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Abstract—Irregular applications are increasingly common in
diverse domains, like graph analytics and sparse linear algebra.
Accelerating these applications is challenging because of their
unpredictable data reuse and control flow. Recent work has
proposed hardware support for fine-grain pipeline parallelism,
hiding long latencies by decoupling irregular applications into
pipeline stages. However, this prior work requires programmers
to manually decouple applications. This tedious and error-prone
process limits the usefulness of such architectural support.

We address this problem with Phloem, a compiler that au-
tomatically discovers and exploits pipeline parallelism in irregu-
lar applications. Prior compilers for pipeline parallelism target
regular applications, which contain simple pipeline stages with
known latencies and fixed buffering needs. Designing Phloem
to target irregular applications, where these properties do not
hold, requires treating their unique challenges as first-class
considerations throughout its design. Phloem breaks down this
complex transformation into a series of simple passes that
together encode the insights that have been previously applied
by hand, producing code that targets architectures with support
for queue-based communication.

We evaluate Phloem by generating efficient pipelines on a
variety of irregular applications. Phloem’s contributions improve
performance by 1.7× on average, approaching (and sometimes
exceeding) the performance of manually optimized pipeline-
parallel code. These results show that, for the first time, automatic
parallelization for irregular applications is not only feasible, but
also profitable.

I. INTRODUCTION

Irregular applications are those with data-dependent memory
accesses and control flow. Irregular applications are the norm
in many domains, like graph analytics and sparse linear/tensor
algebra. Their data-dependent accesses and control are often
unpredictable, causing poor performance on CPUs and GPUs.
For concreteness, consider the following code:

for (int i = 0; i < N; i++)
if (A[i] > 0) work(B[A[i]]);

This simple snippet is representative of the challenges of
irregular applications (we will see fuller examples later on).
Assume that work() takes few cycles per call (e.g., about 10),
and that it does not modify arrays A[] or B[]. This code
runs very poorly on a CPU: if A[i] frequently alternates
between positive and negative, the if (A[i] > 0) branch is
unpredictable, serializing iterations and inducing a very low IPC.
Moreover, the indirect access B[A[i]] causes frequent memory
misses that are hard to prefetch, making execution memory
latency-bound. Data parallelism is of limited help: on a GPU
or vector processor, if (A[i] > 0) induces conditional/masked

execution that limits lane utilization, and the frequent memory
gather B[A[i]] causes expensive uncoalesced accesses.

Instead, consider the following pipeline-parallel implemen-
tation of the previous code snippet:

Fetch  A[i] Filter  A[i]> 0 Fetch B[A[i]] Call work()

Each stage runs in parallel, e.g., in a separate core. Stages
produce streams of values and communicate them to other
stages through queues. This decouples their execution, allowing
producers to run ahead of consumers. This decoupling also
hides latencies and uses resources better. For example, each
branch in the filter stage is resolved more quickly, since
A[i] comes from a fast queue instead of main memory;
and mispredictions no longer fill the core with misspeculated
instructions from work() or fetches from array B[].

The above pipeline is fine-grained: it has very frequent
communication, with each stage enqueueing or dequeueing
a value every 5–10 instructions. Thus, software-only queues
(which take hundreds of cycles per operation [16, 44]) would
add very high overheads. To enable fine-grained pipelining,
much prior work has proposed adding hardware queues across
cores or threads [9, 12, 17, 19, 34, 35, 38, 43, 47, 48, 52, 55, 60].
But most of these systems only work well when every pipeline
stage proceeds at a regular, predictable rate. By contrast, in
an irregular application, stages undergo rapid variations in
the amount of work, creating load imbalance. For instance,
consecutive runs of positive or negative A[i] values affect the
output rate of filter, quickly changing the ratio of work between
the first and last two stages. If these stages were distributed
spatially (e.g., scheduled on separate cores), some would
idle often while others would limit throughput. Recent work
addresses load imbalance by dynamically time-multiplexing
stages over the same processing element, like the threads of
a multithreaded core [34] or the contexts of a reconfigurable
fabric [35, 38, 58].

While the above techniques provide hardware support to
pipeline irregular applications, there is currently no automatic
way to generate efficient pipelines for irregular applications.
Existing compilers only produce regular pipelines [11, 18, 25,
39, 53, 54], and so far, irregular pipelines have been written by
hand. Creating an irregular application pipeline requires making
many choices that have significant impact on performance, and
it is tedious and error-prone to do so manually.

Specifically, pipelining an irregular application involves three
challenges. First, it requires decoupling straight-line code into
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pipeline stages, e.g., producing our example pipeline from
the code snippet. Second, and more importantly, it requires
selecting the right pipeline, which depends on the application
and architecture. For example, if A[] is prefetched accurately,
it may be better to combine the fetch A[i] and filter stages.
Third, because irregular applications have frequent control flow
and shared state, it is important to handle these efficiently when
partitioning it across stages. Otherwise, the resulting overheads
may negate the benefits of pipelining.

We present Phloem,1 a compiler that automatically discovers
and exploits pipeline parallelism in irregular applications.
Phloem’s key enabling insight is that the transformations
required for pipeline parallelism can be carried out as a series
of novel, simple, composable passes that leverage simple static
analyses and cost models. These analyses and models help
Phloem select effective decoupling points, tighten inner loops,
and reduce the impact of irregular control flow. Finally, Phloem
generates code that leverages hardware support that enables
irregular applications to run efficiently as pipelines.

Our Phloem implementation compiles serial C/C++ code,
unlike prior work requiring programmers to rewrite their appli-
cations in a new language. Phloem is a standalone compiler, but
can also be combined with existing domain-specific compilers
to produce efficient pipeline-parallel applications from high-
level code. We demonstrate this by combining Phloem with
Taco [23] to automatically pipeline sparse linear algebra kernels.

Phloem is the first technique that makes irregular applica-
tions efficient in out-of-order cores through hardware-compiler
codesign. Much prior work has explored some of the techniques
used by Phloem, such as decoupling, time-multiplexing, and
prefetching (Sec. II-C). But prior techniques targeted regular
applications or were hampered by software overheads or a
limited execution model. Phloem’s key novelty is in showing
the right combination of hardware and compiler techniques
that results in efficient acceleration.

Our evaluation shows that Phloem approaches the perfor-
mance of manually tuned pipelines. Averaging across all
evaluated applications, Phloem achieves gmean speedup 1.7×
over serial code, and 85% of the performance of manually tuned
code. In the best case, Phloem even exceeds the performance
of manually tuned code by 15%. We also show that Phloem
can be combined with existing domain-specific compilers to
produce efficient pipeline-parallel applications.

In summary, we make the following contributions:
• We show how to systematically partition irregular applica-

tions into stages in a way that maximizes performance.
• We introduce Phloem, which automatically transforms serial

source code into efficient pipeline-parallel implementations
through a series of simple passes.

• We demonstrate Phloem’s broad applicability by interfacing
it seamlessly with a domain-specific compiler.

• We implement and evaluate Phloem, achieving performance
comparable to hand-optimized code.

1Pronounced like “flow 'em”, phloem is a plant’s specialized vascular tissue
for conducting sugars and other metabolic products [1].

void bfs(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0, next_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
// Enumerate neighbors
int edge_start = g->nodes[v];
int edge_end = g->nodes[v+1];
for (int e = edge_start; e < edge_end; e++) {

// Visit neighbor
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = distances[ngh];
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

}
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = next_fringe_idx;
next_fringe_idx = 0;

}
}

Process 
current fringe

Enumerate 
neighbors

Visit 
neighbors

Update data,
next fringe

Fig. 1: Decoupling BFS into a 4-stage pipeline by partitioning
across sources of irregularity.

II. BACKGROUND

To see the challenges of irregular applications in more depth,
consider breadth-first search (BFS), a common graph algorithm.
Given a root vertex, BFS finds the distance of all vertices
reachable from that root. Fig. 1 (left) shows sequential C code
for BFS. This version of BFS traverses a graph stored in the
commonly used Compressed Sparse Row (CSR) format [33,
46, 50]. The root vertex starts at distance zero, while all other
distances are set to INT_MAX. For each vertex in the fringe, BFS
accesses g->nodes to find the start and end of the vertex’s edge
list. Then, neighbor vertex ids are found by accessing g->edges.
Finally, if each neighbor’s current distance is less than its
currently recorded distance, the distance is set to cur_dist,
and the neighbor is added to the next fringe. Once the current
fringe is processed, BFS switches to the next fringe, and repeats
this process until no new vertex visits are recorded.

A. Challenges of irregularity

We examine two sources of irregularity in BFS that make it
difficult to accelerate on modern architectures.

First, BFS has unpredictable reuse: finding the distance of
a neighbor of a vertex requires four memory accesses that
are dependent on each other. While the access to cur_fringe
is a linear traversal, the other three accesses are extremely
difficult to predict: the addresses of accesses to distances
depend on values in g->edges, which in turn depend on
values in g->nodes. While caches and scratchpads can capture
short streaming patterns or small amounts of metadata, irreg-
ular applications often contain tricky multi-level indirections
through large datasets that do not fit on-chip. In conventional
out-of-order cores, the large reorder buffer (ROB) tries to
keep functional units highly utilized. However, the multi-level
indirections of an irregular application have hard-to-predict
memory addresses, resulting in costly consecutive cache misses.
To make things worse, these indirections are often followed
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void bfs(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0, next_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
// Enumerate neighbors
int edge_start = g->nodes[v];
int edge_end = g->nodes[v+1];
for (int e = edge_start; e < edge_end; e++) {

// Visit neighbor
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = distances[ngh];
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

}
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = next_fringe_idx;
next_fringe_idx = 0;

}
}

void bfs_stage1(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int cur_fringe_idx = 0;
int cur_dist = 0;
// Add root to fringe
cur_fringe[cur_fringe_idx++] = root;
distances[root] = 0;
while (cur_fringe_idx != 0) {

cur_dist++;
// Process current fringe
for (int i = 0; i < cur_fringe_idx; i++) {

int v = cur_fringe[i];
enq(1, v);
enq(1, v+1);

}
enq_ctrl(1, NEXT);
swap(&cur_fringe, &next_fringe);
cur_fringe_idx = deq(5);

}
enq_ctrl(1, LAST);

}

void bfs_stage2(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(1, INDIRECT, g->nodes);
setup_control_value_handler(1, &&q1_handle_ctrl);
while (true) {

while (true) {
// Enumerate neighbors
int edge_start = deq(1);
int edge_end = deq(1);
for (int e = edge_start; e < edge_end; e++) {

enq(2, e);
}

}
q1_handle_ctrl:

if (deq(1) == LAST) {
enq_ctrl(2, LAST);
break;

}
enq_ctrl(2, NEXT);

}
}

void bfs_stage3(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

setup_reference_accelerator(2, INDIRECT, g->edges);
setup_control_value_handler(2, &&q2_handle_ctrl);
while (true) {

while (true) {
// Visit neighbor
int ngh = deq(2);
enq(3, ngh);
enq(4, ngh);

}
q2_handle_ctrl:

if (deq(2) == LAST) {
enq_ctrl(3, LAST);
break;

}
enq_ctrl(3, NEXT);

}
}

void bfs_stage4(Graph* g, int* cur_fringe, int* next_fringe,
int root, int* distances) {

int next_fringe_idx = 0;
int cur_dist = 0;
setup_reference_accelerator(4, INDIRECT, distances);
setup_control_value_handler(3, &&q3_handle_ctrl);
while (true) {

cur_dist++;
while (true) {

int ngh = deq(3);
// If dist decreases, update it,
// add ngh to next fringe
int old_dist = deq(4);
if (cur_dist < old_dist) {

distances[ngh] = cur_dist;
next_fringe[next_fringe_idx++] = ngh;

}
}

q3_handle_ctrl:
if (deq(3) == LAST)

break;
swap(&cur_fringe, &next_fringe);
enq(5, next_fringe_idx);
next_fringe_idx = 0;

}
}

Fig. 2: Sequential BFS code (left) and hand-optimized pipeline-parallel BFS implementation (right), with changes shaded in gray.
But, parallelizing this multithreaded code by hand is tedious and error-prone; we automate this process with Phloem.

by dozens of dependent instructions that fill the ROB, severely
reducing memory level parallelism. Prefetchers may be able
to fetch in edge lists, but because the length of edge lists
varies, such fetches may pollute the cache with the edge lists
of irrelevant vertices.

Second, BFS has irregular control flow: a vertex may have
few neighbors or hundreds of neighbors. This causes unpre-
dictable branches in serial code, causing frequent mispredictions
in general-purpose cores that limit performance. And trying
to exploit data parallelism by enumerating neighbors across
multiple workers would suffer from load imbalance: workers
would proceed at uneven rates, determined by the degree of the
workers’ processed vertices. This imbalance makes it difficult
for data-parallel architectures like GPUs to effectively accelerate
irregular applications. For example, GPUs try to get good lane
utilization by combining the edge lists of multiple vertices [59],
but this results in awkward and inefficient marshaling of data,
e.g. replicating vertex data to align with each of its edges.

Existing architectures do not adequately meet the needs
of irregular applications, and we also show in Sec. II-C that
software-only solutions are also not enough. A significant body
of prior work proposes modest architectural additions to support
fine-grain decoupled communication between cores or threads.
In this paper, we focus on compiler support for these systems.

B. Irregular applications readily decompose into pipelines

Phloem relies on prior work’s observation that irregular
applications have plentiful pipeline parallelism [34, 35]: they
can be easily decoupled into feed-forward networks of pipeline
stages. Each stage receives data from other producers and sends
data to downstream consumers. Crucially, these stages can be
decoupled from each other with FIFO queues, allowing them
to run ahead of each other: a stage can continue working on
buffered data, even if neighboring stages stall.

In the case of an irregular application, decoupling across
sources of irregularity yields simple stages that can run
at high throughput. In BFS, for example, these sources of
irregularity are its multi-level indirections; Fig. 1 shows a
possible decoupling of BFS into a multi-stage pipeline.

Although pipeline parallelism can be exploited at many gran-
ularities, several factors make fine-grain pipeline parallelism
especially practical for irregular applications. First, the amount
of data communicated between stages is small (often just a
single 32- or 64-bit word), but communication occurs very
frequently (in BFS, one in every six operations uses a queue).
Second, the amount of work between each stage is often small,
such as a simple address computation. Finally, thanks to their
leanness, fine-grain stages built from irregular applications have
simple communication patterns of few elements from stage to
stage. A successful data-parallel implementation, on the other
hand, must ensure that all units perform the same computation
across all elements at the same rate.

C. Compiler support for pipeline parallelism

Much prior work has proposed compiler techniques that
exploit pipeline parallelism and decoupled execution. While
Phloem’s passes also leverage these techniques, a combination
of two key features set Phloem apart from prior work.

First, Phloem targets irregular applications. Without support
for irregularity as the primary consideration, prior works wind
up unable to effectively cope with irregularity. Much of
this prior work, including StreamIt [18, 53, 54], Piper [26],
SGMS [25], Team Scheduling [39], and some polyhedral
approaches [37] targets regular programs, where the amount of
work and input/output of each stage are known ahead of time.
This information is used to produce fixed thread schedules
that maintain load balance and achieve decoupling with limited
buffers. This approach does not extend to irregular applications,
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as stages incur an unknown and highly variable amount of work
and communication.

Moreover, decoupling irregular applications thus far has only
been carried out by hand, a time-consuming process. While the
simple serial description of BFS (Fig. 2, left) is about thirty
lines of code, turning this into efficient pipeline-parallel code
(right) not only doubles the size of the code, but also requires
several complex transformations. With Phloem, we break down
these transformations into a series of simple passes over the
original source code.

Second, Phloem presents an effective end-to-end hardware-
software codesign. Software-only techniques do not suffice. For
example, Clairvoyance [56] is a compiler pass that reorganizes
loops into access and execute phases, but achieves little
performance gain: at best a 13% gmean speedup. Software
prefetching (e.g., Ainsworth and Jones [2]) results in significant
increases in dynamic instruction count for similarly meager
performance gains. It is important to have the right architectural
support: Phloem achieves much better results—1.7× gmean
speedup—accelerating irregular applications.

Thus, hardware-software codesign is needed, but achieving
good performance also depends on having the right interface
between hardware and software. Prodigy [51], a programmable
prefetcher, chooses a programming model that thrusts the
burden of correctly guessing irregular memory accesses to
hardware, and incorrect predictions risk polluting caches. A
general programming model that supports decoupled commu-
nication allows us to explicitly issue loads for precisely the
values that are needed.

Phloem is the first end-to-end solution that fully integrates
all of the insights needed to create effective pipelines from
irregular applications for hardware that is designed to execute
them efficiently. Hardware-software codesign is paramount,
because it not only affects the complexity of the software passes
needed, but also dictates the potential for acceleration. Phloem
shows it is possible to transform irregular applications into
pipelines using a series of simple passes that are easy to reason
about. Furthermore, Phloem achieves speedups that are simply
not attainable with software-only approaches. Thus, we are
the first to show that simple techniques, on a simple hardware
model, are the right ingredients for significant speedups.

We discuss other related work, including domain-specific
frameworks, other hardware-software codesign approaches,
dataflow compilers, and HLS techniques in Sec. VIII.

III. BASELINE ARCHITECTURE

Phloem leverages hardware support for irregular application
pipelines. As our baseline architecture, we use Pipette [34], a
representative architecture with support for efficiently executing
irregular applications cast as pipeline-parallel programs. Other
architectures provide hardware support for irregular fine-grained
pipelines, but they all lack a compiler; Sec. IV-E discusses
these architectures and how Phloem could compile for them.

In Pipette, programmers separate serial programs into mul-
tithreaded code, which is executed on the threads of an
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Fig. 3: Baseline multicore system with Pipette’s changes to the
OOO cores shaded in purple and hatched.

TABLE I
SUMMARY OF THE PIPETTE PROGRAMMING INTERFACE.

Name Function

enq(q, v) Enqueue value v into queue q.
deq(q) Dequeue a value from queue q.
peek(q) Peek the value at the front of queue q.
setup_reference_accelerator(q, mode, base)

Interpret enqueues to queue q as offsets (mode =
INDIRECT) or start/end pairs (mode = SCAN) of an
array base.

enq_ctrl(q, cv) Enqueue a control value cv into queue q.
is_control(v) Tests whether v is a control value.
setup_control_value_handler(q, f)

Jump to control value handler f whenever a control
value is about to be dequeued from queue q.

out-of-order (OOO) core with simultaneous multithreading
(SMT). Each thread corresponds to a stage of the irregular
application’s pipeline, and stages communicate using Pipette’s
ISA support for architecturally visible queues. Inter-thread
queue communication is cheap, thanks to Pipette’s reuse of
the OOO core’s physical register file. Fig. 3 shows Pipette’s
modifications and Table I summarizes its ISA.
Queue interface: Pipette extends the core ISA to support ar-
chitecturally visible queues. An enq(q, v) operation enqueues
value v into queue q. (In this paper, a queue is identified by
a number, so enq(1, 37) enqueues value 37 into queue 1.)
Similarly, a deq(q) operation dequeues a value from queue q.
Queues are first-in first-out (FIFO) and have limited size. When
a thread tries to enqueue to a full queue, or dequeue from an
empty queue, the thread blocks, letting the OOO core’s SMT
scheduler issue work from other non-blocked threads.
Offloading memory accesses: Irregular applications often
contain memory accesses that are easy to offload to a specialized
engine. Pipette adds simple hardware engines to offload these
accesses, called reference accelerators (RAs). They interpose
on the queue-based interface and can launch memory requests
in parallel but deliver loads in order.

Reference accelerators are simple runtime-configurable finite
state machines (FSMs) that are configured with the base address
of the array they are accessing, the size of the element, and
the mode of access. In INDIRECT mode, the RA treats each
enqueued value as an index into the array, fetching the element
at that index and placing it into the input queue of the next
stage. In SCAN mode, pairs of enqueued values are treated as
start and stop indices of a linear access through the array.

In the BFS example, edge_start comes from loading
g->nodes[v]. Now, instead of directly performing an indirec-
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tion, the process current fringe stage only needs to enqueue v
to a reference accelerator configured to indirect on g->nodes.
The enumerate neighbors stage simply dequeues the value of
edge_start as an output of the RA.

Chained reference accelerators allow Phloem to exploit the
fact that some stages simply dequeue values from one RA only
to enqueue it to another one. We extend Pipette to support
chained RAs, which perform the work of several consecutive
indirections. BFS contains an opportunity for chained RAs.
Extending the example above, the RA performs indirections on
g->nodes to produce edge_start and edge_end. These two
values form the starting and ending indices for g->edges, so
we can chain this to a second scanning RA to read neighbors
(ngh) out of g->edges. Chained RAs free us to devote general-
purpose threads and core resources to application compute,
rather than manipulating queues.
Making control flow efficient: Despite the judicious use of
queues, each stage’s loop could still be tightened for better
performance. Computing loop bounds becomes relatively
expensive as the body—the actual useful work—becomes
smaller as it is decoupled from other stages. But, the loop
condition can often be inferred, or sent by the producer. Pipette
adds hardware support for control values, which are passed
through queues just like data, but they cannot be interpreted
as data. The special enq_ctrl(q, cv) instruction enqueues
control values, which appear in-band with data values.

Now, a consumer stage using control values no longer needs
to determine the trip count of the enclosing loop—in our
implementation, any loop that uses a control value becomes a
while (true) {...} statement. The consumer simply needs to
examine whether the most recently dequeued value is a control
value; if so, it acts on the value as needed by the program,
such as breaking out of a loop.

Checking for control values still has overhead but control
values are infrequent. Pipette adds hardware support for control
value handlers, which eliminate repeated checking for control
values. The core jumps to the control value handler whenever
it is about to dequeue a control value, letting it process the
control value externally, rather than within the inner loop.

IV. PHLOEM DESIGN

We now present Phloem’s design and key techniques. We first
explain Phloem’s programming interface, introduce Phloem’s
core transformations to produce efficient pipelines, and present
additional features.

A. Phloem interface

Phloem transforms serial code, starting with a program
written in C. Other interfaces are also possible, e.g., we later
combine Phloem with the Taco domain-specific compiler. We
do not find a C-based interface limiting: while C provides
serial semantics, it has enough semantic information to divide
execution into pipeline stages. Phloem’s key challenge is not
to find pipeline parallelism, but to generate efficient multi-stage
pipelines for irregular applications. Specifically, the bulk of the
techniques we present are code analyses and transformations

TABLE II
SUMMARY OF PHLOEM ANNOTATIONS.

#pragma Function

phloem Mark this function for automatic pipeline parallelization.
decouple Separate the following instructions into a new stage.
replicate Make copies of the pipeline to fill hardware resources.
distribute Send values to another replica specified by a user function.

on already-pipelined code. These techniques do not depend on
the semantics of our frontend language (serial C in our case),
and would apply equally to any other frontend language.

Phloem is automatic, but programmers can control some
aspects through the pragma annotations shown in Table II.
Phloem transforms single procedures: Phloem currently
works on a single procedure; this is not a major limitation in
our experience, as the main kernel of an irregular application
typically fits in a concise definition in a single function. Calls
to other functions are supported, but Phloem does not decouple
within those calls. Inlining could remove this limitation; we
leave this to future work.
Memory and aliasing: To preserve the semantics of the serial
program, Phloem requires information about memory beyond
C’s standard semantics. Specifically, the programmer must
provide precise aliasing information, e.g., by tagging point-
ers with C’s restrict keyword. Modern high-performance
programs often do this already, as it enables other compiler
optimizations; we shortly discuss how to handle situations
without precise aliasing information. This enables Phloem to
safely transform code that reads and writes memory, by ensuring
involved operations cannot alias. In addition, Phloem does not
attempt to track and transform value communication through
memory (i.e., load-store telescoping).

One of the most significant benefits of this approach is that
it prevents race conditions; nevertheless, Phloem can work with
such code provided that some care is taken. Fig. 4 shows such
a race in BFS: if we pipelined the lookup of neighbors, a given
neighbor (for instance, neighbor 37) may appear as a neighbor
of multiple edges. If we also pipeline the lookup of old_dist,
and the update data stage updates the distance of neighbor 37,
then any already-queued copies of neighbor 37 will have a
stale value for old_dist, as it has changed.

Avoiding these races requires a simple compiler analysis:
placing reads and writes to the same data structure, or doing so
through pointers that may alias, in separate stages is disallowed.
However, Phloem may still prefetch data in this case. In Fig. 4’s
example, visit neighbors and update data can still be decoupled
to prefetch neighbor distances, but update data must read and
update the distances itself to avoid observing stale data.

Visit neighbors

Update data, next fringe

ngh = deq();
old_dist = deq();
if (cur_dist < old_dist) {    
distances[ngh] = cur_dist;
// update next fringe

}

37

...

INT_MAX
28 1 

7 INT_MAX 
37 INT_MAX 

...

ngh old_dist

1

2

cur_dist
3

1 Neighbor 37 dequeued with
old distance INT_MAX

2 Another neighbor 37 enqueued
with old distance INT_MAX

3 Distance of first neighbor 37
updated to cur_dist

4 Update data stage receives
stale old_dist value from
second copy of neighbor 37
(gets INT_MAX again)4

old_dist = distances[ngh];
enq(ngh);
enq(old_dist);

Fig. 4: A race condition in BFS that would arise with an incorrect
decoupling into pipeline-parallel stages.
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for (i = 0;
i < cur_fringe_idx; i++) {
v = cur_fringe[i];
edge_start = g->nodes[v];
edge_end = g->nodes[v+1];
for (e = edge_start;

e < edge_end; e++) {
ngh = g->edges[e];
...

}
} Move to next stage

for (i = 0; i < 
cur_fringe_idx; i++) {
v = deq();
v_1 = deq(); // v+1
edge_start = g->nodes[v];
edge_end = g->nodes[v_1];
for (e = edge_start;

e < edge_end; e++) {
enq(e);
...

}
}

Move to previous stage

for (i = 0; i < 
cur_fringe_idx; i++) {
v = deq();
edge_start = g->nodes[v];
edge_end = g->nodes[v+1];
for (e = edge_start;

e < edge_end; e++) {
enq(e);

}
}

setup_reference_accelerator(
INDIRECT, g->nodes);

for (i = 0;
i < cur_fringe_idx; i++) {
edge_start = deq();
edge_end = deq();
for (e = edge_start;

e < edge_end; e++) {        
enq(e);

}
}

setup_reference_accelerator(
INDIRECT, g->nodes);

while (true) {
edge_start = deq();
if (is_control(edge_start))
break;

edge_end = deq();
for (e = edge_start;

e < edge_end; e++) {                 
enq(e);

}
}
enq_ctrl(NEXT);

setup_reference_accelerator(     
INDIRECT, g->nodes);

setup_control_value_handler(
&&q1_handle_ctrl);

while (true) {
edge_start = deq();
edge_end = deq();
for (e = edge_start;

e < edge_end; e++) {                 
enq(e);

}
}
q1_handle_ctrl:
deq();
enq_ctrl(NEXT);

RA RA RA
CH CH

Decouple Pass 1: Add queues Pass 2: Recompute Pass 3: Accelerate accesses Pass 4: Use control values Pass 5: Use control handlers

Fig. 5: Passes to transform serial code into an efficient pipeline. After the initial decoupling step, each column shows successive
transformations of the enumerate neighbors stage (changes shaded in gray). Pass 6, inter-stage dead code elimination, is not shown.

Program phases: Phloem generally decouples one loop nest
(of arbitrary depth) at a time; some programs, like PageRank-
Delta, are structured as phases of several loop nests that
successively build on each other. These loop nests can be
decoupled individually, but in general, their execution cannot
be overlapped. To ensure correctness in this case, Phloem
inserts synchronization to ensure that all the stages complete
the previous loop nest before moving on to the next one.

B. Producing efficient fine-grain pipelines
Phloem produces efficient pipeline-parallel programs by sys-

tematically applying six passes. We introduce these passes with
a detailed example using BFS, showing how they complement
each other and progressively improve performance. Fig. 5
illustrates these passes.

Fig. 6 shows the performance benefits of implementing
BFS on Pipette manually [34] and running it on a large road
network input: BFS achieves a 4.6× speedup over the serial
implementation. We emphasize that these performance benefits
were achieved by manually applying non-trivial insights about
efficient execution of pipeline-parallel programs.

Working at the correct abstraction level is important: we
attempted to extend Dynamatic [21], a state-of-the-art dataflow
compiler, to map BFS to a dataflow graph. We simulated
dataflow execution [13] on this graph by allowing any operation
to begin as soon as its inputs are available. Unfortunately,
using dataflow graphs is the wrong abstraction: as Fig. 6
shows, performance is very poor, 1.7× worse than the serial
version. Pipeline stages are extremely sensitive to overhead,
and Dynamatic’s dataflow graphs propagate significant amounts
of program state across stages. These extra operations ruin
throughput in the same way as extra instructions in serial
programs’ inner loops.

We now show how Phloem’s six passes achieve an efficient
pipeline-parallel BFS. To make the discussion concrete, we
focus on one stage of BFS, enumerate neighbors, and show
how each pass applies to this stage’s code. Fig. 5 shows the
first five passes (the sixth works across multiple stages).
Decouple: Before applying any transformations, Phloem first
identifies where to decouple code into stages. Phloem decouples
across long-latency loads, because these are BFS’s main source

0 1 2 3 4 5
Speedup over original

Hand-optimized

All passes / Phloem
(CH, DCE, CV, RA, R, Q)

CH, DCE, CV, R, Q
DCE, CV, R, Q

CV, R, Q
RA, R, Q

R, Q
Q

Original
Dynamatic

Pa
ss

es
 a

dd
ed

Key:
  Q: Add queues
  R: Recompute
  RA: Add reference accelerators
  CV: Add control values
  DCE: Remove unused control values
  CH: Add control handlers

Fig. 6: Speedup over the original serial BFS implementation with
each added pass.

of irregularity. Because each loop level usually contains a long-
latency load, decoupling an irregular application often results in
placing each loop level in its own stage. Choosing decoupling
points is critical for performance; Sec. V fully describes how
Phloem selects these points.

The loop level in the enumerate neighbors stage iterates over
the variable e to traverse the g->edges array, based on values
of edge_start and edge_end. This stage now needs the value
of the current vertex v.
1. Add queues: A functionally correct pipeline can be achieved
by passing every needed value through a queue. Phloem
adds queues to communicate the values of v and v+1, which
were produced in the previous stage. However, excess queue
communication has overhead, resulting in poor performance.
2. Recompute: Some values change infrequently, or can be
determined without communication from another stage. In
this case, we can simply recompute the value (similar to
rematerialization in compiler literature). A great candidate
for this optimization is index computations: calculating v+1
rather than passing it through a queue is more efficient.
3. Accelerate accesses: In the enumerate neighbors stage,
Phloem can use Pipette’s reference accelerators to offload
accesses to g->nodes. Since both edge_start and edge_end
access this array, we can route them through the same RA: the
producer simply enqueues v and then v+1.
4. Use control values: We can signal the end of an edge list
by sending the NEXT control value, which the stage detects
with the is_control() function. If so, the code breaks out of
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this loop. Now, stages simply check for a control value rather
than recompute the loop condition.
5. Use control value handlers: Instead of checking for control
values in the inner loop, Phloem sets up control handlers: these
process control values and, if necessary, send more control
values to downstream stages and break out of inner loops. At
initialization, Phloem configures Pipette with the address of
the control handler (the code uses the && unary operator to
indicate taking the address of a label).
6. Inter-stage dead code elimination: Finally, Phloem im-
proves decoupling by performing inter-stage dead code elim-
ination on superfluous control values. In BFS, all vertices
visited in one iteration are compared to the same distance.
It is unnecessary to know which vertex a particular neighbor
belonged to. A naive implementation of control values, however,
would send an unnecessary control value after the end of each
edge list. By eliminating this control value, downstream stages
can simply process all vertices until the iteration ends.

Fig. 6 shows the impact of applying these techniques. To
better understand the performance impact of each pass, we
show multiple intermediate combinations of theses passes. For
instance, three of the control-based passes (corresponding to CV,
DCE, CH in Fig. 6) build successively on each other, culminating
in a 1.85× speedup. Note that eliminating unnecessary uses
of control values and checks for them is critical. Adding
control values in isolation (CV, R, Q) actually diminishes
performance compared to not having them at all, because of
the overheads resulting from instructions needed to check for
control values (is_control() in Pass 4 of Fig. 5). Finally,
reference accelerators (RA) greatly increase performance, but
they depend on the other optimizations: RAs truly shine when
stages are fast enough to keep them busy.

With a 4.7× speedup over the original code, the perfor-
mance of Phloem’s emitted BFS now even exceeds that of
hand-optimized code. Moreover, Phloem accomplishes this
performance through simple static inspection of the program,
whereas the manually optimized version needed to leverage
application-specific insight about communication patterns.

C. Composing data and pipeline parallelism

Data parallelism and pipeline parallelism flexibly compose;
pipeline replication, enabled by Pipette’s support for cross-core
queue communication, lets us fully exploit the resources of
modern multicore systems.

For instance, a single BFS pipeline (as we saw in Sec. II) can
be replicated over many cores so that each pipeline works on
a specific part of the input graph, as shown in Fig. 7. Working
on disjoint parts of the input eliminates the need for expensive
synchronization operations across shared memory.

With time-division multiplexing of stages in each core, each
replicated pipeline can also mitigate load imbalance. This
implementation can then use a simple partitioning scheme,
like examining bits of the neighbor vertex id, to determine
which replica to send neighbors to. This shows that exploiting
pipeline and data parallelism together can lead to simpler
implementations than exploiting data parallelism alone.

Proc 
fringe

Enum 
nghs

Visit
nghs

Update
data

#pragma phloem
void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) ...

#pragma phloem replicate
void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) {
...
int ngh = g->edges[e];
// If dist decreases, update it,
// add ngh to next fringe
#pragma phloem distribute
int old_dist = distances[ngh];
if (cur_dist < old_dist) {
distances[ngh] = cur_dist;
...

#pragma phloem replicate
void bfs(Graph* g, int* cur_fringe, int* next_fringe,

int root, int* distances) ...

Replica 0
Replica 1
Replica 2
Replica 3

Decouple

Replicate

Replicate
and

Distribute
if (ngh & 0x3 == 0)
// send to replica 0

else if (ngh & 0x3 == 1)
// send to replica 1
...

// set up replica 0 fringe
// set up replica 1 fringe
...

Fig. 7: Replicating a decoupled pipeline and distributing work
across replicas.

Phloem lets programmers create data-parallel pipelines by
marking the function with #pragma replicate and specifying
the number of replicas. By default, these pipelines operate
independently but over the same data; Phloem does not
automatically infer which data structures are shared or repli-
cated. Instead, by defining a simple replicate_arguments()
function, a programmer can indicate how to partition work
across the pipelines. For instance, in a replicated BFS, each
replica works on its own fringe array, so this function would
allocate new cur_fringe and next_fringe arrays for each
one. The partition need not be complex, because each pipeline
is automatically load-balanced by the underlying hardware. As
a result, the replicas proceed at roughly the same rate, even
with irregularities in the stages.

To better exploit locality, Phloem also allows pipelines to
distribute work in a data-centric way, by allowing one replica to
enqueue work to not only its next stage but also the correspond-
ing stage of any replica. The programmer defines another simple
function to describe how to select which replica will receive the
enqueued value. In BFS, adding #pragma distribute between
the visit neighbor and the update data stages splits the replicas
into source-centric and destination-centric sections; selecting
the replica simply involves inspecting bits in the neighbor id.
This improves data locality in the update data stage because
each replica works on separate parts of the graph.

D. Making efficient domain-specific pipelines

C/C++ remains the lingua franca of domain-specific ac-
celerator compilers [3, 5, 23, 42, 62] and frameworks [4, 46]:
they either use C directly or emit C code. Thus, Phloem’s
C-based frontend makes it possible to seamlessly pass code to
and from these compilers and frameworks. These compilers
emit code with structure that Phloem can easily discover, a
process that would take considerable time to do manually.
Furthermore, compilers emit code that already meet Phloem’s
input requirements; for example, their data structures are
already qualified with the C/C++ restrict keyword. As a
case study, we examine Phloem’s performance on a variety of
automatically generated sparse linear algebra kernels from the
Tensor Algebra Compiler (Taco) [23]. Taco accepts a tensor
expression that represents operations on sparse tensors, such as
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......
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Communicate
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Cost model

Pipeline search and profile-guided optimization flow (optional)

Static compilation flow
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Fig. 8: How Phloem selects decoupling points, generates pipelines, communicates data between stages, and outputs a pipeline.

the multiplication of a matrix A by a vector x with the expression
y(j) = A(i,j) * x(i), and emits C code. Phloem uses this
code to produce an efficient pipeline-parallel implementation.

E. Targeting other architectures

Although we evaluate Phloem on the Pipette architecture,
several recent accelerator architectures, including Fifer [35],
Aurochs [58], and SPU [10], also provide hardware support for
fine-grain irregular pipelines. These systems are programmed
manually and lack compiler support, highlighting the need
for automation. Phloem could target these systems, as their
ingredients are similar to Pipette.

V. AUTOMATIC DECOUPLING

The previous section presented the techniques that enable
Phloem to produce efficient pipeline-parallel programs. The
remaining challenge in implementing Phloem is finding decou-
pling points. Choosing where to decouple is crucial, as missing
frequent irregular accesses hurts performance and these accesses
are not always easy to identify.
Phloem intermediate representation (IR): Phloem trans-
forms the C abstract syntax tree into a custom IR that represents
fine-grain operations (e.g., load, add). This IR allows any two
operations in a program to be decoupled. It is not necessary to
decouple every operation; decoupling at just a few points (3 or
4) is enough for good performance. Unlike conventional IRs
like LLVM’s, Phloem’s IR adds support for queue operations
and conveying control flow changes.
Determining decoupling points statically: Phloem’s static
analysis mode finds decoupling points by ranking expensive
operations (e.g., memory accesses) with a simple cost model.
Then, it selects the (N −1) highest-ranked points to build an
N-stage pipeline. Each stage is assigned to a separate thread.

Phloem’s cost model prioritizes decoupling points by its
(1) predicted cost and (2) frequency. The cost of the memory
access depends on whether it is indirect or sequential and the
presence of nearby accesses. For example, BFS has two nearby
accesses to g->nodes. The first access is an indirection, so it is
predicted to be costly. However, the second access touches the
location after the first one, so it is very likely a cache hit, and is
predicted to be cheap. This biases these two accesses to happen
together, rather than in two separate stages. To estimate access
frequency, Phloem gives higher weight to memory references
located in the innermost loops and less weight to infrequent
accesses in the outer loop. Accordingly, the access to g->edges
is considered more even more costly than to g->nodes, and
would be prioritized for decoupling.

This simple static analysis works well and produces pipelines
that approach manually optimized versions. This makes sense,
as the innermost loops typically demand the highest throughput
but also come at the end of the longest chains of indirections.
Building stages from the innermost loop outwards usually
produces pipelines that decouple the most performance-critical
sources of irregularity.

Phloem makes it simple to target the stage count that matches
the number of threads supported by the architecture: 2, 4, or
even 8. Phloem can generate pipelines with more stages than
there are threads on a core; just as we generated replicated
pipelines (Sec. IV-C), it is similarly possible to generate non-
replicated pipelines spanning multiple cores.
Autotuning decoupling points: The static approach produces
reasonable pipelines, but its cost model is by necessity ap-
proximate: in irregular applications, cache misses to each data
structure and loop lengths are highly input-dependent, and often
vary over time. To improve performance, Phloem includes
a profile-guided optimization mode. In this mode, Phloem
selects more than (N −1) candidate decoupling points from
the highest-ranked ones, and then builds the candidate pipelines
from combinations of these points. These pipelines are then
profiled on small training inputs to find the best one. Fig. 8
shows this process, with the pipeline search and profile-guided
optimization shaded in gray. This process, which completes in
seconds, allows exploiting decoupling points that are statically
ranked below the bar, but happen to be more profitable.

Fig. 8 (upper right) also shows the static compilation flow,
in which only one pipeline is generated and no training occurs.
This static compilation process also completes within seconds,
and its pipelines work well in practice. Our evaluation compares
the performance of both modes.

VI. METHODOLOGY

We implement Phloem as a source-to-source compiler. For
each of our benchmarks, we start with high-quality serial
implementations. Phloem automatically identifies decoupling
points based on a simple heuristic of the costliest operations
(long chains of dependent references in deep loop nests), and
produces pipeline-parallel versions. We then compile Phloem-
generated code with gcc -O3.

A. Evaluated systems

We evaluate Phloem’s generated benchmarks on an extended
version of Pipette (Sec. III). We use Pipette’s evaluation con-
figuration, whose cores are modeled after Intel’s Skylake [14]
microarchitecture and scaled to four SMT threads. Table III

8



TABLE III
CONFIGURATION PARAMETERS OF THE EVALUATED SYSTEM.

Cores 1 or 4 cores, 3.5 GHz, x86-64 ISA, Skylake-like: 6-wide out-of-order
issue; 4-thread SMT

Pipette 16 queues max; 4 RAs; queues up to 24 elements deep

L1 cache 32 KB/core, 8-way set-associative, 4 cycle latency
L2 cache 256 KB/core, 8-way set-associative, 12 cycle latency
L3 cache 2 MB/core, 16-way set-associative, 40 cycle latency
Main mem 120-cycle minimum latency, 2 controllers, 25 GB/s each

lists the parameters of our evaluation configuration. We use
an event-driven, cycle-level simulator based on Pin [30]. To
be consistent with Pipette’s energy models, we also model
core and uncore energy at 22 nm with McPAT [28] and main
memory with Micron DDR3L datasheets [31].

B. Benchmarks

Our initial evaluation uses five diverse C benchmarks: four
from graph analytics and one from sparse linear algebra. We use
Phloem to automatically generate pipelines for each application
from the serial code. We compare the Phloem-generated version
to its original serial implementation, a competitive data-parallel
implementation, as well as a manually pipelined version.

Breadth-First Search (BFS) is the graph algorithm intro-
duced in Sec. II. It discovers the distance of all vertices
reachable from a root vertex. The data-parallel implementation
is based on work-efficient PBFS [27].

Connected Components (CC) assigns labels to connected
components of a graph by running searches from each vertex in
the graph until all vertices are assigned a label. PageRank-Delta
(PRD) is like the PageRank algorithm in that it determines the
importance of vertices by distributing weights, except that the
change in weight must exceed a threshold for it to be applied.
Radii estimates the radius of a graph by performing multiple
searches from randomly sampled vertices. CC, PRD, and Radii
are derived from their data-parallel implementations in the
Ligra framework [46].

Finally, Sparse Matrix-Matrix Multiplication (SpMM) mul-
tiplies two compressed matrices. It uses an inner-product, or
output-stationary, dataflow, meaning that each element of the
output matrix is computed one element after another from a dot
product of an input row and column. The coordinates of non-
zero values are sorted, so identifying non-zero partial products
of the dot product requires a merge-intersection that jointly
iterates through these two vectors.

Taco benchmarks: We integrate Phloem with the Tensor
Algebra Compiler (Taco) [23] to automatically compile ten-
sor algebra expressions into pipeline-parallel programs. We
compare Phloem-generated pipelines with Taco-generated se-
rial and data-parallel versions. We use the following Taco
benchmarks: Sparse Matrix-Vector Product (SpMV) evalu-
ates y = Ax, where x and y are dense vectors and A is a
sparse matrix. Sampled Dense-Dense Matrix Multiplication
(SDDMM) evaluates A = B◦ (CD), where C and D are dense
matrices, A and B are sparse matrices, and the ◦ operator
represents component-wise multiplication. Matrix-Transpose
Multiplication (MTMul) evaluates y = αAᵀx+ β z, where α

TABLE IV
INPUT GRAPHS, SORTED BY THE NUMBER OF EDGES.
Domain Graph Vertices Edges Avg. deg.

Training inputs

Training internet graph internet 126K 207K 1.7
Training road network USA-road-d-NY 264K 734K 2.8

Test inputs

Human collaboration coAuthorsDBLP-symmetric 299K 1.9M 6.4
Dynamic simulation hugetrace-00000 4.6M 14M 3.0
Circuit simulation Freescale1 3.4M 19M 5.6
Internet graph as-Skitter 1.7M 22M 12.9
Road network USA-road-d-USA 24M 58M 2.4

TABLE V
INPUT MATRICES, SORTED BY AVERAGE NON-ZEROS PER ROW.

SPMM ALSO USES pwtk.

Domain Matrix Size (n×n) Avg. nnz/row

SpMM training inputs

Training graph as matrix 1 email-Enron 36,692 10.0
Training graph as matrix 2 wiki-Vote 8,297 12.5

SpMM test inputs

File sharing p2p-Gnutella31 62,586 2.4
Graph as matrix amazon0312 400,727 8.0
Gel electrophoresis cage12 130,228 15.6
Electromagnetics 2cubes_sphere 101,492 16.2
Fluid dynamics rma10 46,835 49.7

Taco (MTMul, Residual, SpMV, SDDMM) test inputs

Circuit simulation scircuit 170,998 5.6
Economics mac_econ_fwd500 206,500 6.2
Particle physics cop20k_A 121,192 21.7
Structural pwtk 217,918 52.9
Cantilever cant 62,451 64.2

and β are constants; x, y, and z are vectors; and A is a sparse
matrix. Lastly, Residual evaluates y = b−Ax, where b, x, and
y are vectors and A is a sparse matrix.
Inputs and sampling: We execute the graph analytics work-
loads (BFS, CC, PRD, and Radii) on graphs listed in Table IV,
which arise from many real-world domains. SpMM is evaluated
using the matrices listed in Table V. We evaluated the Taco
benchmarks using the same matrices as its original evaluation;
Table V also lists these matrices.

In PRD and Radii, simulations of the largest graphs take tens
of billions of cycles. To keep simulation times reasonable, runs
of PRD and Radii on the largest graphs use iteration sampling,
simulating a subset of iterations. Even with sampling, these
applications exceed billions of simulated cycles.

C. Automatic pipeline generation and search

When evaluating Phloem’s profile-guided compilation flow
(Sec. V), we automatically generate all pipelines of up to four
threads (this results in no fewer than fifty different pipelines for
each benchmark). We then select the best pipeline by running
each pipeline configuration on a small set of training inputs: for
graph applications, internet and USA-road-d-NY; for SpMM,
email-Enron and wiki-Vote. We then use the best-performing
pipeline as determined by these training inputs and evaluate
its performance on the test input set. Importantly, we do not
present results for the best pipeline over all inputs a priori;
nevertheless, training may identify the globally optimal pipeline.
Finally, for simplicity, we use the static compilation flow for
the Taco benchmarks.
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VII. EVALUATION

Fig. 9 reports the overall speedups of Phloem compared to
the serial code, a data-parallel implementation, and a manually
optimized Pipette version. Each group of bars shows results
for one application; each bar is the speedup of each variant
over serial, averaged (gmean) across inputs. For Phloem, the
height of the bar is the speedup of the pipeline produced by
profile-guided optimization, and the × mark is the speedup of
the pipeline produced by the static compilation flow.

Phloem achieves significant speedups—on average, 1.7×
over serial—which are comparable to those of the hand-
tuned versions. In almost all cases, the performance of the
Phloem version not only surpasses the serial version but
also a competitive data-parallel implementation. On average,
Phloem achieves 85% of the performance gains of the manually
optimized version. In two applications, BFS and Radii, Phloem
outperforms the manually optimized version. SpMM shows a
negative result, where Phloem does not improve performance.

Fig. 10 gives more insight into these results by showing a
breakdown of cycles spent by cores. Each group of bars reports
cycles for one application, relative to the serial baseline. Each
bar is broken down in cycles spent (i) issuing micro-ops, and
waiting on (ii) backend stalls (including memory latency), (iii)
full or empty queues (for Phloem and Manually pipelined), or
(iv) other stalls (e.g., frontend).

Comparing the manually optimized code to the Phloem-
generated BFS code, the Phloem version runs slightly fewer
instructions. Threads also block less often from full or empty
queues in the Phloem version, keeping OOO core resources
busy and resulting in Phloem beating the hand-optimized
pipeline by 15%. Radii primarily benefits from a better
decoupling that reduces queue stalls. CC and PRD, on the other
hand, show slightly worse decouplings, both due to increased
memory stalls, but still do much better than data-parallel.

Finally, Phloem does not benefit SpMM. The reason is that
SpMM’s manual version uses a bespoke implementation of
merge-intersect where, upon finding the end of an input queue
through a control value, the consumer skips the remaining
values in the other input queue up to its next control value.
This reduces instructions and stalls by avoiding ineffectual
work. However, it is a highly application-specific insight that
is hard to derive from serial code, and is thus unavailable to
Phloem. This shows that there are some patterns for which a
manual approach yields better performance.

Fig. 11 shows energy breakdowns across benchmarks,
averaged across inputs, relative to the serial baseline. In all
benchmarks, Phloem achieves better energy efficiency than
the serial and data-parallel versions, chiefly due to better core
utilization. For CC, PRD, and Radii, Phloem’s energy use is
comparable to the manually pipelined version. In BFS, energy
usage decreases thanks to Phloem’s speedups, with its overall
reduced time spent running the cores. In SpMM, while energy
usage is overall lower, these gains are somewhat offset by the
increase in time spent on stalls.
Taco results: Fig. 12 reports Phloem’s speedups when paral-
lelizing Taco programs. (This is similar to Fig. 9, but without
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Fig. 9: Per-benchmark speedup over the serial baseline. Each
Phloem bar (green) shows the performance of a pipeline pro-
duced through profile-guided optimization; an × indicates the
performance of a pipeline produced by the static cost model.
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Fig. 11: Breakdown of energy, normalized to serial baseline
(S: Serial, D: Data-parallel, P: Phloem, M: Manually pipelined).
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Fig. 12: Speedups over serial baseline for Taco benchmarks.

manually optimized pipelines for these programs.) For MTMul,
Residual, and SpMV, Phloem easily parallelizes the code,
resulting in a gmean speedup of 1.5× over serial across
their inputs for each of these benchmarks. Notably, turning to
data parallelism barely improves performance because of the
increase in instructions.

SDDMM shows the opposite result: while Phloem-generated
code shows no improvement over the serial version, the data-
parallel version sees some speedup. This is because SDDMM,
unlike the other benchmarks, has a regular innermost loop that
multiplies dense, uncompressed matrices C and D. Conventional
architectures handle this case well.

The speedups gained by simply adding Phloem as a pass
to an existing domain-specific compiler showcases not only
Phloem’s generality, but also the applicability and effectiveness
of fine-grain pipeline parallelism.

A. Analysis of generated pipelines

We now evaluate the impact of profile-guided optimization
by examining the pipelines generated by the search process.
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Fig. 13: Plot showing the distribution of gmean performance over the training inputs of Phloem-generated pipelines for select
benchmarks as the number of stages is varied. An × indicates that no pipeline of that length was profiled.

Fig. 13 shows the distribution of gmean speedups for pipelines
of a given number of stages. Speedups are relative to the
original serial code, and here, the number of stages includes
any reference accelerators used. For instance, in BFS, the
best 4-stage pipeline is 2.8× better than serial, while an 8-
stage pipeline is only 2.4× better. This illustrates the many
tradeoffs that exist when constructing pipelines, as adding too
many stages can cause excessive communication that limits
the achievable performance. This is underscored by SpMM,
in which performance diminishes as stages are added for the
reasons already discussed. Lastly, forcing a particular pipeline
length could cause awkward pipeline stage boundaries that
decrease performance, as seen in SpMV at 5 stages. Applying
profile-guided optimization helps avoid falling into such minima.
Overall, our automatic approach finds well-performing pipelines
within the distribution.

B. Replicating pipelines

We evaluate how Phloem effectively uses multicore resources
by producing replicated pipelines. In addition to the replicated
BFS presented in Sec. IV-C, we also evaluate replicated
pipelines for CC, PRD, and Radii, all of which are also amenable
to a data-centric partitioning scheme.

We scale the system to have 4 cores with 4 threads each,
scaling the data-parallel versions and replicating the Phloem
and manual pipelines to use all 16 threads. We use #pragma
replicate and distribute annotations to direct Phloem to
produce the replicated pipeline, which uses Pipette’s inter-core
queue communication to send work to other cores.

Fig. 14 compares the performance of these systems to a
single-core, single-thread serial configuration. In BFS and
CC, the data-parallel system achieves speedups somewhat
linearly with the number of cores; the manually pipelined
versions of BFS and CC respectively achieve 12× and 7×
better performance than the serial implementation. Phloem’s
automatically replicated versions of these pipelines perform
10× and 4× better than serial, and in both cases outperform
the data-parallel system. Phloem’s replicated Radii pipeline
outperforms both the data-parallel and manually pipelined
versions. Unlike the other automatically replicated pipelines,
which replicate 4 stages (plus RAs) four times across four
cores, Radii’s pipeline is 2 stages (plus RAs), replicated eight
times across four cores. This organization better exploits data
locality and reduces the impact of memory stalls. Finally, while
PRD also outperforms the data-parallel implementation, its

BFS CC Radii PRD
0

5

10

15
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ee

du
p

Serial Data-parallel Phloem Manually pipelined

Fig. 14: Performance of BFS, CC, PageRank-Delta, and Radii
replicated over many cores, compared to serial, data-parallel,
and manually pipelined versions.

performance is about half that of the manual pipeline. The
manual version merges the two middle stages together to
make room for a second level of stage replication within
each already-replicated pipeline. Phloem does not yet support
this transformation automatically. On a final note, when
replicating pipelines, Phloem also selects different pipeline
configurations than merely replicating stages from the single-
replica configuration. This change further reinforces the need
for automatic parallelization: changes to the pipeline alter the
tradeoffs needed to get good performance.

VIII. ADDITIONAL RELATED WORK

In this section, we discuss prior work not covered so far.
Software-only decoupling approaches: Asynchronous Mem-
ory Access Chaining (AMAC) [24] breaks variable-length,
pointer-chasing chains of memory accesses using an FSM. It
cycles through multiple independent chains, issuing them access
by access to improve memory-level parallelism. CIMPLE [22]
and Jonathan et al. [20] leverage coroutines that yield on long-
latency events to achieve similar decoupling with simpler code
transformations than AMAC. While these approaches improve
memory-level parallelism, they add substantial overheads, as
scheduling stages and buffering of intermediate values is done in
software. Consequently, while these approaches show benefits
on extremely latency-dominated data structures, these overheads
limit their applicability [22, Table 2]. Moreover, this prior work
requires complex code changes, unlike Phloem.
Domain-specific software frameworks: Several frameworks
and languages may feature pipeline-like behavior, but they
ultimately address different problems from Phloem.

Ligra [46] is a framework for accelerating graph traversals,
Halide [42] is a domain-specific language for image processing
pipelines, and T2S-Tensor [49] extends Halide to accelerate
tensor kernels. However, these are all highly tuned to their
specific domain. For example, irregular applications’ arbitrarily
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deep chains of dependent memory accesses have no meaningful
analogue in image processing.

Phloem sidesteps the limitations of domain-specific accel-
erators by exploiting pipeline parallelism, a more broadly
applicable technique. Despite having orthogonal goals to
these frameworks, we demonstrated that Phloem can be easily
integrated with them to produce efficient pipeline-parallel code
using the code that these frameworks emit.
Hardware-software codesigned frameworks: Decoupled
Software Pipelining (DSWP) [43], the line of work most similar
to Phloem, accelerates irregular applications by targeting data
structures with multiple levels of indirection. However, DSWP
is limited to a single irregular pattern, parallelizing a single
loop, and only separates code into two stages: a producer and
a consumer stage. By contrast, Phloem decouples applications
into arbitrarily many stages, which as we have shown, is crucial
to decouple long-latency events effectively.

SpecDSWP [57] extends DSWP with support for speculation.
While SpecDSWP supports more than one level of indirection,
it has several key differences. First, because it speculates
on control dependences, SpecDSWP is unable to effectively
decouple chains of data-dependent lookups, such as the CSR
data structure. Instead of speculating on control dependences,
Phloem decouples them, enabling producers to take and convey
control decisions before consumers need them to avoid control-
flow penalties. Second, it requires considerably more hardware
support, such as hardware multiversioned memory and register
checkpointing, while the Pipette programming model relies on
simple non-speculative hardware queues. Finally, SpecDSWP
still lacks the ingredients needed for building effective fine-
grain pipelines, like lightweight reference acceleration and
communicating control decisions.

HELIX [7] and HELIX-RC [6] propose co-designed compiler
and architectural support for inter-core communication, but they
are still limited to parallelizing a single loop.

Control-Flow Decoupling (CFD) [45] also proposes a
hardware architecture combined with a compiler pass for
accelerating applications. However, it can only split applications
into two stages—irregular applications need to be decoupled
at every source of irregularity to run efficiently. Moreover,
decoupling at more than one point significantly increases the
space of possible pipelines—something that Phloem explores
with a profile-guided optimization mode.

Unlike DSWP, HELIX, and CFD, Phloem parallelizes across
loop levels and thus offers more flexibility in decoupling. This
enables a more comprehensive search for the best mapping of an
irregular application to stages and also offers more optimization
opportunities. This flexibility lends an advantage over prior
analytical models for pipeline parallelism [32], as such models
rely on the application already being structured as a pipeline.
Compilers for spatial architectures and high-level synthesis
(HLS): SARA [61] exploits coarse-grain data parallelism in
mapping applications to the Plasticine architecture [41]. Some
compilers identify parallel patterns for FPGA implementation,
including pipelines [29, 40]. LegUp [8] is an HLS system that
supports streaming semantics. Calyx [36] is an intermediate

representation intended for hardware implementation. Aether-
ling [15] produces statically scheduled streaming hardware
circuits. These prior systems all fall short for several reasons:
mapping to spatial architectures works best when applications
are compute-heavy regular applications with little control.
They also assume that the entire pipeline can be mapped
to the hardware at once, which results in different tradeoffs.
Dynamic time-multiplexing of pipeline stages, as the Pipette-
style baseline system does, offers considerably more flexibility
in structuring stages. Finally, some systems lack support for
key elements: Calyx explicitly mentions the need for compiler
support for (explicit) pipeline parallelism, and Aetherling does
not support variable-latency operators, a hallmark of irregular
applications.

IX. CONCLUSION

Irregular applications use conventional architectures poorly.
Software-only techniques are insufficient and many previous
hardware-software codesign approaches have programming
models that are ill-suited to accelerating irregular applications.
An emerging class of architectures exploits fine-grain pipeline
parallelism with a simple but powerful programming model,
but applications needed to be written by hand. Phloem is
the first system to show that a series of simple passes can
systematize the insights needed to transform serial code into
high-performance pipeline-parallel code. Therefore, Phloem is
a comprehensive solution for automatic high performance on
irregular applications.
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