTS
(P# ... , DESCRIPTION ... ,
PRIMARY KEY {(P#)) ;

CREATE TABLE PART_STRUCTURE
(MAJOR_P# ... , MINOR_P# ... , QTY ... ,
PRIMARY KEY (MAJOR_P#, MINOR_P#),
FOREIGN KEY (MAJOR_P#) REFERENCES PARTS,
FOREIGN KEY (MINOR_P#) REFERENCES PARTS) ;

where PART_STRUCTURE shows which parts (MMAJOR_P#) contain which other p

(MINOR_P#) as first-level components, write an SQL program to list all component p]
of a given part, to all levels (the parts explosion problem). The following sample valu
(repeated from Fig. 4.4) might help you visualize this problem:

pART_STRUCTURE | MAJOR_P# | MINOR_P# | QTY
Pl P2 2
P2 P3 1
P2 P4 3
P3 P5 9
P4 PS5 8
P5 P6 3

References and Bibliography

8.1 International Organization for Standardization (ISO). Database Lan,

' : guage SQL. Document
ISO/IEC 9075:1992. Also available as American National Standards Institute (A
ument ANST X3.135-1992. nstitute (ANSI) Doc-

The current version of the official ISO/ANSI SQL standard, known informally as SQL2
SQL-92, or .STQUQZ..The point is worth mentioning that, although SQL is widely recog-
fuzed as the 1r_1ternat10nal “relational” standard, the standard document does not describe
itself as such; in fact, it never actually mentions the term “relation” at all!
8.2 X/Open. Structured Query Language (SQL): CAE Specification C201 (September 1992).
Defines the X/Open SQL standard.
8.3 U.S. Department of Commerce, National Institute of Standards and Technolo
'’ & . D t b

Language SQL. FIPS PUB %27-2 (1992). o By Patdbase

Defines the Federal Information Processing (FIPS) SQL standard.

8.4 IBM Corp.. Systems Application Architecture Common Programming Inte
J ? terface: Dat,
Reference. IBM Document No. SC26-4348. d § Interface: Database

Defines the IBM SAA SQL standard.
8.5 C.J. Date and Hugh Darwen. A Guide to the SQL Standard (3rd editi i :
Addison-Wesley (1995, (3rd edition). Reading, Mass.:

Portions of Fhis chapter are based on material from this reference, which is intended as a
c‘orlnprehenswe. tutorial on SQL/92. References {8.6] and [8.7] below are also SQL/92 tuto-
rials.

8.6 Stephen Cannan and Gerard Otten. SQL—The Standard Handbook. Maidenhead. UK:
McGraw-Hill International (1993). ,

8.7 Jim Meltorf and Alan R. Simon. Understanding The New SQL: A Complete Guide. San
Mateo, Calif.: Morgan Kaufmann (1993).

8.8 I]?onald D. Clilamberlin and Raymond F. Boyce. “SEQUEL: A Structured English Query
anguage.” Proc. ACM SIGMOD Workshop on Data Description, A :
Ann Arbor, Mich. (May 1974). prion, fccess, and Contol,

The paper that first introduced the SQL language (or SEQUEL, as it was originally called;
the name was subsequently changed for legal reasons). ’

89 M. M. Astrahan and R. A. Lorie. “SEQUEL-XRM: A Relational System.” Proc. ACM

Pacific Regional Conference, San Francisco, Calif. (April 1975).

Describes the first prototype implementation of SEQUEL, the original version of SQL
[8.8]. See also references [8.12-8.13}, which petform an analogous function for.System R.

Chapter 8 The SQL Language 255

256

8.10

8.11

8.12

8.13

8.14

8.15

8.16

Part IIK‘ The Relational Mo

Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. “Human Factors Eva
ation of Two Data Base Query Languages: SQUARE and SEQUEL.” Proc. NCC 44, Ap
aheim, Calif. Montvale, N.J.: AFIPS Press (May 1975). ’ :

SQL’s predecessor SEQUEL [8.8] was based on an earlier language called SQUARE
The two languages were fundamentally the same, in fact, but SQUARE used a rathg;
mathematical syntax whereas SEQUEL was based on English keywords such 48
SELECT, FROM, WHERE, etc. The present paper reports on a set of experiment;
that were carried out on the usability of the two languages, using college student
as subjects. A number of revisions were made to SEQUEL as a result of) that wor
[8.11]. i

Donald D. Chamberlin ef al. “SEQUEL/2: A Unified Approach to Data Definition, Ma
nipulation, and Control.” IBM J. R&D. 20, No. 6 (November 1976). See also errata: IBM
J. R&D. 21, No. 1 (January 1977).
Experience from the early prototype implementation of SEQUEL discussed in referenc
[8.9] and results from the usability tests reported in reference [8.10] led to the design of’
revised version of the language called SEQUEL/2. The language supported by System R
[8.12-8.13] was basically SEQUEL/2 (with the conspicuous absence of the so-called “ag
sertion” and “trigger” facilities), plus certain extensions suggested by early user experi
ence [8.14]. ‘
M. M. Astrahan et al. “System R: Relational Approach to Database Management.” ACM,
TODS 1, No. 2 (June 1976). :
System R was the major prototype implementation of (an early version of) the SQL lan
guage. This paper describes the architecture of System R as originally planned. J7
M. W. Blasgen ef al. “System R: An Architectural Overview.” IBM Sys. J. 20, No.
(February 1981).
Describes the architecture of System R as it became by the time the system was full
implemented.

Donald D. Chamberlin. “A Summary of User Experlence with the SQL Data Sublan

guage.” Proc. International Conference on Databases, Aberdeen, Scotland (July 1980)
Also available as IBM Research Report RI2767 (April 1980).
Discusses early user experience with System R and proposes some extensions to the SQ
language in the light of that experience. A few of those extensions—EXISTS, LIKE (no
discussed in the present chapter), PREPARE, and EXECUTE—were in fact implemente
in the final version of System R.
Donald D. Chamberlin, Arthur M. Gilbert, and Robert A. Yost. “A History of System
and SQL / Data System.” Proc. 7th International Conference on Very Large Data Base
Cannes, France (September 1981).
Discusses the lessons learned from the System R prototype and describes the evolution o
that prototype into the first of IBM’s relational product family, namely SQL/DS (recentl
renamed “DB2 for VM and VSE”).
Donald D. Chamberlin et al. “A History and Evaluation of System R.” CACM 24, No. 1
(October 1981).
Describes the three principal phases of the System R project (preliminary prototype, multi

user prototype, evaluation), with emphasis on the technologies of compilation and optim
zation pioneered in System R. There is some overlap between this paper and referenc

chapter 8 The SQL Language . 257

[8.15]. Note: It is interesting to compare and contrast this paper with reference [7.14],
which performs an analogous function for the University INGRES project.

C. J. Date. “A Critique of the SQL Database Language.” ACM SIGMOD Record 14, No.
3 (November 1984). Republished in C. J. Date, Relational Database: Selected Writings,
Reading, Mass.: Addison-Wesley (1986).

SQL is very far from perfect. This paper presents a critical analysis of a number of the
language’s principal shortcomings (mainly from the standpoint of formal computer lan-
guages in general, rather than database languages specifically). Note: Certain of this
paper’s criticisms do not apply to SQL/92.

C.J. Date. “What’s Wrong with SQL?” In C. J. Date, Relational Database Writings 1985—
1989. Reading, Mass.: Addison-Wesley (1990).

Discusses some additional shortcomings of SQL, over and above those identified in refer-
ence [8.17], under the headings “What’s wrong with SQL per se,” “What’s wrong with the
SQL standard,” and “Application portability.” Note: Again, certain of this paper’s criti-
cisms do not apply to SQL/92.

C. J. Date. “How SQL Missed the Boat.” Database Programming & Design 6, No. 9
(September 1993).

A succinct summary of SQL’s shortcomings with respect to its support (or lack thereof)
for the structural, manipulative, and integrity aspects of the relational model.

C. J. Date. “SQL Dos and Don’ts.” In C. J. Date, Relational Database Writings 1985-
1989. Reading, Mass.: Addison-Wesley (1990).

This paper offers some practical advice on how to use SQL in such a way as (a) to avoid
some of the potential pitfalls arising from the problems discussed in references [8.17-
8.19] and (b) to realize the maximum possible benefits in terms of productivity, portabil-
ity, connectivity, and so forth.

M. Negri, S. Pelagatti, and L. Sbattella. “Formal Semantics of SQL Queries.” ACM TODS
16, No. 3 (September 1991).

To quote from the abstract: “The semantics of SQL queries are formally defined by stating
a set of rules that determine a syntax-driven translation of an SQL query to a formal model
called Extended Three Valued Predicate Calculus (E3VPC), which is largely based on
well-known mathematical concepts. Rules for transforming a general E3VPC expression
to a canonical form are also given; . . . problems like equivalence analysis of SQL queries
are completely solved.” Note, however, that the SQL dialect considered is only the first
version of the standard (“SQL/86), not SQL/92.

Answers to Selected Exercises

8.1 CREATE DOMAIN S# CHAR (5)

CREATE DOMAIN NAME CHAR (20)
CREATE DOMAIN STATUS NUMERIC(5) ;
CREATE DOMAIN CITY CHAR (15)
CREATE DOMAIN P# CHAR(6) ;
CREATE DOMAIN COLOR CHAR(6) ;
CREATE DOMAIN WEIGHT NUMERIC(5) ;
CREATE DOMAIN J# CHAR(4) ;
CREATE DOMAIN QTY NUMERIC(9) ;

	DOC_20100916121504-20100916-1208
	DOC_20100916121517-20100916-1210
	DOC_20100916121528-20100916-1210
	DOC_20100916121540-20100916-1210
	DOC_20100916121552-20100916-1210
	DOC_20100916121605-20100916-1210
	DOC_20100916121617-20100916-1210
	DOC_20100916121629-20100916-1210
	DOC_20100916121641-20100916-1210
	DOC_20100916121652-20100916-1210
	DOC_20100916121703-20100916-1210
	DOC_20100916121713-20100916-1212
	DOC_20100916121724-20100916-1212
	DOC_20100916121735-20100916-1212
	DOC_20100916121748-20100916-1212
	DOC_20100916121801-20100916-1212
	DOC_20100916121813-20100916-1212
	DOC_20100916121825-20100916-1212
	DOC_20100916121835-20100916-1212
	DOC_20100916121845-20100916-1212

