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1.&Learning&=&representaFon&+&
evaluaFon&+&opFmizaFon&

Table 1: The three components of learning algorithms.

Representation Evaluation Optimization
Instances Accuracy/Error rate Combinatorial optimization

K-nearest neighbor Precision and recall Greedy search
Support vector machines Squared error Beam search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability Continuous optimization
Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent
Sets of rules Cost/Utility Conjugate gradient

Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming
Graphical models Quadratic programming

Bayesian networks
Conditional random fields

with one branch for each feature value, and have class predic-
tions at the leaves. Algorithm 1 shows a bare-bones decision
tree learner for Boolean domains, using information gain and
greedy search [21]. InfoGain(xj ,y) is the mutual information
between feature xj and the class y. MakeNode(x,c0,c1) re-
turns a node that tests feature x and has c0 as the child for
x = 0 and c1 as the child for x = 1.

Of course, not all combinations of one component from each
column of Table 1 make equal sense. For example, dis-
crete representations naturally go with combinatorial op-
timization, and continuous ones with continuous optimiza-
tion. Nevertheless, many learners have both discrete and
continuous components, and in fact the day may not be
far when every single possible combination has appeared in
some learner!

Most textbooks are organized by representation, and it’s
easy to overlook the fact that the other components are
equally important. There is no simple recipe for choosing
each component, but the next sections touch on some of the
key issues. And, as we will see below, some choices in a
machine learning project may be even more important than
the choice of learner.

3. IT’S GENERALIZATION THAT COUNTS
The fundamental goal of machine learning is to generalize
beyond the examples in the training set. This is because,
no matter how much data we have, it is very unlikely that
we will see those exact examples again at test time. (No-
tice that, if there are 100,000 words in the dictionary, the
spam filter described above has 2100,000 possible different in-
puts.) Doing well on the training set is easy (just memorize
the examples). The most common mistake among machine
learning beginners is to test on the training data and have
the illusion of success. If the chosen classifier is then tested
on new data, it is often no better than random guessing. So,
if you hire someone to build a classifier, be sure to keep some
of the data to yourself and test the classifier they give you
on it. Conversely, if you’ve been hired to build a classifier,
set some of the data aside from the beginning, and only use
it to test your chosen classifier at the very end, followed by
learning your final classifier on the whole data.

Algorithm 1 LearnDT(TrainSet)

if all examples in TrainSet have the same class y∗ then
return MakeLeaf(y∗)

if no feature xj has InfoGain(xj ,y) > 0 then
y∗ ← Most frequent class in TrainSet
return MakeLeaf(y∗)

x∗ ← argmaxxj InfoGain(xj ,y)
TS0 ← Examples in TrainSet with x∗ = 0
TS1 ← Examples in TrainSet with x∗ = 1
return MakeNode(x∗, LearnDT(TS0), LearnDT(TS1))

Contamination of your classifier by test data can occur in
insidious ways, e.g., if you use test data to tune parameters
and do a lot of tuning. (Machine learning algorithms have
lots of knobs, and success often comes from twiddling them
a lot, so this is a real concern.) Of course, holding out
data reduces the amount available for training. This can
be mitigated by doing cross-validation: randomly dividing
your training data into (say) ten subsets, holding out each
one while training on the rest, testing each learned classifier
on the examples it did not see, and averaging the results to
see how well the particular parameter setting does.

In the early days of machine learning, the need to keep train-
ing and test data separate was not widely appreciated. This
was partly because, if the learner has a very limited repre-
sentation (e.g., hyperplanes), the difference between train-
ing and test error may not be large. But with very flexible
classifiers (e.g., decision trees), or even with linear classifiers
with a lot of features, strict separation is mandatory.

Notice that generalization being the goal has an interesting
consequence for machine learning. Unlike in most other op-
timization problems, we don’t have access to the function
we want to optimize! We have to use training error as a sur-
rogate for test error, and this is fraught with danger. How
to deal with it is addressed in some of the next sections. On
the positive side, since the objective function is only a proxy
for the true goal, we may not need to fully optimize it; in
fact, a local optimum returned by simple greedy search may
be better than the global optimum.

2.&It’s&generalizaFon&that&counts&

•  Goal:&generalize&beyond&training&examples&
•  Large,&sparse&feature&spaces&mean&
&&&&possible&inputs&>>&observed&inputs&

•  Training&error&is&surrogate&for&test&error&

John&likes&
football.&

3.&Data&alone&is&not&enough&
•  Features&space&grows&more&rapidly&than&
examples&
– We’ll&never&have&enough&data&

•  Real&world&not&drawn&uniformly&at&random&
•  Need&assumpFons,&even&simple&ones&

–  Smoothness&
–  Similar&examples&have&similar&classes&
–  Limited&dependeces&
–  Limited&complexity&

•  RegularizaFon&



7.&Feature&engineering&is&key&

•  Many&independent&features&that&correlate&
well&with&class?&Learning&is&easy!&

•  Complex&funcFon&of&features?&Lots&harder&
•  Machine&learning&is&fast,&but&data&

– Gathering&
–  IntegraFng&
– Cleaning&
– Prefprocessing&
– Etc.&

8.&More&data&beats&a&cleverer&
algorithm&

•  Three&constraints&
– Compute:&CPU&
– Memory:&RAM&
– Data:&training&

•  Ironically,&more&data&affords&more&complex&
models,&but&simple&ones&are&oien&chosen&due&
to&scalability&constraints&

AddiFonal&Clinical&ConsideraFons&

•  Data&
– Availability&

•  ICD&codes&(postfhoc&billing)&
•  Aggregate&staFsFcs&(max/min&SAPS)&

– RepresentaFon&
•  Granularity&(e.g.&in&ontologies)&
•  Reasonable&(respects&underlying&physiology)&

AddiFonal&Clinical&ConsideraFons&

•  Learning&
– EvaluaFon&

•  Clinicians&do&not&operate&across&full&ROC&curve&
•  Tradeoff&between&early&warning&and&false&alarms&

– Knowledge&
•  Incorporate&medical&domain&knowledge&



AddiFonal&Clinical&ConsideraFons&

•  Outcome&
–  Impact&

•  Dollars&saved&
•  Lives&preserved&
•  Time&conserved&
•  Effort&reduced&
•  Quality&of&life&increased&

– AcFonable&
SIMULTANEOUS"MODELING"OF"
MULTIPLE"DISEASES"FOR"MORTALITY"
PREDICTION"IN"ACUTE"HOSPITAL"CARE"

Nozomi&Nori&et&al.,&KDD&2015&

Overview&
•  Goal:&mortality&predicFon&

–  EHR&data&f>&infhospital&mortality&
–  Supervised&

•  Method:&regulariza?on"
–  SimilariFes&among&diseases&
–  SimilariFes&among&features&
–  Ridge&regression&

•  EvaluaFon:&quanFtaFve&performance&
–  Internal&consistency&and&“make&sense”&results&
–  Comparison&of&AUCs&

•  Thanks&to&Nozomi&et&al.&for&sharing&slides!&
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•  In ICU, clinicians have to make decisions in a very  
limited time. 

• Accurate assessment of patient severity is crucial. 

• Use mortality as a surrogate for the patient severity. 

•  The accurate prediction of the mortality risk could assist  
clinicians to pay more attentions to patients with a  
higher mortality risk. 
•  Could lead to reducing “preventable deaths” 

Problem:&Mortality&risk&predicFon&in&ICU&
Caution 
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*Image acknowledgement: IIT Bombay+�
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Our&contribuFon&
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• We incorporated disease-specific contexts into  
ICU mortality modeling by multi-task learning  
where a task corresponds to a disease. 

• We incorporated medical/clinical domain  
knowledge on the categorization of both the  
diseases and EHRs by two graph Laplacians,  
thereby alleviating data sparsity. 

• We showed that our disease-based multi-task  
learning with medical domain knowledge worked  
better than conventional methods using a real  
world dataset. 
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A&salient&feature&of&ICU:&diversity&of&diseases&

Stomach medicine 

Used for severe gastric 
ulcer  with bleeding 

Used for diseases 
accompanied  with artificial 

respiration 
to prevent gastric ulcer 

•  Patients with a wide variety of diseases in ICU. 
•  But the prediction is typically made by constructing one  

common predictive model for all the diseases. 
Disease-specific context: 
•  Yet, each disease has a specific prediction rule that  

explains the mortality risk. 

Hypothesis: customizing the model for each disease  
would improve the predictive modeling. 

18& *Image acknowledgement: IIT Bombay+�
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Challenge:& data& scarcity&and&sparsity&
1. Data scarcity resulting from the customization 

 
 
Attempts to build a  
customized model for each  
disease are complicated by  
the limited availability of  
sufficiently large datasets,  
because many diseases only  
have a small number of  
patients. 
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(Four-digit ICD-10 
codes) 
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Efficacy Ingredients … 

 
 

2. Data sparseness associated with electronic  
health records (EHRs) 

•Raw EHRs are extremely sparse. 

•One reason behind this sparsity: 
a significant number of EHRs are subject to 
medical classification, which categorizes  
medical information from multiple viewpoints,  
producing highly fine-grained features. 

code:  
1143001X1015 
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Challenge:& data& scarcity&and&sparsity&
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Proposed&soluFon:&mulFftask&learning&&

with&medical&domain&knowledge&

A task corresponds to a disease and prediction tasks  
for different types of diseases are jointly solved by  

sharing information across the diseases. 

Idea: exploit more  
information from more  

similar diseases in  
terms of medical  
classification of  

diseases; similarly for  
EHRs 

ICD10 hierarchy: diseases are categorized in terms of 
cause,  symptoms, morphological disparity, etc., encoding 
important  information that might affect the mortality risk. 
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Disease  
Similarity 

EHRs 
Similarity 

Loss function  
(log loss) 

Regularization 

Optimization  
Problem 

Avoid overfitting Incorporation of  
Domain Knowledge 

Integrate&medical&domain&knowledge&by&graph&Laplacians&&encoding&the&
similariFes&among&diseases&and&EHRs&into&the&&regularizaFon&term&in&an&

opFmizaFon&problem&

: Similarity matrix  
for diseases 

: Similarity matrix  
for EHRs 
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/,120-.1�Integrate&medical&domain&knowledge&by&graph&Laplacians&&encoding&the&
similariFes&among&diseases&and&EHRs&into&the&&regularizaFon&term&in&an&

opFmizaFon&problem&(cont’d)&

Disease  
Similarity 

Make two model parameters for two diseases similar if the two  
diseases are similar in terms of the medical classifications given 

as  the similarity matrix; similarly for EHRs. 

EHRs 
Similarity 

Similarity matrix  
encoding 

domain knowledge 
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Experiments&



•  Dataset from a hospital 

•  In-hospital mortality risk  
prediction 

•  Features: gender, age (<  
65/>=65), cormobidities,  
interventions;  
2,000~2,500 features 

•  Three settings: prediction  
before ICU discharge (2  
days before / 1day  before) 
and retrospective  
prediction (1 day before  
hospital discharge) 

Experimental&CondiFon1:&

11 
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Experimental&CondiFon2:&
• 

• 

•  Similarity&between&two&diseases:&the&number&of&shared&levels&in&the&ICD&&hierarchy.&

•  Similarity&between&two&features:&if&the&feature&is&medicaFon&and&if&two&&medicines&have&the&
same&drug&efficacy,&then&the&similarity&between&them&is&&set&to&1,&otherwise&0.&
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Result:&MulFftask &learning &with &medical&&

domain &knowledge&worked &&best&
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 � � # �0 �  � 6 �C0"8 %#�� 4 A 7  3 # �'8A7��8:2 ( ��#86�43�"0�9�
A4#A� Pre-ICU 

discharge 
predicti

on  (2 days 
before) 

Pre-ICU 
discharge 

predicti
on  (1 day 
before) 

Retrospectiv
e  
predicti
on 

Proposed 0.763 0.795 0.914 

Proposed-feat 0.692 0.717 0.837 

Proposed-dz 0.758 0.793 0.913 

non-MTL-1 (separate) 0.692 0.714 0.836 

non-MTL-2 (common) 0.760 0.783 0.886 

MTL-1 (l21) 0.717 0.723 0.819 

MTL-2 (Trace) 0.724 0.739 0.837 
※Proposed method outperforms other methods significantly (p<0.05) except for the gray colored 
ones. 
 
There is no other method that performs equally well as our proposed method  
throughout the prediction settings. 
 
 

Both the domain knowledge on medical classification of diseases and  
clinical classification of EHRs can improve the predictive performance. 

Conclusions&&

•  Authors&claim&to&“take&a&step&toward&
personalized&medicine&in&ICU”&

•  Cool&method!&
– MTL&
– CrossfregularizaFon&



RUBIK:"KNOWLEDGE"GUIDED"TENSOR"
FACTORIZATION"AND"COMPLETION"
FOR"HEALTH"DATA"ANALYTICS"

Yichen&Wang&et&al.,&KDD&2015&

Overview&
•  Goal:&computaFonal&phenotyping&

–  EHR&data&f>&meaningful&clinical&concepts&
–  Unsupervised&

•  Method:&tensor"factoriza?on"
–  Guidance&constraints&align&medical&knowledge&
–  Pairwise&constraints&for&disFnct&phenotypes&
–  CompleFon&for&missing&and&noisy&data&

•  EvaluaFon:&algorithmic&characterisFcs&
–  Previous&work:&Limestone,&Marble&
–  Internal&consistency&and&“make&sense”&results&
–  Scalability&

•  Thanks&to&Yichen&et&al.&for&sharing&slides!&

EHR&

Phenotyping&from&Electronic&Health&
Records&

•  LimitaFons&of&exisFng&phenotyping&methods&

–  Unable&to&leverage&exisFng&knowledge&

–  High&overlapping&between&discovered&phenotypes&

–  Not&robust&to&missing&and&noisy&data&

–  Not&scalable&

&

� �

Demographic 

Diagnosis 

Medication 
Lab Tests 

Procedure 

Clinical notes 

Medical 
Concepts 

(phenotypes) 
Phenotyping 

Ideal&Phenotyping&Algorithms�

•  Guidance:&incorporate&medical&knowledge&

•  Nonfoverlap:&discover&disFnct&and&meaningful&
phenotypes&

•  Robust:&handle&noisy&and&missing&data&

•  Scalable�

���



Algorithms&Comparison&�
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Rubik&

Complete&
Missing&data�

Full Tensor 

Align&with&medical&knowledge�

DisFnct&phenotypes�

Scalable�

Interaction tensor�

Examples&of&Phenotype&

Diagnosis&factor&

MedicaFon&factor&

PaFents&&
factor&
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Phenotype&with&Guidance&info&
on&heart&failure&�

Problem&Overview&

≈ +&…&& +

C:&Bias&tensor�T:&InteracFon&tensor�X:&Tensor�

FactorizaFon&error� Guidance� Nonoverlap&constraint�

O:&Observed&tensor�

Sparsity�

NonnegaFvity�



Guidance&InformaFon�

�	�

diagnosis�

phenotypes�

Factor&matrix� Guidance&knowledge�

hypertension�

Phenotype&1�

Diabetes&1�

Secondary&hypertension�

Phenotype&2�

Diabetes&2�

Guidance&is&limited�

Pairwise&Constraints�

•  We&can&penalize&the&cases&where&phenotypes&have&
overlapping&dimensions.&�

�
�

hypertension�

Phenotype&1�

Diabetes&1�

Phenotype&2�

Overlapping&case�
Q:&&similarity&matrix�

phenotypes�

phenotypes�

Phenotype&1�

Nonfoverlap&case�

Phenotype&2�

FormulaFon�

���

ObjecFve&
�

Lagrange&FuncFon&
(ADMM)&

�

p&and&Y&are&Lagrange&mulFpliers�

Block&coordinate&
scheme&

�

Block&coordinate&scheme�
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Update&interacFon&tensor&(T)&
�

Update&bias&tensor&(C)&
�

Update&Lagrange&mulFpliers&(p,&Y)&
�

Update&full&tensor&(X)&
�



Experiments�

•  Phenotype&discovery:&How&Rubik&discovers&meaningful&
phenotypes?&

•  Phenotype&discovery:&How&Rubik&discovers&finefgrained&subf
phenotypes?&

•  Phenotype&discovery:&How&Rubik&discovers&disFnct&phenotypes?&

•  Noise&analysis:&Is&Rubik&robust&to&noisy&and&missing&data?&
&

•  Scalability:&Is&Rubik&Scalable?&

•  Constraints&analysis:&Are&all&constraints&important?&
&
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ConstrucFng&Tensor&
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Figure 1: Co-occurrences of events within a patient’s history are captured in 
the tensor as binary values. 

Datasets�

•  Vanderbilt:&3rd&order&tensor&with&paFent,&
diagnosis&and&medicaFon&modes&of&size&7,744&
by&1,059&by&501,&respecFvely.&&

•  CMS:&472,645&paFents&by&11,424&diagnoses&by&
262,312&medicaFon&events.&&

���

Phenotype&Discovery3Meaningful&InteracFon&Tensor�

���

•  Conduct&surveys&with&medical&
experts&to&evaluate&30&phenotypes&
from&Marble&and&Rubik&

•  YES&means&clinically&meaningful&
•  POSS&means&possibly&meaningful&
•  NOT&means&not&meaningful�

Rubik&generates&more&meaningful&phenotypes�



Phenotype&Discovery3Meaningful&Bias&Tensor�

���

•  Meaningful:&accurately&reflects&the&stereotypical&type&of&
paFents&

•  Supports&the&medical&report:&&
•  80%&of&older&adults&suffer&from&at&least&one&chronic&

condiFon&and&50%&have&two&or&more&chronic&condiFons&&

Phenotype&Discovery3Meaningful&Subphenotypes�

���

Marble& Rubik&

Phenotype&Discovery3Meaningful&Subphenotypes�

�	�

•  Four&guidance:&hypertension,&diabetes1,&diabetes2,&heart&
disease&

&&
•  2&subfphenotypes&for&each&guidance&

•  8&subfphenotypes&in&total&
&

•  62.5%&are&meaningful&

•  37.5%&are&possibly&meaningful&

Experiment&setup:�

Experts&evaluaFon:�

More&DisFnct&Phenotypes�

�
�

•  Pairwise&constraint&leads&to&more&disFnct&phenotypes&

•  Average&similarity&tend&to&stabilize&when&&&&&&&&is&larger&than&
10�



Missing&Data&Analysis�

���

Generate&missing&data:&&
randomly&set&the&observed&values&to&be&0&

Noise&Analysis�

���

Generate&noise:&
randomly&set&the&unobserved&entries&to&be&1&

Incorrect&Guidance�

� �

Generate&incorrect&guidance:&&
randomly&set&entries&in&guidance&matrix&to&be&1&

Scalability�

���

Rubik&is&around&six&Fmes&faster&than&compeFtors�



Constraints&Analysis�

���

•  All&constraints&are&important!&
•  Pairwise&constraint&provides&the&largest&
boost&

Conclusions&(Author)�

•  The&resulFng&phenotypes&are&concise,&disFnct,&
and&interpretable&&

•  Rubik&can&also&incorporate&guidance&from&
medicaFons&and&paFents&

•  Rubik&is&robust&to&noisy&and&missing&data&

•  Rubik&is&scalable�

���
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4.&Overfi[ng&has&many&faces&
•  Decompose&error&

–  Bias&
–  Variance&

•  Combat&with&choices,&e.g.&
–  Linear&learner&has&high&bias&

because&when&the&fronFer&is&
not&hyperplane&can’t&induce&it&

–  Decision&tree&can&represent&
any&Boolean&funcFon,&but&
might&be&very&different&
depending&on&training&set&

•  Strong&false&assumpFons&
oien&trump&weak&true&ones&

4. DATA ALONE IS NOT ENOUGH
Generalization being the goal has another major consequence:
data alone is not enough, no matter how much of it you have.
Consider learning a Boolean function of (say) 100 variables
from a million examples. There are 2100 − 106 examples
whose classes you don’t know. How do you figure out what
those classes are? In the absence of further information,
there is just no way to do this that beats flipping a coin. This
observation was first made (in somewhat different form) by
the philosopher David Hume over 200 years ago, but even
today many mistakes in machine learning stem from failing
to appreciate it. Every learner must embody some knowl-
edge or assumptions beyond the data it’s given in order to
generalize beyond it. This was formalized by Wolpert in
his famous “no free lunch” theorems, according to which no
learner can beat random guessing over all possible functions
to be learned [26].

This seems like rather depressing news. How then can we
ever hope to learn anything? Luckily, the functions we want
to learn in the real world are not drawn uniformly from
the set of all mathematically possible functions! In fact,
very general assumptions—like smoothness, similar exam-
ples having similar classes, limited dependences, or limited
complexity—are often enough to do very well, and this is a
large part of why machine learning has been so successful.
Like deduction, induction (what learners do) is a knowledge
lever: it turns a small amount of input knowledge into a
large amount of output knowledge. Induction is a vastly
more powerful lever than deduction, requiring much less in-
put knowledge to produce useful results, but it still needs
more than zero input knowledge to work. And, as with any
lever, the more we put in, the more we can get out.

A corollary of this is that one of the key criteria for choos-
ing a representation is which kinds of knowledge are easily
expressed in it. For example, if we have a lot of knowledge
about what makes examples similar in our domain, instance-
based methods may be a good choice. If we have knowl-
edge about probabilistic dependencies, graphical models are
a good fit. And if we have knowledge about what kinds of
preconditions are required by each class, “IF . . . THEN . . .”
rules may be the the best option. The most useful learners
in this regard are those that don’t just have assumptions
hard-wired into them, but allow us to state them explicitly,
vary them widely, and incorporate them automatically into
the learning (e.g., using first-order logic [22] or grammars
[6]).

In retrospect, the need for knowledge in learning should not
be surprising. Machine learning is not magic; it can’t get
something from nothing. What it does is get more from
less. Programming, like all engineering, is a lot of work:
we have to build everything from scratch. Learning is more
like farming, which lets nature do most of the work. Farm-
ers combine seeds with nutrients to grow crops. Learners
combine knowledge with data to grow programs.

5. OVERFITTING HAS MANY FACES
What if the knowledge and data we have are not sufficient
to completely determine the correct classifier? Then we run
the risk of just hallucinating a classifier (or parts of it) that
is not grounded in reality, and is simply encoding random
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Figure 1: Bias and variance in dart-throwing.

quirks in the data. This problem is called overfitting, and is
the bugbear of machine learning. When your learner outputs
a classifier that is 100% accurate on the training data but
only 50% accurate on test data, when in fact it could have
output one that is 75% accurate on both, it has overfit.

Everyone in machine learning knows about overfitting, but
it comes in many forms that are not immediately obvious.
One way to understand overfitting is by decomposing gener-
alization error into bias and variance [9]. Bias is a learner’s
tendency to consistently learn the same wrong thing. Vari-
ance is the tendency to learn random things irrespective of
the real signal. Figure 1 illustrates this by an analogy with
throwing darts at a board. A linear learner has high bias,
because when the frontier between two classes is not a hyper-
plane the learner is unable to induce it. Decision trees don’t
have this problem because they can represent any Boolean
function, but on the other hand they can suffer from high
variance: decision trees learned on different training sets
generated by the same phenomenon are often very different,
when in fact they should be the same. Similar reasoning
applies to the choice of optimization method: beam search
has lower bias than greedy search, but higher variance, be-
cause it tries more hypotheses. Thus, contrary to intuition,
a more powerful learner is not necessarily better than a less
powerful one.

Figure 2 illustrates this.1 Even though the true classifier
is a set of rules, with up to 1000 examples naive Bayes is
more accurate than a rule learner. This happens despite
naive Bayes’s false assumption that the frontier is linear!
Situations like this are common in machine learning: strong
false assumptions can be better than weak true ones, because
a learner with the latter needs more data to avoid overfitting.

1Training examples consist of 64 Boolean features and a
Boolean class computed from them according to a set of “IF
. . . THEN . . .” rules. The curves are the average of 100 runs
with different randomly generated sets of rules. Error bars
are two standard deviations. See Domingos and Pazzani [11]
for details.

5.&IntuiFon&fails&in&high&dimension&

•  Curse&of&dimensionality&
•  Doubly&cursed,&e.g.&

– Approx.&hypersphere&by&inscribing&in&hypercube,&
in&high&dimensions&nearly&all&volume&of&hypercube&
is&outside&hypersphere&
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volume of the Earth. The ball in the box 
has all but vanished. If you were to se-
lect a trillion points at random from the 
interior of the cube, you’d have almost 
no chance of landing on even one point 
that is also inside the ball.

What makes this disappearing act 
so extraordinary is that the ball in 
question is still the largest one that 
could possibly be stuffed into the 
cube. We are not talking about a pea 
rattling around loose inside a refrig-
erator carton. The ball’s diameter is 
still equal to the side length of the 
cube. The surface of the ball touches 
every face of the cube. (A face of an n-
cube is an (n–1)-cube.) The fit is snug; 
if the ball were made even a smidgen 
larger, it would bulge out of the cube 
on all sides. Nevertheless, in terms 
of volume measure, the ball is nearly 
crushed out of existence, like a black 
hole collapsing under its own mass.

How can we make sense of this 
seeming paradox? One way of un-
derstanding it is to acknowledge that 
the ball fills the middle of the cube, 
but the cube doesn’t have much of 
a middle; almost all of its volume is 
away from the center, huddling in 
the corners. A simple counting argu-
ment gives a clue to what’s going on. 
As noted above, the ball touches the 
enclosing cube at the center of each 
face, but it does not reach out into the 
corners. A 100-cube has just 200 faces, 
but it has 2100 corners.

Another approach to understanding 
the collapse of the n-ball is to imag-
ine poking skewers through the cube 
along various diameters. (A diameter 
is any straight line that passes through 

the center point.) The shortest diam-
eters run from the center of a face to 
the center of the opposite face. For the 
cube enclosing a unit ball, the length 
of this shortest diameter is 2, which is 
both the side length of the cube and 
the diameter of the ball. Thus a skewer 
on the shortest diameter lies inside the 
ball throughout its length.

The longest diameters of the cube 
extend from a corner through the cen-
ter point to the opposite corner. For 
an n-cube with side length s = 2, the 
length of this diameter is 2√n–. Thus 
in the 100-cube surrounding a unit 
ball, the longest diameter has length 
20; only 10 percent of this length lies 
within the ball. Moreover, there are 
just 100 of the shortest diameters, but 
there are 299 of the longest ones.

Here is still another mind-bending 
trick with balls and boxes to suggest 
just how weird space becomes in higher 
dimensions. I learned of it from Barry 
Cipra, who published a description in 
Volume 1 of What’s Happening in the 
Mathematical Sciences (1991). On the 
plane, a square with sides of length 4 
will accommodate four unit disks in 
a two-by-two array, with room for a 
smaller disk in the middle; the radius 
of that smaller disk is √2– –1. In three 
dimensions the equivalent 3-cube fits 
eight unit balls, plus a smaller ninth ball 
in the middle, whose radius is √3– –1. In 
the general case of n dimensions, the 
box has room for 2n unit n-balls in a 
rectilinear array, with one additional 
ball in the vacant central space, and the 
central ball has a radius of √n– –1. Look 
what happens when n reaches 9. The 
“smaller” central ball now has a radius 

of 2, which makes it twice the size of 
the 512 surrounding balls. Furthermore, 
the central ball has expanded to reach 
the sides of the bounding box, and will 
burst through the walls with any fur-
ther increase in dimension.

What’s So Special About the 5-Ball?
I was taken by surprise when I learned 
that the volume of a unit n-ball goes to 
zero as n goes to infinity; I had expect-
ed the opposite. But something else 
surprised me even more—the fact that 
the volume function is not monotonic. 
Either a steady increase or a steady 
decrease seemed more plausible than 
having the volume grow for a while, 
then reach a peak at some finite value 
of n, and thereafter decline. This be-
havior singles out a particular dimen-
sion for special attention. What is it 
about five-dimensional space that al-
lows a unit 5-ball to spread out more 
expansively than any other n-ball? 

I can offer an answer, although it 
doesn’t really explain much. The answer 
is that everything depends on the value 
of π. Because π is a little more than 3, the 
volume peak comes in five dimensions; 
if π were equal to 17, say, the unit ball 
with maximum volume would be found 
in a space with 33 dimensions.

To see how π comes to have this role, 
we’ll have to return to the formula 
for n-ball volume. We can get a rough 
sense of the function’s behavior from 
a simplified version of the formula. 
In the first place, if we are interested 
only in the unit ball, then r is always 
equal to 1, and the rn term can be ig-
nored. That leaves a power of π in the 
numerator and a gamma function in 
the denominator. If we consider only 
even values of n, so that n/2 is always 
an integer, we can replace the gamma 
function with a factorial. For brevity, 
let m = n/2; then all that remains of the 
formula is this ratio: πm/m!. 

The simplified formula says that the 
n-ball volume is determined by a race 
between πm and m!. Initially, for the 
smallest values of m, πm sprints ahead; 
for example, at m = 2 we have π2 ≈ 10, 
which is greater than 2! = 2. In the long 
run, however, m! will surely win this 
race. Both πm and m! are products of 
m factors, but in πm the factors are all 
equal to π, whereas in m! they range 
from 1 up to m. Numerically, m! first 
exceeds πm when m = 7, and thereafter 
the factorial grows very much larger.

This simplified analysis accounts 
for the major features of the volume 

The volume of a unit ball in n dimensions reveals an intriguing spectrum of variations. Up 
to dimension 5, the ball’s volume increases with each increment to n; then the volume starts 
diminishing again, and ultimately goes to zero as n goes to infinity. If dimension is considered 
a continuous variable, the peak volume comes at n=5.2569464 (green dot).
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6.&TheoreFcal&guarantees&are&not&
enough&

•  Guarantees&on&inducFon:&really&cool!&
– Unfortunately,&most&interesFng&hypothesis&spaces&
are&doubly&exponenFal&in&number&of&features&

•  AsymptoFc&guarantees&are&comforFng&
– Shouldn’t&be&used&to&select&a&learning&since&we&
don’t&live&in&a&world&with&infinite&data&

9.&Learn&many&models,&not&just&one&
•  Bagging&

– Generate&random&variaFons&of&the&training&set&by&
resampling,&learn&a&classifier&for&each,&and&combine&
results&by&voFng&

•  BoosFng&
–  Training&examples&have&weights,&and&these&are&varied&
so&that&each&new&classifier&focuses&on&the&examples&
the&previous&ones&got&wrong&

•  Stacking&
– Outputs&of&individual&classifiers&become&inputs&of&a&
“higherflevel”&learning&that&figures&out&how&to&
combine&



10.&Simplicity&does&not&imply&accuracy&

•  Occam’s&razor&oien&misinterpreted&
– Results&in&publicaFons&which&“prove”&superiority&
of&simpler&models&

– Wolpert’s&“no&free&lunch”&theorems&reject&this&

•  Contrary&to&intuiFon,&not&necessarily&
connecFon&between&number&of&parameters&
and&tendency&to&overfit&

11.&Representable&does&not&imply&
learnable&

•  Theory&
– “Every&funcFon&can&be&represented,&or&
approximated&arbitrarily&closely,&using&this&
representaFon”&

•  PracFce&
– Great,&but&does&not&help&us&select&appropriate&
learner&

12.&CorrelaFon&does&not&imply&
causaFon&

•  Commonly&stated&
•  But&then&oien&seemingly&ignored&

/,120-.1�Disease-specific predictive features 

64&

• We’ve  conducted analyses about predictive 
features for each  disease. 

• The predictive features for a disease 
reflected the characteristics of it  more 
adequately than when we constructed one  
common predictive model. 

• They also contained some hypothetical 
suggestions. 
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• •&Diseasefspecific&contexts& are&valuable &to&&
improve &predictive &performance &in &mortality&&
modeling &in &ICU.&

• Adequate incorporation of medical/clinical  
domain knowledge can enhance data-  
driven approach. 

• We arguably took a step towards  
personalized medicine in ICU. 


