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ABSTRACT

Coarse-grain reconfigurable arrays (CGRAs) can achieve much

higher performance and efficiency than general-purpose cores, ap-

proaching the performance of a specialized design while retaining

programmability. Unfortunately, CGRAs have so far only been ef-

fective on applications with regular compute patterns. However,

many important workloads like graph analytics, sparse linear al-

gebra, and databases, are irregular applications with unpredictable

access patterns and control flow. Since CGRAs map computation

statically to a spatial fabric of functional units, irregular memory

accesses and control flow cause frequent stalls and load imbalance.

We present Fifer, an architecture and compilation technique that

makes irregular applications efficient on CGRAs. Fifer first decou-

ples irregular applications into a feed-forward network of pipeline

stages. Each resulting stage is regular and can efficiently use the

CGRA fabric. However, irregularity causes stages to have widely

varying loads, resulting in high load imbalance if they execute

spatially in a conventional CGRA. Fifer solves this by introducing

dynamic temporal pipelining: it time-multiplexes multiple stages

onto the same CGRA, and dynamically schedules stages to avoid

load imbalance. Fifer makes time-multiplexing fast and cheap to

quickly respond to load imbalance while retaining the efficiency

and simplicity of a CGRA design. We show that Fifer improves per-

formance by gmean 2.8× (and up to 5.5×) over a conventional CGRA

architecture (and by gmean 17× over an out-of-order multicore) on

a variety of challenging irregular applications.
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1 INTRODUCTION

General-purpose processors are woefully inefficient: they routinely

spend less than 1% of their energy executing computation [23], and

spend most of their energy and area on instruction interpretation

overheads and general but expensive latency-tolerancemechanisms,

like out-of-order execution and speculation.WithMoore’s Lawwan-

ing, it is crucial to reduce this bloat. While specializing hardware

to each application achieves maximum performance and efficiency,

it is inflexible. Ideally, we want architectures that approach the effi-

ciency of full specialization, while being programmable and capable

of executing a wide range of applications.

Coarse-grain reconfigurable arrays (CGRAs) are a promising

approach to achieve this goal. CGRAs implement a sea of spatially

distributed functional units that can be configured and connected

with switches to create high-throughput datapaths. Prior work has

explored and implemented a wide range of CGRA designs, either

as standalone accelerators [11, 24, 37, 48, 50] or tightly integrated

coprocessors [20, 36, 52, 64].

Unfortunately, CGRAs are restricted to regular applications, i.e.,

those with structured access patterns and control flow, like dense

linear algebra. These features are necessary to produce a high-

performance pipeline that can be spatially and statically mapped

to a CGRA fabric.

By contrast, CGRAs struggle with irregular applications, i.e.,

those with unstructured memory accesses (like indirections) and

control flow (like data-dependent branches). These applications

arise in many important domains, like graph analytics, sparse lin-

ear algebra, sparse deep learning, and databases. CGRAs are ill-

equipped to handle these operations: faced with a long-latency

operation, like a cache miss, they simply stall; and even if misses

are rare, irregular control flow causes load imbalance that leaves

most of the fabric idle.

In this paper, we present Fifer, an architecture and compilation

technique that makes irregular applications efficient on CGRAs.

Fifer combines two key techniques:

(1) Extracting regular stages from irregular applications: We show

that an application’s irregular accesses and control can be decou-

pled from its regular computation, which can then be efficiently

processed by the CGRA. This approach divides the computation

into a pipeline, i.e., a feed-forward network of stages. These stages

are connected with latency-insensitive channels, like FIFO queues,

to tolerate unpredictable latencies. Importantly, this approach pro-

duces regular stages that can be turned into high-throughput data-

paths mapped to a CGRA fabric and confines irregularity to happen

across pipeline stages.

Despite this transformation, conventional CGRAs are still inef-

ficient: while each stage maps well to a CGRA fabric, irregularity

causes wide variations in work across stages. CGRAs, being pure
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spatial architectures, cannot accommodate these variations and

suffer from load imbalance. This necessitates Fifer’s second key

technique:

(2) Dynamic temporal pipelining: To avoid load imbalance, Fifer

temporally pipelines CGRA-based architectures: multiple stages are

time-multiplexed into the same CGRA fabric, with a scheduler

dynamically choosing which stage to run based on the availability

of work. This avoids load imbalance by dedicating more cycles to

stages with more work. To be efficient, reconfigurations should be

infrequent (occurring every few hundred cycles), and brief (lasting

tens of cycles). We introduce fast reconfiguration mechanisms to

make this possible.

Prior work has also explored adding time-multiplexing to CGRAs:

Triggered Instructions [45] maps multiple operations onto each el-

ement of the fabric, and each element selects a ready operation

to execute each cycle. This fine-grain time-multiplexing tolerates

imbalance, but requires substantial additions to a CGRA to support

such frequent switching. By contrast, Fifer reconfigures at coarser

granularity: switching between large, regular chunks of operations

over several cycles. Because our program transformation coarsens

work into chunks that are switched less often, we can use much sim-

pler scheduling hardware to achieve load balance on the CGRA fab-

ric. By analogy with general-purpose cores, Triggered Instructions

is the CGRA counterpart to fine-grained multithreading, whereas

Fifer is the CGRA counterpart to coarse-grained multithreading.

To implement Fifer, we make three simple modifications to an

existing CGRA: (1) frequent and rapid reconfiguration, (2) buffers

acting as queues decoupling spatial and temporal pipelines, and (3)

logic to further decouple irregular memory accesses. We prototype

Fifer in a system with multiple processing elements (specialized

cores), each with its own CGRA fabric and private cache. We show

that Fifer scales well to large systems by combining spatial and

temporal pipelining. We implement Fifer’s major components in

RTL and show that its additions are simple and cheap.

Our evaluation shows Fifer outperforms an OOO multicore by

over gmean 17× while using much less area. We also compare Fifer

to a CGRA-based architecture that cannot time-multiplex stages.

Fifer outperforms this baseline by gmean 2.8×, and by up to 5.5×,

across a variety of challenging irregular applications.

In summary, we make the following contributions:

• We identify the challenges of irregular applications on re-

configurable spatial architectures.

• Wepresent a technique to decouple applications across sources

of irregularity for effective CGRA mappings.

• We introduce Fifer, a CGRA-based architecture that time-

multiplexes multiple configurations onto its processing ele-

ments to avoid load imbalance.

• We implement Fifer and evaluate its effectiveness on a wide

range of applications, demonstrating its applicability.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce CGRAs as part of a broader tax-

onomy of spatial and temporal architectures; CGRAs are a purely

spatial architecture. Our concrete example illustrates the challenges

of accelerating irregular applications in CGRAs, and motivates

Fifer’s contributionsÐessentially, adding a cheap temporal compo-

nent to CGRAs. Finally, we compare Fifer to related prior work.

2.1 Spatial and temporal architectures

We can broadly classify architectures into two classes [6, 20]: tem-

poral architectures keep data at a fixed location and, over time,

apply different operations to this data by changing the configura-

tion of the processor; by contrast, spatial architectures keep the

configuration of the processor fixed and process data by streaming

it across spatially distributed elements of the processor.

General-purpose cores are temporal architectures, because, over

time, cores continuously change the operations (instructions) they

apply to data kept in the same place (in the register file, or in caches

that achieve high reuse by exploiting locality). But continuously

switching the activities in the processor pipeline over time (by

fetching and decoding instructions, and trying to execute many in

parallel) is expensive.

By contrast, coarse-grained reconfigurable architectures (CGRAs)

are spatial architectures: they are structured as a spatially distributed

grid of functional units, each performing a fixed (but configurable)

operation. Functional units are composed to perform more complex

computations, and data is moved among functional units through

a network of simple switches. CGRAs achieve programmability

without the need to continuously fetch and decode instructions.

But their pure spatial approach has disadvantages: the size of the

program is limited by the number of functional units, and to achieve

high performance, these units must be configured as a pipeline, to

allow many functional units to be active simultaneously.

Given their promise, much prior work has proposed CGRA-based

architectures, either as standalone accelerators [11, 17, 24, 37, 42, 48]

or tightly integrated within the pipeline of a general-purpose pro-

cessor [20, 36, 52, 64]. Prior work has also designed compilation

techniques [15, 33, 43, 65] and applied them to a multitude of ap-

plication domains, including neural networks [57], data analyt-

ics [16, 62], and signal processing [47, 66]. Some GPUs now include

specialized units featuring spatial execution, like NVIDIA’s Tensor

Cores [9], which, though less programmable, resemble CGRAs.

Systems often mix temporal and spatial approaches at different

granularities. For example, some multicores, like Raw [58], are tem-

poral within each core, but feature queue-based communication to

build spatial pipelines across cores; and DySER [20] integrates a

CGRA within each core, using spatial execution selectively. How-

ever, to reap the benefits of spatial architectures, we should execute

most of the work spatially and use temporal execution infrequently.

This is why Fifer is built to use spatial execution at the innermost

levels of the application (through CGRAs), and temporal execu-

tion (through time-multiplexing) at coarser timescales to amortize

reconfiguration overheads.

2.2 Challenges of irregular applications

CGRAs are amenable to creating static spatial pipelines, in which

an application is split into pipeline stages and mapped to func-

tional units across the fabric. To perform a particular computation,

operands are passed from one functional unit to the next in this fixed

pipeline. These are highly effective for regular applications, where

the data access patterns and control flow are highly predictable.
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define bfs(src):

distances[src] = 0

cur_fringe = [src]

cur_dist = 1

while not cur_fringe.empty():

for v in cur_fringe:

start = offsets[v]

end = offsets[v+1]

for e in range(start, end):

ngh = neighbors[e]

dist = distances[ngh]

if dist is unset:

distances[ngh] = cur_dist

next_fringe.push(ngh)

cur_fringe = []

swap(cur_fringe, next_fringe)

cur_dist += 1

(a) Pseudocode for sequential BFS.
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(b) An example graph G .
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(c)G ’s CSR representation and, at right, the
output (distances) produced by BFS.

Figure 1: An implementation of breadth-first search (BFS).

However, mapping irregular applications to spatial architectures

is more complex, because their unpredictable latencies and control

flow can significantly impact CGRA throughput. The key insight

to enabling effective mappings of irregular applications is to rec-

ognize that they are rich in otherwise-regular computation, but

interspersedwith irregular memory accesses and control flow.More-

over, irregular applications decompose wellÐPipette [41] exploited

this property in general-purpose cores, but not yet for specialized

architectures. This brings us to Fifer’s first major contribution: en-

abling effective mappings to reconfigurable spatial architectures by

partitioning stages across sources of irregularity.

For a concrete example, we use BFS, a common graph algorithm

that finds the distance from a source vertex src to all vertices reach-

able from it. Fig. 1(a) shows example code for serial BFS. The graph

in Fig. 1(b) is stored in the widely used compressed sparse row (CSR)

format [39, 51, 54], shown in Fig. 1(c) beside the distances array,

which results from running BFS on this graph. BFS is a challenging

irregular workload due to its multiple levels of indirection: it uses

elements from cur_fringe to access offsets, which is then used

to access neighbors, which in turn is used to access distances.

To transform BFS into a pipeline, we isolate each long-latency

memory access into its own stage, indicated by differently shaded

code in Fig. 1(a). First, the process current fringe stage reads vertices

from cur_fringe, whose neighbors are identified in the enumerate

neighbors stage. For each of these neighbors, the fetch distances

stage loads the distance of this neighbor, which is checked against

the current distance from the source by the update data stage. By

adding queues to communicate data from one stage to the next,

we produce the pipeline shown in Fig. 2(a). By placing at most one

long-latency operation in each stage, no memory access in any of

these stages will keep computation in other stages from proceeding,

unless input queues run empty or output queues become full.

This transformed BFS can now be mapped to a spatial architec-

ture, but it will suffer from poor performance due to load imbalance

across stages. The baseline architecture that we use in this paper

(Sec. 3) has multiple processing elements (PEs), each with a separate

CGRA fabric, and PEs can communicate through FIFO queues and

access memory individually. Fig. 2(b) shows how our transformed

BFS can be executed in this architecture by mapping each stage to

a PE. But this approach is still a static spatial pipeline, and quick

variations in load across stages will cause stalls on empty or full

queues, resulting in poor utilization.

Fifer’s other key insight addresses the shortcomings of static

spatial pipelines by observing that a stage need not be fixed to

a PE for the lifetime of a computation. Instead of placing stages

on physically distinct PEs and creating a spatial pipeline, we can

temporally pipeline stages by time-multiplexing them onto the same

PE. Fig. 2(c) shows how Fifer maps BFS using this approach. We call

this dynamic temporal pipelining, because a scheduler dynamically

switches across stages based on the availability of work (e.g., when

a stage runs out of work, the ready stage with the most work

is switched in). Switches happen every few tens to hundreds of

cycles, long enough to amortize reconfiguration overheads, and

short enough to keep queue and memory footprint low (as these

grow the further stages are decoupled).

2.3 Prior spatial and temporal CGRAs

Fifer is not the first proposal to add a temporal component to a

spatial architecture, but to the best of our knowledge, it is the first

to do so at this granularity.

At one extreme, prior work has proposed time-multiplexing at

the cycle level: Triggered Instructions [45] is a spatial architecture

with an array of PEs that communicate through latency-insensitive

channels. Each PE holds a limited number of instructions (e.g., 16),

which become ready depending on runtime conditions (e.g., the

availability of a value in a queue). Each PE chooses among one of

the ready instructions each cycle. Though this cycle-level approach

improves utilization, it comes at a cost: each PE is more complicated

than the functional unit in a CGRA, and PEs communicate through

queues rather than registers.

At the other extreme, run-time reconfiguration (RTR), a feature

of commercial FPGAs (another kind of spatial architecture), has

been used to time-multiplex configurations when a design exceeds

Process

current fringe

Enumerate

neighbors

Fetch

distances

Update data,

next fringe

(a) A pipeline-parallel implementation of BFS.

Processing

Element

Functional

Unit
Inter-PE

Channels

(b) Mapping BFS as a spatial pipeline on cur-
rent reconfigurable spatial architectures.

Queues Queues

Reconfig.

(c) This paper: map BFS (2 of 4 stages shown) as a dynamic temporal
pipeline to a time-multiplexed reconfigurable fabric on a single PE.

Figure 2: Mapping breadth-first search (BFS) to spatial architectures.
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available resources. However, this happens at coarse timescalesÐ

hundreds of microseconds [40]Ðmuch longer than the tens of cycles

needed to effectively load balance stages of a pipeline or tolerate

memory latency. Moreover, prior use of RTR only targeted appli-

cations that already map well to spatial architectures, like sorting

[28] and streaming [7], or HLS-generated pipelines targeting appli-

cations with abundant data parallelism [56].

Fifer lies in the middle of these extremes, reconfiguring every few

10sś100s of cycles. This avoids expensive modifications to CGRAs

and amortizes reconfiguration overheads, yet suffices to avoid load

imbalance and achieve high utilization.

It is useful to contrast these techniques with general-purpose

processors. They are analogous to multithreading, where a core

switches among multiple threads of execution to improve utiliza-

tion. Triggered Instructions is the CGRA analog to fine-grained

multithreading [4, 25, 29] (FGMT), where the core time-multiplexes

threads cycle by cycle; Fifer is the CGRA analog to coarse-grained

multithreading [1ś3, 26] (CGMT), where the core switches across

threads less frequently, to tolerate long-latency events (e.g., on

every L2 cache miss); and RTR is the spatial analog to software-

only context-switching of threads by the operating system. Just as

CGMT requires simpler core changes than FGMT, Fifer requires

simpler changes than Triggered Instructions (quantitatively, the

difference between these is larger since CGRAs do not already have

a temporal component).

2.4 Other related work

Previous implementations of multithreading on CGRAs have not

explored accelerating irregular applications by organizing them

as pipelines; for example, one approach [50] instead focuses on

switching between many disparate applications.

The SGMF architecture [63] and its descendant dMT-CGRA

[64] adapt a GPGPU’s data-parallel computation to flow through a

CGRA. Its multithreading does not refer to the reconfiguring of a

CGRA fabric for pipeline-parallel programs but instead to the many

identical data-parallel threads of the SIMT execution model.

Pipette [41] implements pipeline-parallel programs by mapping

each stage to a thread in a multithreaded OOO core. Fifer is in-

spired by Pipette and adapts several of its mechanisms to CGRAs,

as we explain later. However, the two approaches have major dif-

ferences. For example, Pipette reuses the physical register file for

queue storage, which places an upper bound on decoupling. Further-

more, as previously discussed, modern OOO cores suffer from high

frontend overheads and cannot achieve the same compute density

as a reconfigurable fabric. Fifer operates at the high-throughput

regime of Little’s Law: larger queue buffers are needed to support

the commensurately higher-throughput reconfigurable fabric.

Sec. 9 discusses additional prior work, including application-spe-

cific accelerators and decoupled access-execute (DAE) architectures.

Unlike priorwork, Fifer combines spatial pipelining and temporal

pipelining at coarse-grain timescales (10sś100s of cycles) to amortize

the costs of reconfiguration yet effectively tolerate latencies of the

memory hierarchy, with coarse-grain computation (machine word

width, not bit granularity), to address the limited throughput and

flexibility of prior architectures.
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Figure 3: Coarse-grain reconfigurable array (CGRA, left) and func-

tional unit design (right).

We achieve better utilization by (1) time-multiplexing the fabric

at the individual PE level for improved load balance, and (2) en-

abling fast communication between stages on the same PE. Our

novel programming modelÐstructuring applications as pipeline-

parallel stages of computation that can be time-multiplexed on

the same processing elementÐovercomes the limitations of prior

architectures and enables Fifer’s performance benefits.

3 BASELINE CGRA ARCHITECTURE

Because there are many CGRA designs, we first introduce the base-

line CGRA architecture to make the discussion concrete. Fifer then

builds on this baseline.

CGRA fabric: Fig. 3 shows the major components of a coarse-

grain reconfigurable array (CGRA): at a high level, it is a grid of

functional units connected together with switches. Each functional

unit, shown in detail in Fig. 3, contains an integer ALU similar to one

in a general-purpose processor, capable of elementary operations

(arithmetic, shifts, bitwise operations) at machine word width (e.g.,

64 bits). Each PE also incorporates a few double-precision fused

multiply-add (FMA) units to support floating-point workloads.

Configuration cells (registers) at each functional unit specify

the operation of the ALU; additional configuration cells specify the

connectivity of switches passing operands between functional units.

Because conventional CGRAs are reconfigured rarely, their config-

uration cells use slow but simple write mechanisms, like register

scan chains. (Fifer contributes a fast reconfiguration mechanism in

Sec. 5.1.)

Inputs and outputs enter and leave the reconfigurable array

through ports at the edges of the grid. The reconfigurable array

is internally pipelined; that is, functional units are separated by

registers as shown in Fig. 3, and the longest input-output path

through functional units sets the latency of a given configuration.

Registers also allow the CGRA to retain program state, e.g., to track

loop iteration counts or accumulate values over loop iterations.

Multi-PE CGRA architecture: A single CGRA fabric is some-

times used as a functional unit or coprocessor [17, 20, 52] to accel-

erate small kernels. However, our goal is to handle full algorithms

autonomously, without having general-purpose cores as intermedi-

aries. To this end, our baseline architecture, shown in Fig. 4, consists

of multiple processing elements (PEs), each of which integrates a

CGRA fabric, a private L1 cache, and mechanisms for queue-based

communication. All PEs share a (highly banked) last-level cache.
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Figure 4: Baseline spatial architecture and design of a processing

element (PE) with CGRA fabric.

This approach is preferable to having a single, very large CGRA

fabric for two reasons. First, it enables having multiple independent

private caches, so the system can achieve high memory throughput

and exploit locality. Second, it provides decoupled communication

between PEs. Because functional units inside each CGRA fabric are

tightly coupled through rigid pipelines, a single stall would quickly

propagate through the whole fabric. By contrast, PEs communicate

with each other through FIFO queues, so when one incurs a stall

(e.g., due to a cache miss), other PEs will not necessarily stall.

Our baseline implements inter-PE queues through a flexible in-

terface: the switches at the edges of the fabric can dequeue from

input queues and enqueue to output queues. Queues are stored in a

small queue memory in each PE (a 16 KB SRAM in our implementa-

tion). This queue memory can be statically divided among multiple

queues, each of which is managed as a circular buffer.

Mapping applications: To use this multi-PE design, applications

are divided in stages, each of which is mapped to a PE. Then, these

stages communicate through queues.

To use this baseline system well, it is crucial that all stages pro-

ceed at roughly the same rate: if one stage produces more inputs

at a higher rate than its consumer, it will be bottlenecked by its

consumer and frequently stall on a full output queue. Conversely, a

too-fast consumer will spend many cycles waiting for input. Note

that queues provide decoupling, but only against temporary mis-

matches in throughput, e.g., due to a cache miss. Long-running

throughput differences will, over time, leave queues full or empty,

and make the whole program run at the pace of the rate-limiting

stage. Because queues do not provide unbounded decoupling, we

consider this design a static spatial pipeline, even though it is de-

coupled.

Prior work has proposed different techniques to use this kind of

static pipeline well, such as replicating slow stages [19]. But this

requires having known and stable rates, which is not the case with

irregular applications.

4 EXTRACTING REGULAR STAGES
FROM IRREGULAR APPLICATIONS

We present a new technique to map irregular applications to CGRA

fabricsÐthis is a prerequisite for Fifer, but also for our baseline

architecture. The key insight, as we explained in Sec. 2.2, is to

first partition the application into stages across sources of irregularity.

This produces regular stages and confines the irregularity to happen

*.c
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Source

Dataflow

graph
analysis &

extraction

*.ll

LLVM

IR

C / C++

Compiler

Dataflow graph (DFG) *.bin

Fabric

Config.
Bitstream

Bitstream

generation

Figure 5: Process for transforming a pipeline stage’s annotated

source code into a Fifer PE fabric configuration.

mov %r_neighbors, ...;

deq %r_e,   $q_start;

deq %r_end, $q_end;

loop:

lea   %r_addr, (%r_neighbors,%r_e,2);

ld %r_ngh, (%r_addr);

enq $q_ngh, %r_ngh;

addi %r_e, %r_e, 1;

blt %r_e, %r_end, loop

done:

...

Serial code:

for e in range(start, end):

ngh = neighbors[e]

start

end

neighbors

e

end < ?

LEA

1

LD

Cache
Control

address of

neighbors[e] ngh

Pseudo-assembly:

Mapping:

Figure 6: Example mapping of BFS’s enumerate neighbors stage to

a CGRA.

across stages. Then, these regular stages are efficiently mapped to

a CGRA. In our implementation, the first step is manual, while the

second is automated.

Partitioning: A program may be split at arbitrary locations into

arbitrarily many stages, but judiciously decoupling programs is

essential for good performance. Our overarching objective is to

decouple irregular parts of the computation, such as unpredictable

memory accesses and control flow, from more regular parts. There-

fore, we split a program at every long-latency load, so that loads

issued by a given stage are consumed by a different stage. For exam-

ple, in BFS (Sec. 2.2), each loop nest level contains such a load, so

each stage corresponds to a level. Finally, stages that are too large

to fit on one PE can always be divided into multiple smaller stages.

Though this partitioning process is manual, it is systematic. It is

similar to Pipette’s [41] approach to partition irregular applications

across threads, but whereas Pipette can rely on prefetchers and

OOO execution to avoid splitting across predictable accesses, we

have no such prediction mechanisms. We believe such approach is

automatable, e.g., using techniques like DSWP [49], or relying on

domain-specific languages that perform deep program transforma-

tions [27, 69]. We leave this to future work.

Mapping: Fig. 5 shows the process of transforming partitioned

serial code into configurations for a CGRA. We generate LLVM

intermediate representation (IR) for each stage, which represents

low-level operations on data and their dependences. An automated

tool examines the LLVM IR and produces a dataflow graph (DFG)

using the actual operations that can be performed by a PE’s func-

tional units. The DFG is modified to receive its inputs and send its

outputs via queues. A final bitstream generation step transforms the

DFG into a bitstream that, when configured into a CGRA, carries

out the computation represented by the DFG.

To concretely demonstrate this process, consider the enumerate

neighbors stage from BFS, shown in Fig. 6. This stage dequeues

the start and end positions of the edge list of a vertex, and pro-

duces neighbor vertex ids. The operations required to carry out
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colored purple, are only illustrative and virtualized in the queue

memory.)

the serial code (in orange) for this stage are represented with the

pseudo-assembly code (in purple) resembling the lowered LLVM

IR produced by the compiler. Each pseudo-assembly instruction

corresponds to an operation assigned to a functional unit in the PE.

When mapped to a DFG, this stage computes addresses (LEA)

in the neighbors array, performs the dereference (LD), and passes

the neighbor (ngh) to the next stage. Some additional logic (+ and

< ?) determines whether we have finished this edge list.

Values are processed in the order they arrive; once dequeued,

they flow through one functional unit per cycle. Some control logic

(the red cloud) triggers dequeues of new start and end values. In

addition to driving enqueues and dequeues, per-PE control logic

also orchestrates reconfigurations (Sec. 5.1) and stalls the pipeline

for cache misses on coupled loads (Sec. 5.4).

Inter-stage control flow: In irregular applications, stages often

need to communicate control flow decisions to other stages; for

example, in BFS, all stages need to know when the current dis-

tance from the source vertex has changed. Since stages communi-

cate through queues, it is natural to pass this control information

through the same queues. We extend queues to carry control or

data values. Since control values are infrequent, we compile stages

to handle either multiple input data values or one control value per

cycle. Sec. 5.5 gives implementation details.

5 FIFER ARCHITECTURE

Static spatial pipelines have several limitations reducing their effec-

tiveness on irregular applications. Fifer overcomes these limitations

by augmenting spatial pipelines with temporal pipelines. We orga-

nize our discussion of Fifer to describe:

(1) how multiple stages are time-multiplexed onto the same PE

through the reconfiguration process,

(2) how to extend queues to communicate between stages on the

same PE, and

(3) how to further decouple long-latency memory accesses.

Fig. 7 shows our modifications to the baseline system. We initially

focus on a single-PE Fifer system that implements pure temporal

pipelining. In Sec. 5.6 we discuss how multi-PE Fifer leverages both

temporal and spatial pipelines.
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5.1 Rapid reconfiguration

Each Fifer PE may select from not just one, but many possible con-

figurations, so a PE may represent any part of a temporal pipeline

throughout a program’s execution.

Fifer is designed to transparently switch stages so that any ready

stage begins executing as soon as possible. When a stage is sched-

uled onto a PE, functional units are configured with the operations

needed by the stage. Reconfiguration also establishes connections

between these functional units, as well as any input/output queues,

registers, and memory connections. Any state required by the ap-

plication, such as fixed constants, are loaded into the appropriate

registers.

Unlike configurations for the baseline system, Fifer’s configu-

rations are stored in cacheable memory and loaded from the L1

cache. Configuration cells are chained, so that configurations can

be loaded over multiple cycles. For example, our L1 supports a

bandwidth of 64 bytes/cycle, and our 16×5 fabric requires about

360 bytes of configuration, so configuration cells are divided in 6

groups (with 5 groups consisting of a row of ALUs and switches,

and one group being the last row of switches). Each cycle, the L1

serves 64 bytes of configuration data, which are propagated though

the chained configuration cells. Thus, over 6 cycles (plus the L1

latency), the new configuration is loaded in place.

Loading the new configuration, as described by the previous

paragraph, forms step (1) of a three-step reconfiguration process.

Step (2) drains the in-flight operations from the current configu-

ration. Step (3) activates the new configuration. Fifer introduces

double-buffered configuration cells so that steps (1) and (2) take place

in parallel. Consider the process in which Stage 3 is currently run-

ning on a Fifer PE and now needs to switch to run Stage 2. Fig. 8

shows the behavior of a configuration cell (top row) and how it

changes the currently executing stage of a Fifer PE (middle row).



Fifer: Practical Acceleration of Irregular Applications on Reconfigurable Architectures MICRO’21, October 18ś22, 2021, Virtual Event, Greece

As soon as the scheduler begins the reconfiguration process,

Stage 3 stops accepting new inputs and begins draining in-flight

operations, as Fig. 8(b) shows. In parallel with draining in-flight op-

erations, the PE begins loading the new configuration. This parallel

loading is enabled by Fifer’s double-buffered cells, which offers two

configuration slots (Cfg. A and Cfg. B): one containing the current

configuration and one to receive the new configuration. The PE

loads new configuration data into the unused configuration slot (e.g.,

Cfg. B, since Cfg. A is currently used for Stage 3). Double-buffering

allows us to overlap execution of the current configuration with

the loading of the next configuration, which is essential to reducing

the cost of reconfiguration. In practice, most configurations have

over 6 pipeline stages, so draining them takes longer than loading

the new configuration and is the dominant cost of reconfigurations

for most applications.

Once remaining in-flight operations finish and the new configu-

ration is loaded, the fabric activates the new configuration. Within

the double-buffered configuration cells in Fig. 8(c), a multiplexer

switches from reading Cfg. A to Cfg. B, so now Stage 2 becomes ac-

tive. We account for this process with an activation time, a dead time

of two cycles. At last, in Fig. 8(d), Stage 2 commences execution.

The old configuration may have written to state elements, like

registers, that need be preserved across reconfigurations. As the

new configuration loads, the contents of these state elements are

drained out along with the old configuration to the L1 cache.

We define the reconfiguration period to be the time spent perform-

ing all of these operations: draining in-flight operations, loading the

new configuration, and activating it. The residence time for a given

stage is the time between activating that stage and the activation of

the next stage (and thus includes the reconfiguration period). Fifer’s

effectiveness relies on keeping the reconfiguration period smallÐno

more than a few dozen cyclesÐand maximizing residence times to

many hundreds of cycles. We evaluate the effect of reconfiguration

period on performance in Sec. 8.3.

5.2 Scheduling reconfigurations

Fifer extends each PE with a simple scheduler that dynamically

switches among stages. Which stage is scheduled onto a particular

PE depends on which input queues have values available and which

output queues have space.

To keep utilization high and amortize the overall cost of recon-

figurations, the scheduler follows a simple policy. First, it keeps

a PE configured to the current stage until it is blocked by a full

output queue or an empty input queue. Second, when it must select

a new stage, the scheduler examines the occupancies of the queues

used by the other stages. Of the unblocked stages (i.e., those with

non-empty input queues and non-full output queues), the scheduler

selects the stage with the greatest amount of work available in its

input queues. By selecting stages with more work, the scheduler

reduces the number of reconfigurations.

We also tried other scheduler policies, such as a round-robin

scheduler or finer-grainmultithreading, but found that these did not

work as well. This makes sense: the application work done is nearly

constant regardless of the scheduling policy, so processing the

stage with the most work reduces the amount of reconfigurations;

alternative policies increase reconfiguration frequency.

CGRA mapping
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Figure 9: Using a DRM to further decouple stages by separating ad-

dress generation and fetching from cache.

5.3 Communicating in temporal pipelines

Because Fifer allows a producer stage to communicate with a con-

sumer stage that may be located at the same PE, we introduce

intra-PE queues. We augment the queue buffer described in Sec. 3

with more head/tail pointers to store these additional queues. These

intra-PE queues offer high-bandwidth communication between

stages located on the same PE, so it is advantageous to decouple

applications such that stages communicating frequently reside on

the same PE. Of course, as before, a producer stage on one Fifer PE

can enqueue data destined for a consumer stage at a different PE.

For the purposes of evaluation, the baseline spatial architecture

and Fifer have the same amount of queue buffer per PE. This means

that Fifer, which can fit many more pipelines than the baseline,

could have less effective space per queue. However, as we will see,

modest decoupling suffices to achieve high utilization.

5.4 Further decoupling memory accesses

Memory accesses have widely varying needs: some may be irreg-

ular and cause stalls so they need to be decoupled; others may

be known to rarely cause cache misses and so they do not merit

further decoupling. Thus, Fifer PEs offer both decoupled and cou-

pled load interfaces. The conventional, coupled load interface is a

simple connection to the cache and stalls the PE on cache misses.

Simple memory access patterns, like streaming linearly through

memory, do not need to be decoupled, and would be suitable for

this interface.

However, some accesses are known to miss frequently, causing

lengthy stalls. Fifer allows these accesses to be further decoupled

from stages with decoupled reference machines (DRMs), which

are small finite state machines that interact with the PE through

Fifer’s decoupled interface and are shown in Fig. 9 (right). Instead

of sending addresses directly to the cache, the PE instead enqueues

the address into the input queue of a DRM. Now, the DRM performs

the memory access on the PE’s behalf and places the result into an

output queue to be consumed by the next stage. DRMs are similar

to reference accelerators from Pipette [41].

DRMs can be configured in two ways: in dereference mode, the

DRM interprets input operands as addresses whose values in mem-

ory will be enqueued in the output queue. In scanning mode, the

DRM interprets a pair of input operands as a range of addresses to

sequentially fetch and enqueue. Other modes, like strided accesses

to traverse arrays of structs, could be easily added to DRMs to re-

duce use of the reconfigurable fabric for address generation. We

did not find the need for other modes in our benchmarks.
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DRMs complement the high-throughput CGRA fabric by pro-

viding a mechanism for performing decoupled memory accesses.

Unlike memory accesses initiated by the fabric, memory accesses

issued by DRMs may complete out-of-order. Furthermore, unlike

CGRA fabric configurations, DRMs are configured once, at initial-

ization, so they may continue performing accesses regardless of

which stage is currently scheduled on the PE.

Fig. 9 depicts the use of both the coupled and decoupled memory

interfaces: in BFS’s enumerate neighbors stage, getting the neighbor

id requires dereferencing the neighbors array, but including a

conventional load (left, the LD operation) in this stage leaves this

stage vulnerable to stalls caused by loads from neighbors that will

inevitably miss in cache. It would be better to send these addresses

to a DRM instead (right), decoupling address generation of the

enumerate neighbors stage from latencies incurred by the memory

accesses.

In this example, a DRM is configured to the dereference mode at

initialization. Now, the enumerate neighbors stage is solely respon-

sible for computing the address from where to load nghÐthat is, the

memory address where neighbors[e] is stored. The stage gener-

ates this address through the LEA operation, which uses the index e

and base address neighbors. This shortened stage enqueues this

address to its output queue, which the DRM receives as its input.

The DRM now performs the memory access, which will obtain the

neighbor id ngh as a result. Once this value is available (and all

other accesses ahead of this one have completed), ngh is placed

in the output queue to be sent to the consumer stage. Even if the

DRM’s accesses to the neighbors array cause cache misses, the

enumerate neighbors stage can continue enqueueing values to the

DRM, stalling only when the DRM’s input queue becomes full.

5.5 Control flow

Sometimes, producers may need to communicate control flow deci-

sions to downstream consumer stages. In such cases, producers may

enqueue control values, which are values that cannot be mistaken

for data. These values can cause PEs to change some local state

(such as updating the current BFS fringe), wait to synchronize with

other PEs, or switch to another configuration. Using control values

cheaply implements point-to-point synchronization where global

synchronization is unnecessary or cumbersome.

We implement control values by adding an additional control

bit, shown in Fig. 3, to communication channels and buffers to

indicate whether the value is a control value. We similarly augment

the functional units to allow special handling of control values:

for example, it may be used to select between operand A or B, or

used to predicate operations, e.g., whether to enqueue a particular

value. Control bits travel alongside data; this way, their order can

be used to delineate boundaries between sets of data or delineate

iterations. The data traveling with the control bit can also be used to

distinguish between different conditions (e.g. the end of an iteration

versus the end of the program).

5.6 Multi-PE Fifer to exploit data parallelism

Up to this point, we have focused on temporal pipelines running

on a single Fifer PE. We now explore how spatial pipelines can be

used to leverage data parallelism. While our programming model

focuses on making pipeline parallelism easy to exploit, data paral-

lelism and pipeline parallelism are complementary; by exploiting

them together, Fifer offers advantages that are not available when

exploiting data parallelism alone. We now present two techniques

that exploit data parallelism within a PE and across PEs.

SIMD-style parallelism within a PE: Because we can split appli-

cations into as many stages as needed, each stage can be arbitrarily

small. When a stage implements data-parallel computation, the

datapath obtained from its DFG can be replicated to use the PE’s

fabric as much as possible by filling unused functional units and

switches. For example, a 16 × 5 grid of functional units can be con-

figured as four copies of a datapath that fit on a smaller 4 × 5 grid,

yielding a potential 4× throughput improvement. Our applications

provide abundant opportunities to take advantage of SIMD-style

parallelism: for example, the many edge list accesses performed by

graph applications can be launched in parallel.

These datapaths run in lockstep: if multiple input elements are

available at once, they can be dequeued as a group and processed

simultaneously, up to the number of replicated datapaths. Control

values are always handled serially: in a given cycle, a PE can de-

queue multiple data values but will always dequeue a single control

value.

This process is analogous to how vector processors, SIMD in-

structions, and GPUs exploit data parallelism: running multiple

copies of the same operation in lockstep. When fewer than the

maximum supported number of elements are available at the input,

some datapaths are left unused, just like masked-off lanes in vector

processing. However, Fifer’s decoupled execution model makes

exploiting SIMD-style data parallelism more efficient. For example,

to get good GPU lane utilization in graph algorithms, edges from

multiple vertices need to be processed in the same warp, leading to

complex marshaling of vertex and graph metadata. Instead, Fifer’s

queue-based approach allows decoupling the processing of vertices

and edges across stages, so they are grouped independently and

easily fill the parallel datapaths.
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Figure 10: Replicated 4-PE BFS with

Fifer.

Temporal pipelines can co-

exist with spatial pipelines;

we spatially partition the

data across multiple PEs,

each running its own tem-

poral pipeline. Fig. 10 repli-

cates the BFS pipeline from

Fig. 2(a) across four PEs,

each pipeline processing a

fraction of fringe and up-

dating separate parts of the

graph.

Pipeline parallelism and queue-based communication enable a

crucial optimization: instead of synchronizing through shared mem-

ory, each pipelineÐthat is, a processing elementÐsends neighbors

łownedž by a different pipeline on another processing element. In

BFS, this sharding is represented by the cross-PE communication

between fetch distances, the third stage, and update data and next

fringe, the final stage. By avoiding the need for shared-memory

synchronization, applications scale better than by exploiting data

parallelism alone.
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Item Area

Reconfigurable fabric, 16 × 5 func. units 0.91mm2

and 4× double-precision FMA units 0.15mm2

16 KB queue SRAM 0.054mm2

4× decoupled reference machines (DRMs) 0.0029mm2

32 KB data cache 0.22mm2

Total area (per PE) 1.34mm2

Table 1: Implementation costs for major components of a Fifer PE.

Inter-PE queues use credit-based flow control [12] to implement

backpressure and handle multiple producers. Credits are associated

to free queue space. Each destination queue divides credits evenly

across producers, and a producer stalls when it runs out of credits.

Importantly, each PE in this replicated pipeline is still a dynamic

temporal pipeline, so it independently reconfigures itself in response

to varying load. Thus, different PEs can work on different stages.

This scheme offers an additional dimension of load balance: not

only is work distributed across PEs, but each PE also tolerates

a different distribution of work among stages. This allows us to

employ simpler partitioning schemesÐfor example, by examining

bits of the neighbor idÐrather than resorting to more complex

techniques like work stealing.

6 FIFER IMPLEMENTATION

We implement the Fifer architecture by writing and synthesizing

RTL for its major components.

The CGRA in each PE is a 16 × 5 grid of functional units sur-

rounded by switches, a scaled-up version of the DySER fabric [20].

We use the CGRA-ME [8] framework to generate RTL for this fabric.

CGRA-ME’s output Verilog only uses a simple register scan chain to

implement its configuration; we replace this with double-buffered

configuration cells (Sec. 5.1) to allow loading a new configuration

while the current configuration’s remaining in-flight operations

complete. To make loading configurations fast, Fifer loads configu-

ration data served at the L1 width, not through a serial scan chain.

Our virtualized queues are stored in a 16KB buffer, and each

PE contains a 32KB data cache. To support the floating-point op-

erations used in some of our benchmarks, we synthesize several

double-precision fused multiply-add (FMA) units and distribute

them evenly across the fabric. The decoupled reference machines

(DRMs), which launch and track decoupled memory accesses, add

little additional area cost.

We synthesized these components with Yosys [67] and the 45 nm

FreePDK45 library [38], closing timing at 2 GHz, and summarize the

area used in Table 1. The memory arrays in caches and queue stor-

age were estimated with CACTI [5]. Overall, each PE is 4.6% of the

area of a core in the same technology node (45 nm Nehalem [59]),

and each PE has higher arithmetic intensity. To account for this

difference, in the evaluation, CGRA-based systems use 4 PEs for

each OOO core of the baseline, which is conservative area-wise.

(Our evaluation in Sec. 8 uses Skylake cores with larger structures,

which makes our estimate even more conservative, even consider-

ing scaling to Skylake’s 14 nm node.)

We transform our evaluated applications in two steps. We first

derive the pipeline-parallel version by manually dividing code into

stages using the systematic approach described in Sec. 2.2 and Sec. 4.
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Figure 11: Baseline and Fifer system implementations.

Then, we use per-stage data parallelism by replicating the dataflow

graph until we fill the PE fabric.

Whenever a Fifer PE changes configuration, it takes a minimum

of 12 cycles (loading the new configuration from the L1 cache is

10 cycles, plus 2 cycles for the activation time), but as previously

discussed in Sec. 5.1, draining in-flight operations may increase this

time.

7 EXPERIMENTAL METHODOLOGY

7.1 Evaluated systems

We implement and evaluate Fifer using cycle-level simulation. For

the serial and OOO cores, we use a detailed event-driven cycle-level

simulator based on Pin [35], using timing models from Pipette [41].

Core parameters are comparable to an Intel Skylake core with 6-way

OOO issue. We also create a cycle-level simulator to evaluate our

CGRA-based systems; it simulates executing stages using mapping

information produced by CGRA-ME [8].

We model core and uncore energy at 22 nm for the OOO sys-

tems with McPAT [31] and use prior work to estimate HBM energy

consumption [44]. Energy consumption for the reconfigurable fab-

ric is based on Synopsys Design Compiler post-synthesis power

estimates and scaled from 45 nm to 22 nm.

Fig. 11(b) shows ourmodeled spatial reconfigurable architectures,

including 16 PEs with buffers serving as queue storage. A control

core is responsible for initialization and teardown of a Fifer program

as well as interactions requiring a general-purpose CPU (such as

calls to the OS).

Comparison systems: Our baseline is the 16-PE system depicted

in Fig. 11(a). Each stage of an application is mapped to a single PE,

and this mapping remains fixed throughout the run. As a result, the

predominant flow of data through the pipeline is also fairly fixed;

for example, in BFS the predominant flow of data would be from left

to right, as indicated by the gray arrow. While the baseline and Fifer

systems have the same amount of space allocated for queues on

each PE, the static system notably lacks the scheduler. The baseline

system also retains DRMs, to focus our analysis on the effects of

time-multiplexing on load balance.

We also compare Fifer to serial and 4-core parallel implementa-

tions running on out-of-order cores with aggressively sized core

structures, provisioned similarly to Intel’s Skylake [13]. Table 2

summarizes our evaluated systems’ parameters.
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PEs 16 PEs, 2GHz, 16 × 5 func. unit mesh, 32 KB L1 cache (8-way

set-associative, 4-cycle latency)

Fifer Up to 16 queues per PE, virtualized on a 16 KB buffer

Cores 1 or 4 cores, 2 GHz, x86-64 ISA, Skylake-like: 6-wide out-of-order is-

sue, 32 KB L1 cache (8-way set-associative, 4-cycle latency), 256 KB

L2 cache (8-way set-associative, 12-cycle latency)

LLC 2 MB/core or 512 KB/PE, 16-way set-associative, 40-cycle latency

Main mem 120-cycle latency, 256 GB/s high-bandwidth memory

Table 2: Configuration parameters of the evaluated system.
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Figure 12: Application pipelines for Silo and SpMM.

7.2 Benchmarks

We evaluate Fifer on six applications from graph analytics, sparse

linear algebra, and databases. For each application, we start from a

state-of-the-art serial implementation and derive a pipeline-parallel

version. These applications were adapted from Pipette [41].

Breadth-first search (BFS), first described in Sec. 2, determines

the distance of graph vertices from a source vertex. Our baseline

OOO serial and multicore versions are based on work-efficient PBFS

[30]. Connected components (CC) launches multiple breadth-

first searches to discover connectivity of graph vertices.PageRank-

Delta (PRD) [51] is an extension of PageRank that only visits ver-

tices when the change in their PageRank values exceeds a threshold.

Radii estimation (Radii) estimates the diameter of a graph by

launching searches from a random subset of graph vertices. The

Ligra [51] framework supplies the baseline implementations of

these benchmarks, which also serve as the basis for our optimized

Fifer versions.

Sparse matrix-matrix multiplication (SpMM) multiplies two

compressed matrices: one in the CSR and the other in the Com-

pressed Sparse Column (CSC) format. It is essential for sparse linear

algebra and manifests in many application domains, including dy-

namic simulation and numerical solvers. We evaluate an inner prod-

uct, or output-stationary, SpMM implementation, which computes

the product C of matrices A and B one output element at a time by

performing the inner product of a row from A and a column from

B. Fig. 12(a) depicts a pipeline-parallel implementation of SpMM.

When performing the inner product of two vectors, only loca-

tions in both vectors where both elements are non-zero will affect

the final result. In a compressed representation, this means that

only non-zeros occurring at coordinates present in both vectors

will affect the inner product. The merge-intersect stage iterates

through coordinate lists of the row and column vectors in tandem,

Domain Graph Vertices Edges Avg. deg.

Human collaboration (Hu) coAuthorsDBLP-symmetric 299K 1.9M 6.4

Dynamic simulation (Dy) hugetrace-00000 4.6M 14M 3.0

Circuit simulation (Ci) Freescale1 3.4M 19M 5.6

Internet graph (In) as-Skitter 1.7M 22M 12.9

Road network (Rd) USA-road-d-USA 24M 58M 2.4

Table 3: Input graphs, sorted by the number of edges.

Domain Matrix Size (n × n) Avg. nnz/row

File sharing (FS) p2p-Gnutella31 62,586 2.4

Graph as matrix (Gr) amazon0312 400,727 8.0

Gel electrophoresis (GE) cage12 130,228 15.6

Electromagnetics (EM) 2cubes_sphere 101,492 16.2

Fluid dynamics (FD) rma10 46,835 49.7

Structural (St) pwtk 217,918 52.9

Table 4: Input matrices, sorted by average non-zeros per row.

outputting coordinates that exist in both of them. The actual non-

zero values located at these coordinates are then multiplied and

accumulated into the final product by the accumulate stage.

Merge-intersection is a challenging property of SpMM because

of its difficult-to-predict data-dependent traversal of the row and

column vectors. Similar intersections also manifest in other appli-

cations, like database joins.

Silo [61], an in-memory database, performs lookups to B+tree in-

dexes. Silo traverses the B+tree by examining the current node. If

it is a leaf node, it checks for the presence of a value and returns

it (lookup stage). Otherwise, it is an internal node, and it returns

it to the queue for another dereference (traverse internal node).

This pipeline, shown in Fig. 12(b), thus includes a cycle, shown

by the gray arrow. Cycles in Fifer’s stages are allowed so long as

the amount of work performed is bounded: each internal node en-

queues at most one additional node on the cyclical path. The Fifer

implementation of Silo pipelines multiple lookups to overlap mul-

tiple memory accesses at once. Organizing Silo this way enlarges

its memory footprint; we scale the queue memory down to 4 KB in

our experiments to better fit the LLC.

As shown for BFS in Fig. 10, each pipeline is replicated so that

each PE has a self-contained four-stage pipeline. The pipelines for

CC, PRD, and Radii also use this structure. In SpMM, each PE is

responsible for a contiguous set of rows of the output matrix; and

in Silo, database operations are striped evenly across the PEs.

Sampling: To keep simulation times reasonable in PRD and Radii,

we sample a subset of iterations. In SpMM, we multiply a subset

of rows and columns. Even with this sampling, simulations are

long (e.g., ∼2 billion cycles on the largest inputs), so no warmup is

needed. On other benchmarks, we run the entire input.

Input sets: BFS, CC, PRD, and Radii use five large, real-world

graphs that include road networks, Web connectivity graphs, and

academic collaboration graphs, listed in Table 3. SpMM uses six

diverse sparse matrices, listed in Table 4. Silo uses the YCSB-C

workload [10] on a 52GB dataset.

8 EVALUATION

We compare Fifer to state-of-the-art data-parallel baseline imple-

mentations running on a generously provisioned out-of-order core.

We compare our technique to an OOO baseline, then show that our

approach achieves better utilization, and thus better performance,

than a pipeline of static, single-stage PEs.
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Figure 13: Per-input performance of all evaluated applications.
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Figure 14: Breakdown of cycles spent executing each applica-

tion, normalized to the static pipeline and averaged across inputs.

(I: OOO serial, D: OOO multicore, S: Static pipeline, F: Fifer)

8.1 Fifer outperforms the OOO baseline

The OOO core baseline, despite its significant area overheads, fails

to perform well because it cannot effectively handle these applica-

tions’ unpredictable memory accesses and control flow. Because

it is a temporal architecture that sequences instructions one after

another, it also suffers from low arithmetic intensity compared to

the CGRA fabric. As a result, the static pipeline and Fifer are 25×

and 72× faster than serial, respectively.

8.2 Fifer outperforms static pipelines

Fig. 13 shows the performance of our evaluated systems normal-

ized to the performance of the OOO multicore (not serial). Fifer

outperforms the static pipeline by gmean 2.8× and by up to 5.5×

(CC with the Rd input). This speedup comes from Fifer’s ability

to change contexts in response to available work at each PE. For

example, in BFS, speedups are best on graphs with high outdegree,

where Fifer’s many dynamic temporal pipelines working in parallel

achieve better throughput than the baseline’s few static pipelines.

To better understand how each system spends its execution

time, Fig. 14 shows the breakdown of cycles spent executing each

benchmark. We report the proportion of time spent by a core using

the CPI stack methodology [14]. We extend this methodology to

our PEs as well. Each group of bars reports breakdowns of each

variant across benchmarks (averaged across inputs), relative to the

static pipeline baseline. Each bar within a group reports cycles for

one system, broken down in cycles spent (1) performing useful

computation, and waiting on (2) backend or CGRA stalls (due to

non-decoupled loads), (3) full or empty queues, (4) reconfigurations

(for Fifer), or (5) idle stalls (when a PE is completely inactive while

waiting for other PEs, e.g., a barrier).

As expected, a significant source of slowdowns in the serial and

data-parallel systems is waiting on the backend (in red), which

includes waiting for memory accesses and OOO core structures be-

coming full. In the static pipeline and Fifer systems, the breakdown

also includes stalls resulting from full or empty queues (in purple).
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Figure 15: Breakdown of energy, normalized to the static pipeline

and averaged across inputs. (I: OOO serial, D: OOO multicore,

S: Static pipeline, F: Fifer)

Finally, for Fifer, time spent reconfiguring is shown in green. In

spite of this, Fifer performs better because it overlaps useful work,

like completing memory accesses, as these reconfigurations occur.

These cycle breakdowns help us understand why Fifer performs

consistently better across applications: as expected, the static pipeline

spends a significant fraction of time stalled on full or empty queues

(purple bars). Reconfiguration stalls are significant in SpMM be-

cause it is a control-intensive application: the merge-intersect stage

intersects values at very high throughput, and when it reaches the

end of an input row or column, it directs the producer to stop fetch-

ing unneeded data. In relatively sparse matrices, such as FS and Gr,

with averages of 2.4 and 8.0 non-zero elements per row, respectively,

merge-intersections complete rapidly, resulting in queues emptying

more often and triggering more reconfigurations. In SpMM, despite

frequent reconfigurations, Fifer is gmean 2.2× faster.

We also examine the energy consumed by each system in Fig. 15.

Each bar indicates the dynamic energy consumed by the memory

hierarchy (red and orange), dynamic energy consumed by cores or

PEs (green), and energy consumed due to leakage currents (blue).

The systems with OOO cores not only suffer from considerable

leakage currents but also consume significant dynamic energy per

instruction. By contrast, the systems with reconfigurable PEs con-

sume much less energy, due to their reduced area and higher per-

formance: the static pipeline achieves gmean 12× better energy

efficiency than the OOO multicore across all applications. Using

Fifer further improves energy efficiency because applications com-

plete faster and reduce the energy lost to leakage. In SpMM, the

static pipeline suffers from increased main memory energy usage

due to the larger memory footprint created by separate PEs work-

ing on different parts of the matrix; Fifer avoids this by keeping the

entire pipeline’s working set at a single PE. Otherwise, dynamic

energy consumed by the reconfigurable fabric and the memory

hierarchy in Fifer and the static pipeline remain largely the same.

Overall, Fifer reduces gmean energy consumption by 1.5× over the

static pipeline and by 19× over the 4-core OOO system.
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Figure 16: Fifer performance as the size of per-PE queue memory

grows and how double-buffered configuration cells affect speedup.

8.3 Sensitivity to queue size and
reconfiguration time

We now study Fifer’s sensitivity to queue size. Fig. 16 reports gmean

performance relative to the default configuration, a 16KB queue

memory, as it changes from 4KB (0.25× the default) to 64 KB (4×

the default). A second line allows us to study the effect of using

Fifer’s double-buffered configuration cells.

Fig. 16 shows that applications are sensitive to these parameters

in different ways. First, BFS is mainly sensitive to queue sizes: its

performance nearly halves with a 4 KB memory due to insufficient

decoupling. CC, PRD, and Radii, which also benefit from the addi-

tional queue space, show similar trends in speedup as queue size

increases. These applications do not see significant changes with

the addition of double-buffered configuration cells. Because larger

queues make reconfigurations less frequent, slower reconfigura-

tions are irrelevant for large queue sizes.

Next, SpMM is mainly sensitive to reconfiguration latency: its

performance reduces by about a quarterwithout the double-buffered

configuration cells. As mentioned, SpMM is a control-intensive ap-

plication; precisely because of this reason, SpMM’s performance

is flat across queue sizes: larger queues let producers fetch further

ahead, but this is not used because merge-intersections redirect

producers every few elements. Without double-buffered configu-

ration cells, PEs cannot overlap loading a new configuration from

memory as they complete the old stage’s in-flight operations.

Finally, while Silo is insensitive to reconfiguration latency, its

performance somewhat decreases as queue size increases. The larger

queues enable so much parallelism that it significantly strains the

memory hierarchy: with a 64 KB queue buffer, the working set of a

stage matches the L1 size, and L1 hit rates fall from 66% to 62%. This

increases pressure on the LLC and adds non-decoupled L1 misses

that stall the PEs. This shows that extremely excessive decoupling

can cause memory footprint issues, just as how prefetchers can

trigger extra cache misses when running too far ahead.

Table 5 lists the average time a configuration resides on a PE,

as well as the time needed to complete a reconfiguration for each

benchmark. A typical application, BFS, executes each stage for

about 140 cycles before reconfiguring, and spends around 13 cycles

in reconfiguration, most of which is spent completing the previ-

ous configuration’s in-flight operations. Applications on average

spend 448 cycles per configuration with about 19.7 of those cycles

spent reconfiguring. SpMM, with its frequent switching, shows

why double-buffered configuration cells are crucial: being able to

load the new configuration and finishing the current one in parallel

minimizes dead time on a PE. Finally, the average time spent in a

Application BFS CC PRD Radii SpMM Silo Mean

Avg. residence time 140 279 927 564 30 1490 448

Avg. reconfig. period 12.5 13.9 20.4 27.7 12.6 60.1 19.7

Table 5: Average residence time of a configuration and time needed

to complete reconfiguration (draining the old configuration, load-

ing and activating the new configuration), in cycles.

configuration is correlated to queue capacity; quadrupling queue

storage increases the average residence time to 1488 cycles.

Finally, we also evaluated a system that can perfectly overlap

loading a new configuration with completing the previous con-

figuration’s operations, achieving zero-cost reconfiguration. This

system improves performance by just 10% gmean (and up to 1.8×

on SpMM’s Gr input). We conclude that this alternative design is a

poor tradeoff, as it incurs too much complexity for its limited bene-

fits (for example, due to stalls from the outgoing stage, functional

units would have to interleave the execution of multiple stages).

8.4 Sensitivity to stage count

So far we have evaluated fully decoupled application pipelines:

we have used our partitioning technique to split the application

into stages across every long-latency load. This produces regular

stages that can execute on a CGRA fabric efficiently. Because Fifer

time-multiplexes stages, splitting the program aggressively is the

right approach. But for the static pipeline, the tradeoff is less clear:

because each stage runs on a separate PE, having many stages

improves decoupling but may worsen load imbalance.

To study this effect, we now consider alternative application

pipelines where we judiciously merge stages to try to improve the

performance of the static pipeline. For example, in BFS, the source-

centric stages (processing the fringe, enumerating neighbors, and

fetching distances) can be merged into a single stage, reducing a

4-stage pipeline to two stages. This pipeline still decouples across

the most expensive indirection and, in the static pipeline, allows

twice the number of parallel pipelines to be instantiated. However,

the resulting first stage of this pipeline will incur stalls due to

long-latency loads. In general, we choose which stages to merge by

focusing on less-frequent indirections, merging low-activity stages,

and keeping stage logic small enough to still fit in a single PE.

Fig. 17 shows the results of combining stages compared to the

original (i.e., fully decoupled) Fifer and static pipeline, normalized to

the performance of the original static pipeline and averaged across

inputs. Overall, applications see very different effects. In BFS, be-

cause combining stages reintroduces coupling, the merged static

pipeline is 4.4× slower than the original. CC sees a similar tradeoff

as BFS, but PRD and Radii become slightly faster. In SpMM, stages

are combined so that a single PE carries out the entire matrix multi-

plication for its share of rows. This exploits more data-parallelism
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Figure 17: Performance of appli-

cations with merged stages.

at the expense of decoupling

and benefits from small matri-

ces like FS and Gr, which, as

we discussed previously, cause

Fifer to switch very frequently.

Due to high speedups in those

matrices, the merged static

pipeline is gmean 4% faster

than Fifer across inputs (Fifer
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using this coupled pipeline for the inputs that benefit from it and

the decoupled pipeline for the others is 12% faster). Finally, Silo

sees a slight performance degradation from the merged pipeline.

9 RELATEDWORK

We now discuss other related work not covered in Sec. 2.

Application-specific accelerators often employ spatial architec-

tures to improve throughput and reuse, especially when faced with

irregular applications’ unpredictable compute latencies and mem-

ory access patterns. To cope with this, prior techniques specialize

their hardware to the problem. For example, SCNN [46] targets

compressed sparse convolutional neural networks by directly em-

bedding knowledge of the data structure format into the accelerator.

Graphicionado [22] proposes pipelines for graph processing, and

Q100 [68] proposes a spatial accelerator for databases. These de-

signs trade a high degree of specialization for high performance in

a narrow problem domain. As a result, prior efforts to accelerate

these irregular applications often culminate in accelerators that are

heavily tuned to the specifics of an applicationÐbenefiting only

those whose needs are exactly met by the technique.

Decoupled access-execute (DAE) architectures [18, 21, 53, 60] al-

low a dedicated memory access unit to run ahead to fetch operands

for a specialized execution unit. While some even exploit mul-

tithreading [55], DAE systems’ overly rigid specifications, which

strictly dictate the types of operations that occur in each specialized

unit, cause tight dependences across units that limit performance.

Other pipeline-parallel techniques use pipelines built into re-

configurable fabric to exploit task parallelism [32], but do not

time-multiplex configurations for better utilization. Coarse-grain

pipelined accelerators (CGPAs) [34] also use HLS to make pipelines

for FPGAs and ASICs, but these lack load balancing mechanisms.

10 CONCLUSION

In this work, we observed that reconfigurable spatial architectures

can significantly improve compute intensity, but the unpredictable

memory accesses and control flow of irregular applications are sig-

nificant obstacles to good performance. We proposed Fifer, which

augments a spatial reconfigurable fabric with dynamic temporal

pipelines, allowing us to create pipeline-parallel applications whose

stages are time-multiplexed onto this fabric. By layering temporal

pipelines atop spatial pipelines, we demonstrated significant utiliza-

tion and performance improvements on key application domains.

Fifer thus makes efficient acceleration of irregular applications

practical for reconfigurable architectures.
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