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Contemporary Approaches to
Machine Learning

A FEW USEFUL THINGS TO KNOW
ABOUT MACHINE LEARNING

Goals & Outline

* Review considerations for machine learning
— A Few Useful Things to Know about Machine Learning
— Additional clinical considerations

* Highlight some contemporary methods

— Regularization: Simultaneous Modeling of Multiple
Diseases for Mortality Prediction in Acute Hospital
Care

— Tensor Factorization: Rubik: Knowledge Guided Tensor
Factorization and Completion for Health Data
Analytics

Useful Things to Know about ML

1. Learning = representation 7. Feature engineering is key

+ eyalgati_on + 8. More data beats cleverer
optimization algorithm
2. It's generalization that 9. Learn many models, not
3. Data alone is not enough 10. Simplicity does not imply
4. Overfitting has many faces accuracy
5. Intuition fails in high 11. Representable does not
dimensions imply learnable

6. Theoretical guarantees are 12. Correlation does not imply
not what they seem causation



Useful Things to Know about ML

Learning = representation 7. Feature engineering is key

+ evaluation + 8. More data beats cleverer
optimization algorithm

It's generalization that

counts

Data alone is not enough

2. It’s generalization that counts

* Goal: generalize beyond training examples

* Large, sparse feature spaces mean
possible inputs >> observed inputs

* Training error is surrogate for test error

: John likes to watch movies Mary too also football
John likes 1 111 1 0 0 0 0
football. 0 1 0 0 1 11 0 0

1 1 0 0 0 0 0 1 1

1. Learning = representation +
evaluation + optimization

Representation

Evaluation

Optimization

Instances
K-nearest neighbor
Support vector machines
Hyperplanes
Naive Bayes
Logistic regression
Decision trees
Sets of rules
Propositional rules
Logic programs
Neural networks
Graphical models

Accuracy/Error rate
Precision and recall
Squared error
Likelihood

Posterior probability
Information gain
K-L divergence
Cost/Utility

Margin

Combinatorial optimization
Greedy search
Beam search
Branch-and-bound
Continuous optimization
Unconstrained
Gradient descent
Conjugate gradient
Quasi-Newton methods
Constrained
Linear programming
Quadratic programming

Bayesian networks
Conditional random fields

3. Data alone is not enough

* Features space grows more rapidly than
examples
— We'll never have enough data
* Real world not drawn uniformly at random
* Need assumptions, even simple ones
— Smoothness
— Similar examples have similar classes
— Limited dependeces
— Limited complexity
* Regularization




7. Feature engineering is key

* Many independent features that correlate
well with class? Learning is easy!

* Complex function of features? Lots harder

* Machine learning is fast, but data
— Gathering
— Integrating
— Cleaning
— Pre-processing
— Etc.

Additional Clinical Considerations

* Data
— Availability
* |CD codes (post-hoc billing)
* Aggregate statistics (max/min SAPS)
— Representation

* Granularity (e.g. in ontologies)
* Reasonable (respects underlying physiology)

8. More data beats a cleverer
algorithm

* Three constraints
— Compute: CPU
— Memory: RAM
— Data: training

* Ironically, more data affords more complex
models, but simple ones are often chosen due
to scalability constraints

Additional Clinical Considerations

* Learning
— Evaluation
* Clinicians do not operate across full ROC curve
* Tradeoff between early warning and false alarms
— Knowledge

* Incorporate medical domain knowledge



Additional Clinical Considerations

* Outcome
— Impact
* Dollars saved
* Lives preserved
* Time conserved
* Effort reduced
* Quality of life increased

— Actionable

Overview

Goal: mortality prediction

— EHR data -> in-hospital mortality

— Supervised

Method: regularization

— Similarities among diseases

— Similarities among features

— Ridge regression

Evaluation: quantitative performance

— Internal consistency and “make sense” results
— Comparison of AUCs

Thanks to Nozomi et al. for sharing slides!

Nozomi Nori et al., KDD 2015

SIMULTANEOUS MODELING OF
MULTIPLE DISEASES FOR MORTALITY
PREDICTION IN ACUTE HOSPITAL CARE

Problem: Mortality risk prediction in ICU

Caution] .,Q' 0”'j .,Q'j ® @
/N Illﬂ lllﬂ Illﬂ ﬁ?ﬂ

[Image acknowledgement: IIT Bombay]

In ICU, clinicians have to make decisions in a very
limited time.

Accurate assessment of patient severity is crucial.
Use mortality as a surrogate for the patient severity.

The accurate prediction of the mortality risk could assist
clinicians to pay more attentions to patients with a
higher mortality risk.

® Could lead to reducing “preventable deaths”
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® We incorporated disease-specific contexts into
ICU mortality modeling by multi-task learning
where a task corresponds to a disease.

® \\e incorporated medical/clinical domain
knowledge on the categorization of both the
diseases and EHRs by two graph Laplacians,
thereby alleviating data sparsity.

® \We showed that our disease-based multi-task
learning with medical domain knowledge worked
better than conventional methods using a real
world dataset.

A salient feature of ICU: diversity of diseases

e Patients with a wide variety of diseases in ICU.

e But the prediction is typically made by constructing one
common predictive model for all the diseases.

Disease-specific context:

e Yet, each disease has a specific prediction rule that

Used for severe gastric

explains the mortality risk.
ulcer with bleeding
Used for diseases

8
accompanied with artificial

Stomach medicine respiration

Hypothesis: customizing the model for each disease

would improve the predictive modeling.

__Challenge: data scarcity and sparsity _

Disease-Patients Distribution Plot

_ _Challenge: data scarcity and sparsity _

2. Data sparseness associated with electronic
health records (EHRS)

®Raw EHRs are extremely sparse.

Attempts to build a
customized model for each

. disease are complicated by
the limited availability of
sufficiently large datasets,
because many diseases only
have a small number of

| patients.

‘ 14000

® One reason behind this sparsity:

. a significant number of EHRs are subject to

: medical classification, which categorizes

13 medical information from multiple viewpoints,

h producing highly fine-grained features.
D
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Proposed solution: multi-task learning
with medical domain knowledge

A task Corresponds toa disease and prediction tasks
for different types of diseases are jointly solved by
sharing information across the diseases.

Idea: exploit more
information from more
similar diseases in
terms of medical

RO OO Ohd : cIassn’lcgtlgn of
Y S DI SR Wi S diseases; similarly for
~ ~ ‘ / EHRs

100-102 YK 110-115 JC 195-199 J00-J06 JO J95-199

Task 1 A Task 2 Task 3

- e e e e e S e e e e e

| ICD10 hierarchy: diseases are categorized in terms of |
! cause, symptoms, morphological disparity, etc., encoding |
i important information that might affect the mortality risk. !

Integrate medical domain knowledge by graph Laplacians_encoding the
similarities among diseases and EHRs into the regularization term in an
optimization problem (cont’d)

Similarity matrix .Wf;f_ W*J
R ; O R
g M 3% encoding gi i
g ; . T : £
B domain k_nowledge 03 i
28 ) - 251
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Parameter Matrix: W/ A Parameter Matrix: |}/

Make two model parameters for two diseases similar if the two
diseases are similar in terms of the medical classifications given
as the similarity matrix; similarly for EHRs.
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Integrate medical domain knowledge by graph Laplacians_encoding the
similarities among diseases and EHRs into the regularization term in an
optimization problem

Optimization H‘l}‘}l L(W) + QW)

Problem

Loss function  Regularization
(log loss)
T Ny

LW) == 3" {yunlogo@® L) 1+ (1 - o) log(1 — o(w® ' ¢())}

Q(W) = )\szdZ(W) + )\featheat(W) + )\rierid(W) Sdz . Similarity matrix

for diseases

Incorporation of Avoid overfitting | §eat Similarity matrix

Domain Knowledge for EHRs
T 2
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Experiments



_ _ _ _Experimental Condition1: _ _ _

Disease code |

Disease name

Other septicaemia
Malignant neoplasm of oesophagus

Malignant neoplasm of stomach

Malignant neoplasm of colon
Malignant neoplasm of rectum

Malignant neoplasm of liver

and intrahepatic bile ducts
Malignant neoplasm of bronchus and lung
Other disorders of brain
Angina pectoris
Acute myocardial infarction
Nonrheumatic aortic valve disorders
Heart failure
Atherosclerosis
Aortic aneurysm and dissection
Other noninfective gastroenteritis and colitis
Paralytic ileus and intestinal
obstruction without hernia
Peritonitis
Other diseases of liver
Postprocedural disorders of digestive system,
not elsewhere classified
Chronic renal failure

Dataset from a hospital é‘l‘;
In-hospital mortality risk e
prediction €20
C22

® Features: gender, age (< -
65/>=65), cormobidities, Go3
interventions; g(l’
2,000~2,500 features 135

150

® Three settings: prediction 170
before ICU discharge (2 .
days before / 1day before) K56
and retrospective K65
prediction (1 day before K76
hospital discharge) Kl
NI18

Result: Multi-task learning

domain

knowledge worked

with medical
best

Table: Comparison of averaged AUCs among various methods with Wilcoxon signed rank

test

Pre-ICU Pre-ICU Retrospectiv
discharge discharge e
predicti predicti predicti
on (2 days on (1 day on
before) before)
Proposed 0.914
Proposed-feat 0.692 0.717 0.837
Proposed-dz 0.758
non-MTL-1 (separate) 0.692 0.714 0.836
non-MTL-2 (common) 0.783 0.886
MTL-1 (I21) 0.717 0.723 0.819
MTL-2 (Trace) 0.724 0.739 0.837

%Proposed method outperforms other methods significantly (p<0.05) except for the gray colored

ones.

There is no other method that performs equaII'y well as our proposed method |
throughout the prediction settings. !

Both the domain knowledge on medical classification of diseases and
,, clinical classification of EHRs can improve the predictive performance.

® - Similarity between two diseases: the number of shared levels in the ICD hierarchy.

*  Similarity between two features: if the feature is medication and if two medicines have the
[ ] same drug efficacy, then the similarity between them is set to 1, otherwise 0.

[Table: Comparison of various methods used inour experiment}

Regularization

Domai

n
Knowledg
e

Disease-based
Customization

i bl Task, Feature, |2
Feature, |2
Task, |2
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Disease, EHRs
EHRs
Disease

Conclusions

* Authors claim to “take a step toward
personalized medicine in ICU”

* Cool method!
— MTL
— Cross-regularization

SRR <~

AN



Overview

* Goal: computational phenotyping
— EHR data -> meaningful clinical concepts
— Unsupervised
* Method: tensor factorization
— Guidance constraints align medical knowledge
— Pairwise constraints for distinct phenotypes
— Completion for missing and noisy data

Yichen Wang et al., KDD 2015 * Evaluation: algorithmic characteristics
RUBIK: KNOWLEDGE GUIDED TENSOR : rrmrteevrlr?:lsc\gr?st:(sics:zssatr?g?’Im“gi;blznse" results
FACTORIZATION AND COMPLETION — Scalability

* Thanks to Yichen et al. for sharing slides!

FOR HEALTH DATA ANALYTICS

Phenotyplng from Electronic Health

Records Ideal Phenotyping Algorithms
p— g * Guidance: incorporate medical knowledge
¢ Demographic —_— v 4 \ — -
w Procedure \\\\ :V;&
Diagnosis k-—/
BHR  aorens ‘ Phenotyping - Ea=e ) * Non-overlap: discover distinct and meaningful
— (phendlypes) phenotypes

Limitations of existing phenotyping methods

* Robust: handle noisy and missing data

— Unable to leverage existing knowledge

High overlapping between discovered phenotypes
* Scalable

— Not robust to missing and noisy data

Not scalable



Algorithms Comparison

Property Marble [I] FaLRTC [2] CTMF [3] TF-BPP [4] WCP [5] NETWORK [6] | Rubik
Guidance v
Non-overlapping v/ v v
Robustness v/ v 4 4 4 4
Scalability v

Table 2: A comparison of different tensor models

[1] Ho, Joyce C., Joydeep Ghosh, and Jimeng Sun. "Marble: high-throughput phenotyping from electronic health records via sparse
nonnegative tensor factorization." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2014.

[2] Liu, Ji, et al. "Tensor completion for estimating missing values in visual data." Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35.1(2013): 208-220.

[3] Acar, Evrim, Tamara G. Kolda, and Daniel M. Dunlavy. "All-at-once optimization for coupled matrix and tensor factorizations." arXiv
preprint arXiv:1105.3422 (2011).

[4] Kim, Jingu, and Haesun Park. "Fast nonnegative tensor factorization with an active-set-like method." High-Performance Scientific
Computing. Springer London, 2012. 311-326.

(5] Acar, Evrim, et al. "Scalable tensor factorizations for incomplete data." Chemometrics and Intelligent Laboratory Systems 106.1 (2011):
41-56.

(6] Davidson, lan, et al. "Network discovery via constrained tensor analysis of fmri data." Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013.

Examples of Phenotype

Medication factor

Diagnoses Medications
Hypertension Statins
Ischemic heart disease | Angiotensin receptor blockers
I Hyperlipidemia ACE inhibitors
- . Obesity Loop diuretics
Diagnosis factor Cardioselective beta blockers

Patients
factor

Diagnoses Medications

Phenotype with Guidance info
on heart failure

Cardiac dysrhythmias
Heart failure

Atrial fibrillation and flutter
Cardiomyopathy

first generation cephalosporins
calcium channel blocking agents
antianginal agents

mvi

= ~ !
- X ‘ !
1
1
\'f‘. : | )
YWy, = mmmmm———— e
- Phenotype 1 Phenotype R
Observed Tensor Distinct phenotypes Bias Tensor

ﬁ Interaction tensor

Complete . . .
Missing data Align with medical knowledge
Fmm e
Full Tensor /

Scalable

Problem Overview

7 Z £ £

~ + e
2 —_—
X: Tensor T: Interaction tensor C: Bias tensor
\ J

|
mingre ¥ =X —C—T|%+3[(AP - APYW|2 + 32Q - ABTA®|2,

Factorization error Guidance Nonoverlap constraint

s.t. =
Pa(X) =Pa(0) O: Observed tensor

T=[A";;aM]eQr, c=mY;--;u™M]eqc

Q7 =Qa, x -+ X Qay, Qa, = {A € {0} U [yn, +00)"*F} Sparsity

Qe = Quy X+ X Dy, D, = {u € [0, +00)7*1} Nonnegativity



Guidance Information

phenotypes Phenotype 1 Phenotype 2

hypertension

Diabetes 1

diagnosis
Secondary hypertension

Diabetes 2

Guidance knowledge A

Factor matrix A

we(48)

Guidance is limited

mina [|(A — A)W|%

Formulation

. N A
Objective T =X -C-Tl}+ (AP - AP)W|2 + 32 Q - BWTA®)|2,
@ A® — B® v =y
Lagrange Function N n
(ADMM) L=¥+ Zl(@(")ﬂ(") —u™) 4+ Zfv® —u})
oy

N
+ oY, B™ — A™) + FB™ — A®|2)
n=1

p and Y are Lagrange multipliers

Block coordinate
scheme

39

Pairwise Constraints

* We can penalize the cases where phenotypes have

overlapping dimensions.

Phenotype 1 Phenotype2  Phenotype1l Phenotype 2 phenotypes

hypertension
phenotypes

Diabetes 1

Q: similarity matrix

Overlapping case Non-overlap case

mina [|Q — ATA|%

38

Block coordinate scheme

min || AT — R |3
An)

A n n Aa n) _ A
+221Q - BOTAM|E + 22 (A~ AW

Update interaction tensor (T)
+EA™ B — Y /|3

t+1
otherwise
Update bias tensor (C) min ”u(n)(A(n))T _ E(n)”%‘ + %”u(n) —y™ _ p(”)/nt”%

u(n)
h 1
I Vi) = max(0, u?; + L p{”)
Update Lagrange multipliers (p, Y) n " - n
Y£+)1 = Yg ) + Ht(B§+)1 - A£+)1
@ P =Pt + (v} —uf))

Update full tensor (X)

X1 = Pac (Tit1 + Ciq1) + Pa(O)




Experiments

: How Rubik discovers meaningful
phenotypes?

: How Rubik discovers fine-grained sub-
phenotypes?

: How Rubik discovers distinct phenotypes?

: Is Rubik robust to noisy and missing data?

: Is Rubik Scalable?

: Are all constraints important?

Datasets

3rd order tensor with patient,
diagnosis and medication modes of size 7,744
by 1,059 by 501, respectively.

472,645 patients by 11,424 diagnoses by
262,312 medication events.

Constructing Tensor

v
——
—@

] ++ i
J >

\ Y

> &
—— —— 553
7 days 7 days
Sliding Window — e—p- @
Time series data > Binary Tensor

Figure 1: Co-occurrences of events within a patient’s history are captured in
the tensor as binary values.

Phenotype Discovery: Meaningful Interaction Tensor

B YES POSS NOT

* Conduct surveys with medical

o7 experts to evaluate 30 phenotypes

] .
g o0s e from Marble and Rubik
g f
0.25 .. .
. means clinically meaningful
Vare bk means possibly meanlngful
. means not meaningful

Figure 1: A comparison of the meaningfulness of the
phenotypes discovered by Marble and Rubik.

Rubik generates more meaningful phenotypes



Phenotype Discovery: Meaningful Bias Tensor

Diagnoses Medications
Hypertension Statins

Disorders of lipoid metabolism | Loop diuretics

Heart failure Miscellaneous analgesics
Respiratory & chest symptoms | Antihistamines

Chronic kidney disease Vitamins

Other and unspecified anemias | Calcium channel blockers
Diabetes mellitus type 2 Beta blockers

Digestive symptoms Salicylates

Other diseases of lung ACE inhibitors

Table 5: Elements of the diagnosis and medication
modes in the bias tensor.

* Meaningful: accurately reflects the stereotypical type of
patients

e Supports the medical report:
¢ 80% of older adults suffer from at least one chronic
condition and 50% have two or more chronic conditions

Phenotype Discovery: Meaningful Subphenotypes

Experiment setup:

¢ Four guidance: hypertension, diabetes1, diabetes2, heart
disease

¢ 2 sub-phenotypes for each guidance

¢ 8 sub-phenotypes in total

Experts evaluation:

* 62.5% are meaningful

* 37.5% are possibly meaningful

Phenotype Discovery: Meaningful Subphenotypes

Marble Rubik
A. Metabolic syndrome phenotype
Diagnoses Medications Diagnoses Medications
Chronic kidney disease | Central sympatholytics Hypertension Calcineurin inhibitors
Hypertension Angiotensin receptor blockers Chronic kidney disease Insulin
ACE inhibitors Ischemic heart disease Immunosuppressants

Unspecified anemias
Fluid electrolyte imbalance
Type 2 diabetes mellitus

Other kidney disorders

Immunosuppressants
Loop diuretics

Gabapentin

Table 6: An example of a Marble-derived pheno-

type.

Anemia of chronic disease

Disorders of lipoid metabolism| ACE inhibitor

Cox-2 inhibitors

Unspecified anemias
Hypertension

Antibiotics
Statins
Calcium
B. Secondary hypertension phenotype
Diagnoses Medications
Secondary hypertension Class V antiarrhythmics
Fluid & electrolyte imbalance| Salicylates

Antianginal agents

ACE inhibitors

Calcium channel blockers|
Immunosuppressants

Table 7: Examples of Rubik-derived subphenotypes.
The two tables show separate subgroups of hyper-
tension patients: A) metabolic syndrome, and B)

secondary hypertension

due to renovascular disease.

More Distinct Phenotypes

0.8

o
o

AvgOverlap
o
»

---TF-BPP

Figure 2: The average level of overlap in the pheno-
types as a function of the pairwise constraint coeffi-
cient \,.

¢ Pairwise constraint leads to more distinct phenotypes

* Average similarity tend to stabilize whe A, is

10

larger than



Missing Data Analysis

Generate missing data:
randomly set the observed values to be 0

0.2 0.3 0.4
Missing Data Level

Figure 3: An average similarity comparison of differ-
ent methods as a function of the missing data level.

Incorrect Guidance

Generate incorrect guidance:
randomly set entries in guidance matrix to be 1

1

Cosine Similarity
o
(o<}

o
o

0.1 02 03 0.4
Incorrect Guidance Level

0.5

Figure 5: The similarity between the true solution
and the solution under incorrect guidance as a func-
tion of the incorrect guidance level.

Noise Analysis

Generate noise:

randomly set the unobserved entries to be 1

0.6

AvgSim

~o-Rubik
-8-CP-APR
-* TF-BPP

%.1 0.2 0.3
Noise Level

0.4 0.5

Figure 4: An average similarity comparison of dif-
ferent methods as a function of the noise level.

Scalability

Time

3000 5000 7000
Number of Patients

Figure 7: A runtime comparison of different meth-
ods on the Vanderbilt dataset as a function of the
number of patients.

1210°
~-Rubik
.CP-APR
- TF-BPP

—+WCP
-o FaLRTC

Time

8

0
0.8

28 4.
Number of Patients  x1¢%

Figure 8: A runtime comparison of different meth-
ods on the CM S dataset as a function of the number
of patients.

Rubik is around six times faster than competitors



Constraints Analysis

M Basic Pairwise M Guidance Completion
1

0.5

" J
0

Vanderbilt CMS

Proportion

Figure 9: Proportion of contribution of each con-
straint.

* All constraints are important!
* Pairwise constraint provides the largest
boost

Tristan Naumann (tjn@mit.edu)

THANKS!

Conclusions (Author)

The resulting phenotypes are concise, distinct,
and interpretable

Rubik can also incorporate guidance from
medications and patients

Rubik is robust to noisy and missing data

Rubik is scalable

BACKUP



4. Overfitting has many faces 5. Intuition fails in high dimension

* Decompose error * Curse of dimensionality

— Bias Low High
— Variance Variance Variance ° DOUbly cursed, e.g.
COT:::r‘g'at:]:rhh?scﬁ_:hek;_ga's . — Approx. hypersphere by inscribing in hypercube,
— L | | 1g . . . .
because when the frontier is Bias in high dimensions nearly all volume of hypercube

not hyperplane can’t induce it

— Decision tree can represent
any Boolean function, but
might be very different
depending on training set

* Strong false assumptions
often trump weak true ones

is outside hypersphere

Nn=5.2569464

5 T V(n,1)=5.277768
Low
Bias

volume of unit n-ball

Scientific American: Volume
of a Unit Ball in n dimensions

10
dimension n

6. Theoretical guarantees are not

9. Learn many models, not just one
enough

* Guarantees on induction: really cool! * Bagging

. . . — Generate random variations of the training set by
— Unfortunately, most interesting hypothesis spaces resampling, learn a classifier for each, and combine

are doubly exponential in number of features results by voting

* Asymptotic guarantees are comforting * Boosting

, ) ] — Training examples have weights, and these are varied
— Shouldn’t be used to select a learning since we so that each new classifier focuses on the examples

don’t live in a world with infinite data the previous ones got wrong
 Stacking

— Outputs of individual classifiers become inputs of a
“higher-level” learning that figures out how to
combine



11. [
10. Simplicity does not imply accuracy Representable does not imply

learnable

* Occam’s razor often misinterpreted * Theory

— Results in publications which “prove” superiority — “Every function can be represented, or

of simpler models approximated arbitrarily closely, using this

— Wolpert’s “no free lunch” theorems reject this representation”
* Contrary to intuition, not necessarily * Practice

connection between number of parameters — Great, but does not help us select appropriate

and tendency to overfit learner

12. Correlation does not imply Disease-specific predictive features
causaton = - - - ——-—-—————————————-

* Commonly stated ® \We've conducted analyses aboutpredictive

* But then often seemingly ignored features for each disease.

® Thepredictive features for a disease
reflected the characteristics of it more
adequately than when we constructed one
common predictive model.

® They alsocontained some hypothetical
suggestions.



Conclusions

® Disease-specific contexts are valuable to
improve predictive performance in mortality
modeling in ICU.

® Adequate incorporation of medical/clinical
domain knowledge can enhance data-
driven approach.

® \We arguably took a step towards
personalized medicine in ICU.



