
Synchronization in
Timestamp-Based Cache Coherence Protocols

by

Quan Minh Nguyen
B.S., University of California, Berkeley (2014)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c� Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Synchronization in

Timestamp-Based Cache Coherence Protocols

by

Quan Minh Nguyen

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
Supporting computationally demanding workloads into the future requires that multi-
processor systems support hundreds or thousands of cores. A cache coherence protocol
manages the memory cached by these many cores, but the storage overhead required
by existing directory-based protocols to track coherence state scales poorly as the
number of cores increases. The Tardis cache coherence protocol uses timestamps to
avoid these scalability problems. We build a cycle-level multicore simulator that im-
plements a version of the Tardis protocol that uses release consistency. Changing
the coherence protocol, which affects what memory values a processor can observe,
changes inter-processor communication and synchronization, two processes crucial to
the operation of a multicore system. We construct Tardis versions of synchronization
primitives and the atomic instructions they use, and compare them to their analogous
implementations on a directory-based cache coherent multicore system. Simulations
on several benchmarks suggest that the Tardis system performs just as well as the
baseline system while preserving the ability to scale systems to hundreds or thousands
of cores.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Before I begin, I’d like to take this opportunity to thank the people who have made

this journey even remotely tractable. First, I would especially like to thank my

adviser, Srini, for providing key insights and guidance in this project and so warmly

welcoming me into the group two years ago. I am very grateful to Xiangyao, who

has never wavered from answering my unrelenting stream of questions about Tardis.

I aspire to emulate their contagious enthusiasm and wide-spanning knowledge. In

addition to my lab mates, my friends here have made my stay at the Institute at least

as much play as it is work; a heartfelt thank-you to Aaron, Fady, Lisa, Liz, Mehrdad,

Michael, and Wendy, who have been by my side the entire time. I am tremendously

grateful to Albert, Andrew, Krste, Stephen, and Yunsup of the ParLab and ASPIRE

Lab at Berkeley for intellectually launching me into the place where I am today. And,

finally, I want to thank my family: my mother, father, and sister (better known to

me as Má, Ba, and Uyên), for making it all possible. Just thinking of you and the

love you have shown me is always a source of inspiration and hope.

5

6

Contents

1 Introduction 13

2 Timestamp-Based Cache Coherence Protocols 17

2.1 The Tardis Cache Coherence Protocol 17

2.1.1 Timestamps . 19

2.1.2 Reading Cache Blocks with Leases 22

2.1.3 Writing Cache Blocks through Time Travel 23

2.1.4 Renewals . 24

2.1.5 Per-Program Timestamps . 25

2.1.6 Main Memory, Incoherent Memory, and I/O 27

2.2 Release Consistency and RISC-V . 28

2.2.1 Fences . 29

2.2.2 Release and Acquire Instructions 31

2.3 Release Consistency Support for Tardis 31

2.3.1 Compact Timestamp Configurations 32

2.3.2 Cache Transactions . 34

2.3.3 Leases and Renewals in Tardis-RC 37

2.4 Stale Reads . 37

2.5 Techniques for Writing Tardis Programs 40

2.6 Previous Use of Timestamps for Coherence 41

3 Atomic Instructions 43

3.1 Compare-and-Swap . 43

7

3.2 Load-Reserved and Store-Conditional 45

3.3 Atomic Memory Operations . 48

4 Synchronization 51

4.1 Locks . 51

4.1.1 The Mellor-Crummey-Scott Queue Lock 53

4.2 Barriers . 54

5 Implementation 61

5.1 Guiding Principles . 61

5.2 The RISC-V Rocket Microarchitecture 62

5.2.1 Pipelining Timestamps . 62

5.2.2 Extending the Memory Hierarchy 63

5.3 Network-on-Chip . 64

5.3.1 Manager/Client Abstraction 64

5.3.2 Network Topology . 65

6 Evaluation 67

6.1 Atomic Instructions . 67

6.2 Synchronization Primitives . 70

6.3 Application Performance . 72

7 Conclusion 81

7.1 Future Work . 81

7.2 Concluding Remarks . 83

8

List of Figures

2-1 Simplified system diagram. 18

2-2 Last-level cache metadata layout. 18

2-3 Timeline diagram representing the validity of cache blocks within the

Tardis protocol. 21

2-4 Timeline diagram demonstrating a cache block read. 23

2-5 Timeline diagram demonstrating a cache block write. 24

2-6 Timeline diagram demonstrating a cache block renewal. 25

2-7 Timeline diagram demonstrating interaction with main memory. . . . 27

2-8 Assembly code demonstrating a potential hit-under-miss situation a

cache. 28

2-9 Timeline diagram demonstrating one of the limitations of Tardis with

sequential consistency. 29

2-10 Timeline diagram demonstrating a write-read fence in Tardis. 30

2-11 Timeline diagram demonstrating timestamps used in Tardis-RC. . . . 33

2-12 Example producer-consumer code. 38

2-13 Using synchronization to communicate updated data through an ex-

ternal cache block. 40

3-1 Hypothetical source code for a compare-and-swap instruction. 44

3-2 Timeline diagram demonstrating avoidance of the ABA problem. . . . 45

3-3 Load-reserved/store-conditional instruction sequence. 45

3-4 Timeline diagram demonstrating livelock freedom on the LR/SC in-

struction pair. 47

9

4-1 Source code for spin lock that uses compare-and-swap. 52

4-2 Diagram depicting linked-list nature of the MCS queue lock. 54

4-3 Source code for an implementation of the Mellor-Crummey-Scott queue

lock. 55

4-4 Timeline diagram illustrating the effects of a barrier in physiological

time. 56

4-5 Source code for a sense-reversing barrier. 57

4-6 Barrier exploiting the exclusive ownership state to notify other cores. 58

6-1 Microbenchmark source code. 68

6-2 Performance of the MCS queue lock microbenchmark. 71

6-3 Performance of a barrier microbenchmark. 72

6-4 Performance of a vector-vector add benchmark exhibiting false sharing. 74

6-5 Performance of a vector-vector addition benchmark without false sharing. 75

6-6 Number of acquire messages sent on the TileLink networks. 76

6-7 Number of acquire messages sent on the TileLink networks. 77

6-8 Performance of a matrix-matrix multiplication. 78

10

List of Tables

1-1 Size and latencies of a computer’s memory hierarchy. 14

2-1 Timestamps for Tardis-SC, a sequentially consistent version of Tardis. 21

2-2 Timestamp update rules for the manager in the sequentially consistent

version of the Tardis cache coherence protocol. 26

2-3 Timestamp update rules for the manager in the sequentially consistent

version of the Tardis cache coherence protocol. 26

2-4 Message types used in Tardis. 26

2-5 Timestamp update rules needed to support relaxed consistency mem-

ory models. 32

2-6 Timestamps for Tardis-RC, a release-consistent version of Tardis, as

implemented in this thesis. 33

2-7 Actions performed by the client in the Tardis cache coherence protocol. 35

2-8 Actions performed by the manager in the Tardis cache coherence protocol. 36

2-9 Guidelines for timestamps to be sent along with messages to the last-

level cache during cache misses. 37

5-1 Logical networks in the TileLink coherence protocol abstraction. . . . 64

5-2 Timestamps required in network messages for coherence in the Tardis

protocol. 65

5-3 Evaluation system configuration. 66

6-1 Performance of the load-reserved/store-conditional microbenchmark. . 68

6-2 Performance of the atomic memory operation microbenchmark. . . . 69

11

12

Chapter 1

Introduction

We must build multicore systems that scale well to hundreds or thousands of cores to

run applications increasingly necessary for progress and discovery in modern society.

These systems have become ubiquitous in everyday life, from mobile platforms to

datacenter computers. Even systems with one microprocessor may have multiple cores

running independently and in parallel. Computer architects have taken advantage of

the falling cost of transistors and evolving circuit fabrication techniques to increase

both the number of cores and the amount of memory or a single system.

Low-latency, high-throughput memory ensures that these applications run quickly.

On a shared-memory machine, all cores access the same main memory. However, these

cores rarely make changes directly to main memory – instead, they change the data

stored in a cache. A cache contains small sections of frequently used memory to exploit

spatial and temporal locality, and are essential in the design of high-performance com-

puters. Nowadays, the computer’s memory hierarchy separates a processor’s registers

from main memory with multiple levels of progressively larger caches. A processor’s

registers, at the top of the hierarchy, are fast, but small; main memory, at the bot-

tom of the hierarchy, is relatively slow, but large. By balancing the speed and size

trade-offs, the memory hierarchy grants the illusion of a vast, fast memory [1]. Yet,

programmers assume that any core may immediately observe the changes to memory

made by another core. The cache coherence system, which implements a specific

cache coherence protocol, communicates with the cores to keep cached data in a state

13

Type Size Latency

Processor registers 1000 B 300 ps
L1 caches 64 KB 1 ns
L2 caches 256 KB 3 – 10 ns
Main memory 4 – 16 GB 50 – 100 ns

Table 1-1: Size and latencies of a computer’s memory hierarchy, from [1].

that a programmer can reason about.

Caches typically maintain data in equally-sized parcels known as cache blocks.

Throughout the execution of a program, cache blocks move between levels of the

memory hierarchy – from the expansive but slow main memory to the cache nearest

the processor, the first-level (or “L1”) cache. The cache coherence protocol must

ensure maximum memory throughput, so it must permit multiple cores to share the

same area of memory. However, the protocol must also propagate any changes to

memory to these caches so that the system stays coherent.

The prevailing method to ensure cache coherence today is the directory protocol.

The directory manager, which resides at the outer levels of the cache hierarchy, main-

tains a list of all cores currently caching a cache block as a part of its metadata. At

its simplest, the directory manager uses a bit vector with n bits, one for each core,

to track who currently accesses a cache block, and a manager keeps a bit vector for

each cache block. Before a core may write to a cache block, it must obtain exclusive

ownership so that no other core may read stale data. To obtain exclusive ownership,

the directory manager invalidates all copies of the cache block at all other cores. The

manager scans this “full-map” bit vector and sends each core a message instructing it

to no longer cache that area of memory. This scheme works well due to its simplicity

and because the number of cores sharing a particular cache block, up until recently,

has remained small.

However, the number of cores on a single die continues to rise, as does the number

of processors in a shared-memory system. For instance, Intel’s second-generation

Xeon Phi processors, code-named “Knights Landing”, boasts 72 cores with access to up

to 384 GB of main memory [2]. A typical “full-map” directory, if implemented on this

14

system, would require 72 bits per cache block to represent all possible combinations of

sharers. This amount of storage would represent more than 10% metadata overhead

for a 64-byte cache block, and will only grow as the number of cores increases. Several

techniques [3, 4, 5] reduce the cost of scaling the directory, but no technique suitably

solves the problem of effectively broadcasting invalidation messages to all sharers.

Tardis, a timestamp-based cache coherence protocol, reduces the per-cache block

metadata overhead from O(n) to O(log n) in the number of sharers [6]. Instead of

tracking all sharers of a cache block, the Tardis protocol only tracks its exclusive

owner. To maintain coherence, the Tardis protocol also assigns each cache block a

set of timestamps. Each core, which gains a timestamp counter in this protocol, may

only read a cache block if it satisfies conditions on its counter and the cache block’s

timestamps. The Tardis protocol, which provably preserves sequential consistency [7],

opens the door to dramatically scaling the number of cores in a system by dispensing

with excess metadata.

We wish to understand the effects of a system running Tardis to establish a case

for future implementation in real-world systems. The first efforts at modeling the per-

formance of the Tardis protocol were completed in Graphite, a functional simulator

that only performs lax synchronization. In this model, cores are only synchronized

when they interact on “true synchronization” events [8], making it possible for sim-

ulated events to occur out-of-order from when they would occur on a real system.

However, synchronization is a necessary component of a parallel program running on

a multicore machine. Furthermore, Graphite cannot faithfully model effects that arise

from inter-processor communication, such as message latency and network contention,

even while modeling the memory (“full” mode). These shortcomings prevent us from

fully measuring and understanding Tardis, so we opt to model it with cycle-level

simulation.

15

Organization and Contributions of this Thesis

In this thesis, we study synchronization on a machine implementing the Tardis proto-

col on a cycle-level simulator in the interest of building it on a real platform, whether

synthesized for a field-programmable gate array (FPGA) or for fabrication. We mod-

ify a version of Tardis that supports sequential consistency (“Tardis-SC”) to produce

“Tardis-RC”, a version of Tardis that supports the release consistency memory model

in Chapter 2. Using Tardis-RC, we define new semantics for atomic instructions and

observe their impacts on synchronization primitives in Chapters 3 and 4. We imple-

ment a prototype cycle-level simulator in Chapter 5, the first known implementation

of Tardis-RC with cycle-level detail. In Chapter 6, we demonstrate the performance

of Tardis implementations of atomic instructions and synchronization primitives and

their baseline counterparts on several benchmarks. We summarize our findings and

discuss possibilities for future work in Chapter 7.

16

Chapter 2

Timestamp-Based Cache Coherence

Protocols

In this chapter, we provide an overview of the Tardis cache coherence protocol. First,

we introduce the sequentially consistent version of Tardis, Tardis-SC, as described in

[6]. We specify Tardis-RC, a version of Tardis that supports release consistency, to

match the architecture used in our cycle-level simulator. We also extend Tardis to

memory-mapped devices and input/output (I/O).

2.1 The Tardis Cache Coherence Protocol

A system that implements the Tardis protocol has a number of cores and their caches

connected by an on-chip network that is eventually serviced by a shared last-level

cache, as typified in Figure 2-1. We refer to the system that maintains metadata

at the last-level cache as the manager. Clients, such as a core’s private data and

instruction caches, communicate with the manager to receive cache blocks. Clients

that may store modified blocks in a private cache are cached clients. Cached clients

require invalidations, while uncached clients (for instance, memory-mapped I/O) do

not. Tardis distinguishes itself from other cache coherence protocols because the

manager stores only the identity of the exclusive owner of the cache block, if it

exists, resulting in O(log n) metadata storage per cache block. Consequently, the

17

Core

L1 cache (client)

Core

L1 cache

On-chip network

Last-level cache (manager)

Main memory

Figure 2-1: Simplified system diagram.

manager has no knowledge of the state of read-only cache blocks in the system. For

these blocks, timestamps inform clients as to whether reading the block preserves

the memory consistency guarantees of the system. The next several sections discuss

the rules regarding these timestamps. Figure 2-2 depicts a possible layout of a cache

block’s metadata at the manager. The size of the timestamps does not grow with

the number of sharers, preserving scalability in systems with potentially hundreds or

thousands of cores.

Manager State Owner Tag wts rts

Client State Tag wts rts

Figure 2-2: The potential layout of cache block metadata at the client (for example,
an L1 data cache) and the manager (for example, a last-level cache).

As in an ordinary directory-based protocol, any cache block may be read by any

client. The permissible operations on a cache block at the client are tracked with

states identical to a typical directory protocol, such as MESI [9]. We use these

protocol states for the rest of the thesis.

18

Time

The definition of “time” plays an important role in the Tardis protocol, so we take

care to define it here1. Physical time is the time observed in accordance with natural

phenomena; that is, wall-clock time. Logical time, perhaps most well-established as

Lamport clocks, numbers events based on a monotonically increasing counter without

regard to the passage of physical time [11]. Tardis combines both notions of time

to form physical-logical time, shortened to physiological time2, to establish a global

memory ordering between memory operations on cache blocks within a multiprocessor

system. Thus, something said to occur at the same physiological time may have

actually happened at two different physical times.

Memory models describe how the memory operations in a program (which defines

the program order) may be interleaved to form a global memory order. The sequential

consistency model stipulates that “the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order specified

by its program” [12]. The physiological time rule of Tardis-SC [6] establishes a global

memory order with timestamps assigned to memory operations:

Definition 1 (Physiological time rule). For an operation X to occur before Y in the

global memory order, X’s timestamp must be ordered before Y ’s timestamp, or if they

have the same timestamp, that X must be ordered before Y in the program.

2.1.1 Timestamps

The Tardis protocol assigns a write timestamp and a read timestamp to each cache

block, which we denote as wts and rts respectively. These timestamps do not cor-

respond to any actual operation, but instead specify which physiological times a

memory operation may occur. In Tardis-SC, the sequentially consistent version of

the Tardis protocol, each client keeps a timestamp counter to track its own sense of

1
More precisely than “a big ball of wibbly wobbly timey wimey stuff.” [10]

2
Physiological time has no relation to the biological notion of physiology.

19

physiological time, which we denote as pts.3 To satisfy the protocol’s requirement for

totally ordered timestamps, we represent physiological timestamps with integers. In

practice, 64-bit unsigned integers suffice and will never roll over in human-fathomable

timescales. A client can store pts in a register, while caches at the client and manager

can store wts and rts in a cache metadata array.

The write timestamp wts and the read timestamp rts denote the minimum and

maximum physiological times at which the cache block data assigned those time-

stamps are considered valid. To have valid cache block data, the read timestamp

must be no less than the write timestamp; that is, wts rts. In Section 2.1.2, we

will restrict reads to the cache block to clients that have a pts that fall within this

range. The validity of a cache block can then be expressed as an integer interval,

which we denote in this thesis as [wts, rts], emulating the notation for real-valued

intervals that contain both the start and end values. The Tardis protocol stipulates

a crucial invariant for these timestamps which we term the Tardis invariant :

Definition 2 (Tardis invariant). For a specific cache block, only one version of its

data may exist in a given timestamp interval [wts, rts].

Figure 2-3 depicts the validity of a cache block on a timeline. In this figure,

physiological time increases to the right. The cache block’s data, d, are valid in the

interval [5, 9]. Reads to the cache block occurring at timestamps before 5 or after 9

may yield different data different from d.

An immediate consequence of this invariant is that changes to the data always

generate a new pair of timestamps with an interval disjoint from that of the old data.

A more subtle implication is that the value of rts may be increased as long as the

data in the cache block do not change. Increasing the rts of a cache block amounts to

“renewing“ a cache block. Renewals, covered in Section 2.1.4, allow clients to extend

the range of physiological times they may read the data. The Tardis invariant helps

programmers and computer architects reason about the function of the protocol. For

3
The term processor timestamp gives rise to the abbreviation pts, but such a timestamp applies

to any caching client.

20

physiological time
1 2 3 4 5 6 7 8 9 10

? ?d

wts rts

Figure 2-3: Timeline diagram representing the validity of a cache block. Physiological
time increases to the right, and all timestamps are integers. Rectangles on the same
row refer to the same cache block, and the text enclosed refers to the data. The
smallest integer a rectangle overlaps represents that cache block’s wts; the largest
integer represents that cache block’s rts. We use a hatched pattern to emphasize
that the data outside wts and rts may not be known to the client.

instance, in Chapter 3 we demonstrate that the Tardis invariant can mitigate the

ABA problem for the compare-and-swap atomic instruction.

A client’s pts may only increase; however, pts only changes when the client in-

teracts with memory – pts does not increase with wall-clock time or the cycle count.

Reading memory may not alter a client’s pts at all. With a single timestamp, a

caching client can maintain sequential consistency; the next several sections review

Tardis-SC as specified in [6]. Physiological timestamps exist for uncached regions of

memory as well; they are discussed in Section 2.1.6. We summarize the timestamps

discussed so far, and their function, in Table 2-1.

Name Purpose

pts Tracks a client’s position in physiological time.

wts The physiological time for which the data assigned
to this timestamp are valid.

rts At a client, the last physiological time for which the
data assigned are valid. At the manager, the last
time for any client.

Table 2-1: Timestamps for Tardis-SC, a sequentially consistent version of Tardis.

21

2.1.2 Reading Cache Blocks with Leases

In the Tardis protocol, the manager leases cache blocks to clients by sending data

and the timestamps indicating when the data are valid. The difference between wts

and rts is the “length” of the lease, and it roughly corresponds to the number of

intervening memory operations before the cache block must be renewed, discussed

in Section 2.1.4. At the last-level cache, the wts of a cache block represents the

timestamp of the most recent store. The rts of a cache block represents the last

physiological time for which the data currently stored in the cache block are valid.

To request a read-only copy of the cache block, a client sends its pts to the manager.

The manager advances the rts its cache block as prescribed in Equation (2-1).

rts max

8
>>><

>>>:

wts + lease

rts

pts + lease

(2-1)

At minimum, we add the lease value to the block’s current wts (line 1). If the

cache block has been leased to another core, the manager will have already updated

rts; we ensure that rts never decreases (line 2). Finally, in cases where pts far exceeds

the other two values, we ensure that the lease will be valid for the core by including

pts in the lease computation (line 3). The write timestamp (wts) does not change in

computing the lease. Along with the cache block data, the last-level cache sends the

wts and updated rts to the sharer.

If the cache block’s wts exceeds pts, the client advances its pts to at least wts

to satisfy the Tardis invariant. Advancing pts causes the core to “travel through

time,” possibly changing the data it may read from other cache blocks. Figure 2-4

demonstrates a read performed by the client.

Suppose that a cache block is valid from timestamps [5, 9]. If a client’s pts is 0,

and it reads the cache block, it advances its pts to at least wts – in this case, 5 – to

observe data d. We exploit Tardis’s ability to “jump” forward in time to also write

cache blocks.

22

physiological time
0 1 2 3 4 5 6 7 8 9 10

d

pts
old

pts
new

read

Figure 2-4: Reading from a cache block. Because pts < wts, we advance pts to at
least wts to read the cache block’s data.

2.1.3 Writing Cache Blocks through Time Travel

Clients must request exclusive ownership of a cache block to modify its data. If

another client exclusively owns that cache block, the manager issues a writeback

request to that client before granting the original requester the exclusively-owned

cache block. In the directory protocol, the manager must also invalidate all read-only

copies of the cache block. In Tardis, invalidations of read-only copies of the cache

block are not necessary. To grant exclusive ownership of a cache block, the manager

sends its values of wts and rts for that cache block to the requester. Because rts

represents the last physiological time at which a client may read the current version

of that cache block, the earliest timestamp at which the data may change is rts + 1.

The client “jumps” to this physiological time to modify the data, thus lending the

protocol its name. Figure 2-5 demonstrates a write operation.

Equation 2-2 describes the update process for wts when a client writes to a cache

block:

wts max

8
<

:
rts + 1

pts
(2-2)

When a client writes to its exclusively-owned copy of a cache block, it modifies the

timestamps of its local copy with no need to notify the timestamp manager. When

writing to a cache block, the client must advance wts to at least rts + 1 (line 1).

However, wts must also be at least the value of pts (line 2). To preserve the Tardis

23

physiological time
0 1 2 3 4 5 6 7 8 9 10

d d0

pts
old

pts
new

write

Figure 2-5: Writing a cache block. We advance pts past the rts of the cache block
containing d to write d0.

invariant, we also advance pts and rts to the updated wts.

Suppose a client has permissions to write to a cache block that is currently valid

from timestamps [5, 9], and its pts is 5. When it performs a write, the client advances

the timestamps of its local copy of the cache block to at least rts + 1, which is 10,

and also advances its pts to that point as well. At timestamp 10, it writes new data

to the cache block, d0, overwriting the cache block originally storing d.

This makes it possible for two cores to cache the same region of memory but

have different data in the cache blocks. However, these cache blocks will have disjoint

timestamp intervals. To make space for another cache block, clients may have to evict

cache blocks. For read-only blocks, clients in the Tardis protocol may simply clear

them to evict them. In a conventional directory-based protocol, the client would have

to notify the manager of the cache eviction for bookkeeping. If they evict exclusively-

owned cache blocks, clients must return the (possibly) modified data to the last-level

cache.

2.1.4 Renewals

Clients advance their timestamp counters whenever they modify cache blocks. A

cache block expires at a client when the client’s pts exceeds the rts of that cache

block. The cache block’s data may have changed beginning at timestamp rts + 1,

so the client must learn whether the cache block has changed by sending a renewal

request to the manager. The manager compares the wts of the request to the wts

24

of the cache block stored at the manager to discern whether the cache block has

changed. If they do not differ, the renewal succeeds, and the manager advances the

rts of the cache block at the manager to contain at least the client’s pts, also sent

with the renewal message. The manager completes the renewal process by informing

the client of the cache block’s rts, and no cache block data transfer is needed. If the

data have changed at the manager, the manager sends the client the modified data

alongside the updated timestamps as if it were an ordinary cache block read request.

Figure 2-6 demonstrates the renewal process.

physiological time
4 5 6 7 8 9 10 11 12 13 14

d

rts
old

pts
rts

new

renew

Figure 2-6: Renewing a cache block. Because pts > rts
old

, we must renew the cache
block to make sure it has not changed by the time we read it at timestamp pts.

In this case, the cache block is valid from timestamps 5 to 9, but pts is 13. The

client sends a renewal request to the manager with the cache block’s wts and the

client’s pts. If wts = 5 at the manager, the data has not changed; the manager

extends rts to at least pts, and sends the new rts – in this case, 13 – to the client.

If the data have changed, it sends the data and a new set of timestamps. Tables 2-2

and 2-3 summarize the key timestamp update rules for Tardis-SC. Table 2-4 details

the messages used in the Tardis protocol.

2.1.5 Per-Program Timestamps

Programs that do not interact through shared memory should maintain disparate

sets of timestamps to prevent memory operations in one program from prematurely

expiring cache blocks in other programs. However, this tasks the operating system

with saving and restoring timestamp state during a context switch. However, simpler

25

Core event Cache Block State Result Actions

L1 load Invalid Load miss Send share request to L2

Shared; pts > rts Load miss Send renew request to L2

Shared; pts rts Load hit pts max (pts, wts)

Exclusive Load hit pts max (pts, wts)
rts max (pts, wts, rts)

L1 store Shared Store miss Send upgrade request to L2

Exclusive Store hit wts, rts, pts max (rts + 1, pts)

Eviction Shared Silently drop cache block
State Invalid

Table 2-2: Timestamp update rules for the client in the sequentially consistent version
of the Tardis cache coherence protocol. Only the key rules are listed; the reader is
referred to [6] for the full table.

Network event State Actions

Any request Exclusive Send owner writeback request

share request Shared rts max (wts + lease, pts + lease, rts)
Send client share response

renew request Shared rts max (wts + lease, pts + lease, rts)
If wts

request

= wts, send client renew response
else send share response

modify request Shared Owner requestor
State Exclusive
Send requestor modify response

Table 2-3: Timestamp update rules for the manager in the sequentially consistent
version of the Tardis cache coherence protocol. Only the key rules are listed; the
reader is referred to [6] for the full table.

Message Purpose Timestamps

share Read a cache block pts
modify Read or write a cache block
renew Extend a lease of a currently shared cache block pts, wts
upgrade Request permission to write a cache block wts

writeback Cede write permission; maybe write back data wts, rts

Table 2-4: Descriptions of basic messages in the Tardis cache coherence protocol.
Clients send share, modify, renew, and upgrade requests, while they send
writeback responses.

26

systems running only a single program will not incur performance penalties, as there

is no context switching.

2.1.6 Main Memory, Incoherent Memory, and I/O

At system reset, no cache blocks are valid. Accesses to main memory bring cache

blocks to the last-level cache, but Tardis does not propagate timestamps to main

memory. In [6], the timestamp mts tracks accesses to main memory. For congruence

with our existing timestamps, we split mts into wts
memory

and rts
memory

, which re-

spectively represent the highest wts and rts of any cache block written back to main

memory. When a cache block is loaded from main memory, it assumes the time-

stamps wts
memory

and rts
memory

. Although it applies to all cache blocks brought in

from main memory, this conservative measure preserves coherence with a minimum

of additional hardware. Figure 2-7 demonstrates the effects of reading and writing

from main memory.

physiological time
4 5 6 7 8 9 10 11 12 13 14

A

B B0

wts
memory

rts
memory

Figure 2-7: Interacting with main memory. When cache block A is written to main
memory, it moves wts

memory

and rts
memory

. Any blocks read from main memory take
timestamps wts

memory

and rts
memory

, even if their original wts and rts are smaller.

If the manager evicts cache block A to main memory, it adjusts wts
memory

and

rts
memory

. If the manager then evicts cache block B to main memory, it does not adjust

wts
memory

or rts
memory

because B’s timestamps are smaller. However, if cache block

B is brought back into the cache, denoted in the figure as B0, it takes on timestamps

[wts
memory

, rts
memory

].

Timestamps that enforce a lower-bound on cache blocks’ timestamps may be anal-

ogously applied to system input/output (I/O) operations, which, from the perspective

27

of the last-level cache, behave like accesses to main memory. Timestamps may be

more generally applied to govern the interactions with data that comes from off-chip

(“incoherent” memory).

2.2 Release Consistency and RISC-V

Sequentially consistent systems impose major limitations on program optimizations

that reorder memory operations [13]. In fact, modern instruction set architectures

do not implement full sequential consistency [14]. However, Tardis-SC inherits the

limitations of sequentially-consistent computing. To demonstrate such a limitation,

consider a processor connected to a decoupled non-blocking L1 data cache executing

the instructions in Figure 2-8.

1 ld x1, 0x0(x2) ; cache miss
2 ld x3, 0x0(x4) ; cache hit

Figure 2-8: RISC-V assembly demonstrating a possible hit-under-miss situation, with
registers x2 and x4 addressing separate cache blocks.

In Figure 2-8, the processor loads to x1 from the address specified by x2 and then

to x3 from the address specified by x4. Suppose that the first instruction triggers

a cache miss while x3 is a cache hit. Sequential consistency requires operations to

complete in program order [12]. However, if the two memory locations are not causally

associated, we unnecessarily wait for x1. An ordinary non-blocking data cache would

be able to supply the value of x3 to the processor for further computation.

In the Tardis protocol, if the block containing the data for x3 contains timestamps

wts
2

and rts
2

that happen to be greater than pts, the processor timestamp must be

advanced to a value within the range [wts
2

, rts
2

]. Even worse, reading x1 may cause

the premature expiration of the cache block containing the data to be stored in x3,

as shown in Figure 2-9.

If the cache block addressed by x2 returns with a timestamp range [wts
1

, rts
1

]

less than the now-updated pts, then the block must be renewed. In a relaxed consis-

tency model, without an explicit fence instruction, renewals are not necessary – the

28

physiological time
0 1 2 3 4 5 6 7 8 9 10

x3

x1

pts
old

pts
new

Figure 2-9: Timeline diagram demonstrating the limitations of Tardis with sequential
consistency. By reading x1, the client expires the cache block storing x3.

processor can read the value x3 without waiting for x1. These optimizations make a

strong case for modifying Tardis to support release consistency.

In this thesis, we implement the Tardis cache coherence protocol on the Berkeley

Rocket Chip [15] design, which implements RISC-V, a free, open-source ISA from the

University of California, Berkeley [16]. Although no particular design choice compels

the use of the RISC-V ISA or the release consistency memory model, the existing

cycle-level simulator infrastructure for RISC-V is especially attractive for an elegant

implementation of Tardis. Although our discussion focuses on release consistency

as implemented in RISC-V, these techniques may of course be extended to other

architectures.

A relaxed consistency memory model such as release consistency gives architec-

tures the ability to aggressively reorder operations and trusts the programmers to

insert fences as needed to preserve all true memory dependencies. In the following

sections, we build Tardis-RC, a version of Tardis that implements the release consis-

tency memory model.

2.2.1 Fences

A memory fence instruction preserves the ordering of memory operations as they

appear in the program and how they actually apply to memory. Fences force all

memory operations leading up to the fence (in the program) to be observable in

29

memory before proceeding to any memory operation in the program after the fence.

The RISC-V ISA provides a fine-grained fence instruction that specifies which

types of memory operations the fence affects. Any memory operation in the suc-

cessor set (in the program) may not be observed until all memory operations in the

predecessor set (in the program) have been observed. Bits in the instruction encoding

specify the members of the predecessor and successor sets, allowing arbitrary combi-

nations of memory fences between reads, writes, inputs, and outputs. For instance,

the fence instruction fence w,r prevents any read operation (r) from occurring until

all writes (w) before the fence have been observed.

Memory fences in Tardis also have an additional stipulation: that memory op-

erations occurring at physiological timestamps after the fence must occur after the

most recent (in physiological time) memory operation. We can derive the physiolog-

ical time requirements for the fence w,r instruction by examining the predecessor

and successor sets: if we must prevent reads from happening before writes, we must

require that read operations’ timestamps be lower-bounded by any previous write

operations’ timestamps.

physiological time
4 5 6 7 8 9 10 11 12 13 14 15

d d0

wts
old

wts
new

wts
max

rts
min

Figure 2-10: Using a write-read fence to prevent reads from happening before writes.

Figure 2-10 demonstrates the effects of a write-read fence. Suppose a client per-

forms a write-read fence after overwriting d with d0. This fence means that any read

operation occurring after the fence must occur after any write operation before the

fence. Because the most recent write occurred at wts
new

, at timestamp 10, no read

operation (that is, no rts) should fall below that timestamp. Therefore, we establish

30

a minimum read timestamp rts
min

that sets the lowest bound for a read at this client.

After performing the fence, a client may read d0, but only at timestamps greater than

10. In this thesis, we only consider read/write fences, although we can extend our

results to incorporate input/output memory fences.

2.2.2 Release and Acquire Instructions

Atomic instructions, described in greater detail in Chapter 3, modify memory with the

guarantee that no other core interposes on theses accesses – “indivisible” instructions.

To support release consistency, the RISC-V ISA allows atomic instructions to encode

that it represents an acquire or a release access. No memory operation after an acquire

operation (in program order) can occur before the acquire operation (in memory

order). Similarly, no memory operation before a release operation (in program order)

can occur after the release operation (in memory order).

2.3 Release Consistency Support for Tardis

To fully relax memory operation ordering while supporting memory fences, we in-

troduce additional timestamps. For arbitrary combinations of read/write memory

fences, we need four new timestamps, which express minimum and maximum val-

ues for rts and wts, which we will term wts
min

, rts
min

, wts
max

, and rts
max

. The

timestamps wts
min

and rts
min

express the earliest possible time at which memory

operations can occur with respect to previous fences or acquire/release operations.

The timestamps wts
max

and rts
max

express the earliest possible time at which the

client may complete all of its memory operations. Unlike the minimum timestamps,

the maximum timestamps do not enforce bounds; they merely track what values the

wts
min

and rts
min

should be set to upon the next fence instruction. It is important

to remark that the maximum timestamps required to observe all writes and reads are

not necessarily set by the wts and rts of a particular cache block. If the operation

may be observed at a timestamp less than wts
max

or rts
max

, then these timestamps

do not change.

31

To support acquire and release atomic operations, we introduce a fifth timestamp,

ts
rel

, which tracks the timestamp at which a release operation occurred. The processor

must guarantee that a release operation occurs after all preceding memory operations

by ensuring store buffers have drained and all loads have been serviced. We also

define an acquire timestamp, ts
acq

, which expresses the time of the acquire operation

following the most recent release operation. However, the acquire timestamp merely

takes on the value of ts
rel

. Thus, we can eliminate ts
acq

by requiring that we check ts
rel

whenever we must check wts
min

or rts
min

. We summarize the new rules for updating

timestamps in Table 2-5.

Operation Example Instruction Timestamp Update Rule

Read-read fence fence r,r rts
min

 rts
max

Write-write fence fence w,w wts
min

 wts
max

Write-read fence fence w,r rts
min

 wts
max

Read-write fence fence r,w wts
min

 rts
max

Acquire lr.d.aq Do nothing
Release sc.d.rl ts

rel

 max(wts
max

, rts
max

)

Load ld rts
max

 max(rts
max

, ts
load

)

Store sd wts
max

 max(wts
max

, ts
store

)

Table 2-5: Rules for updating the timestamps needed to support relaxed consistency
on RISC-V. Timestamps ts

load

and ts
store

represent the earliest physiological times at
which a load or store may occur.

We no longer explicitly track the client’s place in physiological time with pts. In-

stead, we use a range of timestamps that bounds when memory operations may occur.

Similarly, a load may happen as long as some part of the cache block’s timestamp

interval extends past ts
min

.

2.3.1 Compact Timestamp Configurations

Design constraints may limit timestamp storage, or the scheme we describe may be

too fine-grained for the architecture and thus underutilized. To reduce the number

of timestamps on the system, while preserving correctness, we must tighten con-

straints on when memory operations can occur. However, reducing the number of

32

timestamps may not impact performance if the architecture implementation, such as

Rocket’s, does not support the full breadth of memory operation orderings. We can

merge wts
min

and rts
min

to create a timestamp ts
min

that contains the lowest possible

timestamp at which any memory operation can occur. We can analogously create

ts
max

by merging wts
max

and rts
max

.

Name Purpose

ts
min

The earliest physiological time a client may read a
cache block.

ts
max

The earliest physiological time that allows a client
to perform all memory operations thus far per-
formed.

ts
rel

The value of ts
max

at the most recent release oper-
ation.

Table 2-6: Timestamps for Tardis-RC, a release-consistent version of Tardis, as im-
plemented in this thesis.

physiological time
1 2 3 4 5 6 7 8 9 10

A A0

B

C C0

ts
rel

ts
min

ts
max

ts
max, after writing C

0

Figure 2-11: Timeline diagram representing timestamps used in Tardis-RC. A release
operation sets ts

rel

, and reads and writes may change ts
max

. Reads are valid only
after ts

min

.

Figure 2-11 demonstrates the timestamps used in Tardis-RC. The timestamp ts
rel

would be set to 2 if a release operation writes A0. No cache blocks need renewals as

long as their validity exists at some point after ts
min

. Cache block B may be read

at timestamps 5 through 7, but not at 4; cache block A must be renewed if the core

33

loses exclusive ownership after writing A0. The timestamp ts
min

may only be moved

by a fence instruction – in the absence of fence instructions, clients may read cache

blocks B and C in any order. If a client writes to cache block C, it would be written

at timestamp 10; ts
max

would be set to 10 to express the highest timestamp of any

operation performed by the client.

To conserve even more space, we can combine ts
min

and ts
rel

into just one time-

stamp, ts
min/rel

. Such a timestamp would be adjusted on every release operation and

fence.

2.3.2 Cache Transactions

Tables 2-7 and 2-8 specify the timestamp update rules for the relaxed consistency

version of Tardis for the client and manager, respectively.

34

Core event Cache Block State Result Actions

L1 load Invalid Load miss Send share request to L2

Shared and ts
min

> rts Load miss Send renew request to L2

Shared and ts
min

 rts Load hit ts
max

 max (ts
min

, rts)

Exclusive (clean or dirty) Load hit ts
max

 max (ts
min

, rts)

L1 store Invalid Store miss Send modify request to L2

Shared Store miss Send upgrade request to L2

Exclusive (clean or dirty) Store hit State Exclusive (dirty)
wts rts + 1

ts
max

 max (ts
min

, rts + 1)

Memory fence ts
min

 ts
max

Eviction Shared Silently drop cache block
State Invalid

Exclusive (clean or dirty) Send writeback response to L2
State Invalid

writeback request Invalid or Shared Ignore

writeback request Exclusive rts wts + lease
Send writeback response to L2
State Shared

Other L2 responses Set cache block data and state
[wts, rts]

data

 [wts, rts]
response

Table 2-7: Actions performed by the client (the core and L1 cache). The possible protocol states mirror those in the standard
MESI directory-based protocol, and the core maintains three timestamps: ts

min

, ts
max

, and ts
rel

. Without subscripts, wts and
rts refer to the cache block stored at the client.

35

Network event Cache Block State Actions

Any request Invalid Load from main memory
wts wts

mem

rts max (wts + lease, ts
request

+ lease, rts
mem

)

Exclusive Send owner writeback request

share request Shared State Shared
rts max (wts + lease, ts

request

+ lease, rts)
Send client share response

renew request Shared rts max (wts + lease, ts
request

+ lease, rts)
If wts

request

= wts, send core renew response
else send share response

modify request Shared Owner requestor
State Exclusive
Send requestor modify response

writeback response Write back data
[wts, rts]

data

 [wts, rts]
response

Eviction Shared wts
mem

 max (wts
mem

, wts)
rts

mem

 max (rts
mem

, rts)
Store to main memory

Table 2-8: Actions performed by the manager (the last-level cache) in the Tardis cache coherence protocol, in response to actions
performed by the core in Table 2-7. The last-level cache manages timestamps wts

mem

and rts
mem

, which are external to any
cache block. Without subscripts, wts and rts refer to the cache block stored at the manager. Unlike the client, the manager
has three cache block states: Invalid, Shared, and Exclusive.

36

In the event of a miss in the L1 data cache, the processor will need to request

the missing cache block (if invalid) or renew it (if shared with an expired lease). No

memory load can be observed at a time earlier than ts
rel

or rts
min

, so the timestamp

sent to the timestamp manager should be max(ts
rel

, rts
min

) to ensure that the block

can be read once it has been granted to the processor. Although a store may pos-

sibly return a new set of timestamps, the client may attempt an upgrade request to

reduce network traffic, in which case it should send wts. Table 2-9 summarizes the

timestamps sent with cache misses.

Operation Action

Load miss rts
message

 max(ts
rel

, rts
min

)

Store miss wts
message

 wts
data

Table 2-9: Guidelines for timestamps sent along with messages to the timestamp
manager in the event of a cache miss.

2.3.3 Leases and Renewals in Tardis-RC

In Tardis-SC, the duration of the lease must balance the freshness of data and the

number of renewals. Relaxed memory semantics explicitly permit cores to read stale

values of the data, so it is not necessary to send a renewal request until absolutely

necessitated by the rules in Table 2-7. Tardis-RC reduces the importance of fine-

tuning the length of the lease, because renewals are only necessary when the core

performs a release operation or memory fence.

2.4 Stale Reads

Tardis’s timestamps allow cores to remain consistent even if they cache stale data,

but programmers occasionally require that a core eventually reads the latest value of

a cache block. “Spinning” on a variable in memory, by repeatedly reading the same

address in memory until its value changes, requires that the latest value eventually

reaches the core. Conventional directory-based cache coherence protocols only permit

37

1 static int x;
2
3 void produce(int y)
4 {
5 x = y;
6 }
7
8 int consume()
9 {

10 return x;
11 }

Figure 2-12: Example producer-consumer implementation in C.

readers of a cache block to observe the latest value. Before any core can update this

value, the coherence manager invalidates all read-only copies of the cache block to

avoid reading stale data. Unfortunately, a naïve implementation of Tardis may never

return the latest value if nothing forces a client to contact the manager for the updated

value. In this section, we explore stale reads and how to mitigate its problems.

Consider the producer-consumer example in Figure 2-12, and suppose that the

producer code and consumer code run on separate cores. One core running the pro-

ducer code writes integer y into a global variable x, and a separate core reads x using

the consumer code. Programmers expect that all writes occurring to x will be visible

to the consumer. In the directory protocol, this is enforced by cache invalidation;

each time the producer writes to x, the coherence manager invalidates cores caching

x before allowing modifications to the cache block.

In a naïve implementation of the Tardis protocol, no such invalidations enforce

coherence for loading stale values. Thus, a consumer core already caching a read-only

copy of x may never observe that the producer has written it, even if the producer

has written back the data to the main memory.4 If the consumer code spins on

reading x without ever renewing the cache block, the consumer will never complete.

To force cores in the Tardis protocol to read the latest value, computer architects

must implement at least one of the following techniques below:

Auto-incrementing timestamps Cores periodically increment the minimum time-
4
Issuing load requests against an invalid cache block will trigger a writeback to obtain a modified

value.

38

stamp at which a core may observe data, ts
min

. Eventually, ts
min

exceeds the

rts of the block and forces a renewal which produces the latest value. This is

the method presented in [6].

New instructions A new instruction to force the processor to load the latest value,

issuing a writeback to a core exclusively caching the cache block if necessary.

Take exclusive ownership A core obtaining the cache block in the exclusive state

will always read the latest data.

Synchronization Using the above methods, a core can signal through a separate

cache block that that the data has changed. Using a memory fence, the core

can observe the updated data.

Of the aforementioned techniques, automatically incrementing timestamps is one

of the simplest backwards-compatible solutions. This technique does not require

adding instructions to the ISA or program binary modifications, and will be essential

for legacy code. The time between increments of ts
min

requires careful tuning. Too

frequent increments will prematurely expire cache blocks, but too infrequent incre-

ments will cause long delays for programs that spin. As a result, this technique is

particularly poorly suited for spin locks, which are normally regarded as the simplest

solution for extremely short locking periods. Aggressively optimized architectures

implementing Tardis may increment ts
min

when spinning on memory is detected.

It may be attractive to implement a new instruction that forces the processor

to observe the latest value of the cache block. Such an instruction, however, would

require the core to send a message to the last-level cache. Worse yet, a core spinning on

a cache block, waiting for another core to update it, could flood the on-chip network.

Furthermore, this requires modifications to the instruction set and the creation of

a new network message, adding complexity to the hardware-software interface. We

conclude that this is not an effective way to obtain the latest data in a cache block.

Finally, cores can obtain a fresh copy of the cache block by letting another core

signal to it that the cache block has changed; that is, through synchronization. The

39

two cores maintain separate cache blocks. The “producer” uses one of the previously

mentioned techniques (auto-incrementing timestamps, executing new instructions, or

seizing exclusive ownership) to signal that data in the other cache block have changed.

The “consumer” core performs a fence to observe the latest value. (The producer also

performs a fence to ensure the data write completes before signalling the consumer.)

0 1 2 3 4 5 6 7 8 9 10

d d0

f f 0

fence
producer

Producer

Consumer

physiological time
0 1 2 3 4 5 6 7 8 9 10

f f 0

d0

fence
consumer

Figure 2-13: Timeline diagram demonstrating the use of synchronization to commu-
nicate updated data through an external cache block. The consumer uses load-latest
instructions to maintain exclusive ownership of f , the flag. Once the producer writes
f 0, the consumer performs a fence to make sure that the read of d0, the new data,
occurs after the read of f .

2.5 Techniques for Writing Tardis Programs

Programs written for systems that implement Tardis differ from conventional pro-

grams. Because Tardis may return the stale value of a cache block, programmers

wishing to read the latest value must obtain the cache block in the exclusive state.

On Rocket, the load-reserved instruction happens to load the cache block in the ex-

clusive state, allowing us a way to read the latest data. We discuss the load-reserved

instruction in greater depth in Chapter 3. Programs must avoid spinning, as they

40

may never make forward progress in the absence of auto-incrementing timestamps.

Leveraging the exclusive state to implement synchronization sidesteps the problem of

stale reads, as we will demonstrate in Chapter 4.

2.6 Previous Use of Timestamps for Coherence

Timestamps, including logical timestamps, are not new to coherent distributed shared

systems. Lamport discussed logical time in what are now called Lamport clocks [11].

Vector clocks track shared data by assigning timestamps to each processor. The

Ficus [17] and Bayou [18] systems tracked file version history with vector clocks and

permitted disconnected operation. Treadmarks [19] also uses vector timestamps to

manage distributed shared memory at the page level with a relaxed consistency model.

However, each vector timestamp contains as many timestamps as there are processors

in the system, so these schemes scale poorly to hundreds or thousands of cores.

Google’s Spanner system [20] distributes data across its datacenters using globally

synchronized timestamps. Tardis does not require globally synchronized timestamps,

and Spanner’s methods for ensuring consistency, including the use of atomic clocks,

are excessive for the scale at which Tardis operates.

Summary

In this chapter, we introduced the notion of physiological time and a sequentially

consistent version of Tardis. With additional timestamps, we augmented Tardis to

support a release consistency memory model as used in RISC-V, the ISA used by our

simulator infrastructure. We discussed techniques to obtain the latest data in a cache

block and how to write effective programs for Tardis. In the next chapter, we extend

physiological time to atomic instructions.

41

42

Chapter 3

Atomic Instructions

Atomic instructions allow processor to modify memory without any other processor

modifying the same part of memory. The name for these instructions arises from the

notion that no other operation may “divide” these instructions. They are necessary in

multiprocessor systems because ordinary loads and stores are not sufficient to perform

synchronization [21].

Many types of atomic instructions exist, but some of the most well-known today

include compare-and-swap (CAS), atomic memory operations (AMOs), and the load-

reserved/store-conditional (LR/SC) pair. These instructions have usability trade-offs

that make them suitable for some situations but not others. In this chapter, we take

advantage of the Tardis invariant to implement new forms of commonly-used atomic

instructions that eliminate some of the drawbacks affecting these instructions.

3.1 Compare-and-Swap

The compare-and-swap instruction has existed in the IBM System/370 [22] and in the

x86 architecture since the Intel 486 [23]. The compare-and-swap (CAS) instruction

compares a value in memory to one of the instruction’s operands; if so, the core

switches the value in memory with another operand [22]. It returns the old value

to the core. Invocations of compare-and-swap that fail the comparison do not affect

memory.

43

1 int compare_and_swap(int *m; int old, int val)
2 {
3 if (*m == old) {
4 *m = val;
5 return old;
6 } else {
7 return val;
8 }
9 }

Figure 3-1: Hypothetical source code for a compare-and-swap instruction that swaps
val with the memory addressed by m if the old value matches old. The whole sub-
routine completes atomically.

The compare-and-swap instruction suffers from the ABA problem, in which clients

are unable to detect changes to a memory location, even if the value has changed in

the interim, because it has changed back to its original value [21]. A solution like

double-word compare-and-swap increments a counter when it changes the data so

that a second client reading from the memory will at least detect the change in the

counter. Because Tardis associates data validity with the write timestamp, we can

emulate the behavior of double-word compare-and-swap by reading the wts of the

cache block to assure that the data has not changed. In fact, it is sufficient to only

check wts! If any intervening writes have occurred, wts will change, due to the Tardis

invariant. Figure 3-2 illustrates the utility of the Tardis invariant. Suppose a cache

block initially starts with data A valid beginning wts
A

. If B replaces A in a cache

block, the write timestamp changes to wts
B

. If A later replaces B, it also changes

write timestamp, but to a value distinct from the first value of A, wts
A

0 .

Using Tardis’s timestamps allows us to differentiate cache block data and amelio-

rate the ABA problem affecting the compare-and-swap instruction. We employ the

same technique to solve the livelock problem in the load-reserved/store-conditional

instruction pair.

44

physiological time
1 2 3 4 5 6 7 8 9 10

A B A

wts
A

write B

wts
B

write A

wts
A

0

Figure 3-2: Timeline diagram demonstrating avoidance of the ABA problem on
Tardis. Even though the data in intervals [3, 4] and [7, 8] are the same, a client
can tell the cache block has changed because wts

A

has changed to wts
A

0 .

3.2 Load-Reserved and Store-Conditional

The S-1 AAP multiprocessor introduced the load-reserved/store-conditional instruc-

tion pair [24]. The load-reserved/store-conditional (LR/SC) instruction pair allows

critical, short computations to be made atomic by ensuring that no other processor

changes the cache block between the load-reserved and store-conditional operations.

If the reserved cache block is invalidated or otherwise modified, the store-conditional

fails and indicates to the processor that it has failed, thus allowing the processor to

try again. Figure 3-3 depicts a RISC-V assembly-language example of an instruction

sequence using the LR/SC instruction pair.

1 1: lr.d x1, 0(x2) ; set reservation
2 addi x1, x1, 1 ; critical section instruction(s)
3 sc.d x3, x1, 0(x2) ; write 0 into x3 if store succeeds, 1 otherwise
4 bnez x3, 1b ; retry sequence if sc.d fails

Figure 3-3: RISC-V assembly demonstrating a typical load-reserved/store-conditional
sequence that implements fetch-and-add.

Two cores executing the same LR/SC instruction sequence can create livelock by

executing the load-reserved instruction at nearly the same (physical) time. Because

this instruction strongly predicts a store-conditional instruction will follow, the man-

ager grants the first core exclusive ownership. However, the second request forces

the first core to write back its exclusively owned cache block in order to grant the

second core exclusive ownership. The first core detects the cache block has changed,

45

and its store-conditional instruction fails. Livelock results from exclusive ownership

ping-ponging between the two processors, never allowing one processor to successfully

perform a store-conditional.

One solution to livelock requires delaying exclusive ownership requests [25]. The

RISC-V ISA, for instance, requires that implementations guarantee the success of

LR/SC sequences no longer than 16 instructions [16]. The L1 data cache on Rocket

enforces this stipulation by preventing invalidations from reaching the data cache,

even if they do not target the block addressed by the LR/SC pair. A store-conditional

following a load-reserved in the Rocket core only fails if:

• the processor takes an interrupt or handles an exception,

• the address of the store-conditional does not match the address from the previ-

ous load-reserved, or

• more than 32 cycles have elapsed since the data cache processed the load-

reserved instruction.

We observe that the last requirement is especially restrictive, because it prevents

programmers from making modifications to data requiring more than 32 cycles to

complete. As some instructions may stall, 32 cycles may not suffice to meet the ISA-

mandated sixteen-instruction guarantee. This could result in programmers resorting

to mutual exclusion locks to guard otherwise atomically modifiable memory, causing

an increase in complexity and a reduction in performance.

Tardis can implement LR/SC functionality in a livelock-free manner by permitting

cache blocks to exist in the shared state despite the presence of an exclusive owner.

Typical implementations of the LR/SC pair use a “link register” that stores the ad-

dress targeted by the load-reserved instruction to ensure that the store-conditional

instruction targets the same address. In Figure 3-3, such a register would store the

value of x2. In addition to the link register, Tardis maintains a register which we call

wts
lr

to store wts
data

, the wts of the addressed cache block. When the cache performs

the store-conditional operation, the L1 data cache gains exclusive ownership of the

46

block if it does not already have it. The data cache then checks wts
lr

against the

cache block’s current wts
data

. If wts
lr

6= wts
data

, the store-conditional fails because

the block has been written since it was load-reserved at this core. Otherwise, the

timestamps match and the store-conditional succeeds, as no other core has written

the block.

If an exclusive request to the manager causes this core to lose exclusive owner-

ship of the cache block, the core retains wts
lr

and the link register of the reservation.

As long as wts
data

does not change when we regain exclusive ownership of the orig-

inal cache block, the store-conditional instruction can succeed. Note that the store-

conditional instruction will still fail if the processor receives an interrupt or takes an

exception. It will also fail if the store-conditional targets a different address from the

one targeted by the load-reserved instruction. Most importantly, we no longer need

the 32-cycle counter or a sixteen-instruction guarantee provided by the ISA. Now able

to use nearly as many cycles as we need, we can design LR/SC sequences that modify

the data in considerably more meaningful ways. Of course, keeping instruction se-

quences short will reduce the number of overlapping LR/SC sequences and keep the

store-conditional failure rate low.

physiological time
1 2 3 4 5 6 7 8 9 10

d

wts
lr, B

Core B

1 2 3 4 5 6 7 8 9 10

d

wts
lr, A

wtsd

d0

wtsd0

store conditional

Core A

Figure 3-4: Timeline diagram demonstrating livelock freedom on the LR/SC instruc-
tion pair. Even if Core A loses exclusive ownership of d, it retains wts

lr, A

. Upon
regaining exclusive ownership, it can complete the store-conditional by verifying that
it matches wts

d

.

47

Figure 3-4 shows an LR/SC instruction happening on a timeline diagram. Core

A successfully writes d0 because the wts of the cache block still matches the wts
lr, A

saved by the load-reserved instruction. This implies that the cache block data has not

changed. Upon gaining exclusive ownership, Core B will detect the altered wts, and

fail the store-conditional instruction. This scheme elegantly avoids livelock because a

cache block’s wts persists through invalidations and only changes when a core changes

the data at the cache block. Therefore, a write will eventually succeed at one of the

cores.

3.3 Atomic Memory Operations

The NYU Ultracomputer introduced atomic memory operations (AMOs), described

then as read-modify-write (RMW) instructions [26]. The Wisconsin Multicube ar-

chitecture implemented hardware fetch-and-Phi (fetch-and-�) operations [27]. These

instructions write to memory the result of an operation with a register as one of its

operands and the original value that memory location as the other. Phi (�) repre-

sents the operation – addition, bitwise and, maximum, and so on – to be performed

on the value in memory and a register operand. The cache returns the previous value

of the memory location to the core.

In a system that supports remote AMOs, the manager uses its own arithmetic logic

unit (ALU) to compute the result of an atomic memory operation. This approach

eliminates the need to transfer cache block data, although the manager should ensure

that no clients cache the block to reduce potential invalidations. Local atomic memory

operations will require the cache block to be present at the L1 cache, and can be

implemented by temporarily preventing cache invalidations.

When a remote AMO occurs on a system with a directory-based coherence proto-

col, it may have to invalidate current sharers. On a system that implements Tardis,

AMOs do not need to invalidate sharers, reducing invalidation traffic. The last-level

cache automatically updates wts and rts as if it were a client performing a store. An

L1 data cache that implements local AMOs takes advantage of a cache block in the

48

exclusive state, and does not differ from the baseline implementation of AMOs.

Summary

We gently altered three classes of atomic instructions to take advantage of physio-

logical time. In doing so, we mitigated the ABA problem for the compare-and-swap

instruction. With livelock freedom, we make the LR/SC instruction pair simpler to

implement and easier to use. It could become feasible to modify larger data struc-

tures without excessive spinning. We also used physiological time to reduce cache

block invalidations when performing remote AMOs. Fast, simple, and useful atomic

instructions form the basis for constructing high-performance synchronization primi-

tives, which we cover in the next chapter.

49

50

Chapter 4

Synchronization

Synchronization primitives ensure that concurrent programs work correctly by pre-

venting unwanted concurrent accesses or by separating phases of computation. Many

efforts have tried to improve the ability to scale synchronization on multicore machines

[27, 28]. Locks prevent concurrent accesses to the same data by forcing serialization.

Barriers allow separately running threads of execution to meet at a single point in

physical time before proceeding onto the next phase of the program. We investigate

the implementation of locks and barriers with the atomic instructions we built in

Chapter 3. In this chapter, we refer to units executing parts of the same concurrent

program as threads.

4.1 Locks

Mutual exclusion locks, or mutexes, prevent more than one thread from accessing a

critical section of code – a section of code only one thread may execute at a time.

Programmers want fast locks, so that threads contending for the lock do not take an

excessive amount of time to acquire the lock. They also expect locks to work fairly

– namely, if all threads that acquire the lock eventually release it, then all threads

should pass through the critical section.

Spin locks are amongst the simplest of locks. A core acquires the lock by setting a

lock bit, and unlocks it by clearing it. Figure 4-1 shows the source code for a spin lock

51

implemented with compare-and-swap. The variable locked contains 1 if it is locked

and 0 if it is unlocked. The compare-and-swap instruction can be used to atomically

acquire this lock by setting it to a non-zero value only if locked is not already 1.

A core that receives a 0 from the compare_and_swap subroutine is the first core to

swap in a 1, and may proceed into the critical section. To unlock the resource, the

core with the lock writes 0 to locked. This lock is the test-and-set lock, named for

the test-and-set (TAS) instruction, which compares and swaps only a single bit in

memory [21].

1 static int locked;
2
3 void acquire_lock()
4 {
5 while (compare_and_swap(&locked, 1) != 0);
6 }
7
8 void release_lock()
9 {

10 locked = 0;
11 }

Figure 4-1: Source code for a spin lock that uses compare-and-swap. The
compare_and_swap(m, v) subroutine returns the previous value at the pointer m

after swapping in v.

As locked resides in memory, other cores waiting to access the shared resource

spin on the lock value by performing compare_and_swap until it successfully acquires

the lock. This access pattern scales poorly, as multiple cores spin on the same cache

block, only to be invalidated. What often results a thundering herd problem, in

which a flood of processors attempt to acquire the lock simultaneously [29]. Some

locks, like the test-and-test-and-set lock, alleviate the thundering herd problem by

having cores spin on a local variable [21]. Despite their poor scaling, spin locks find

use in applications with short waiting periods.

Tardis does not always supply the latest value of a cache block on an ordinary

read, as discussed in Section 2.4. Furthermore, spin locks do not scale well [30].

Although no single lock algorithm performs well across all measures of speed, scaling,

and complexity [28], we choose to analyze the Mellor-Crummey-Scott (MCS) queue

52

lock because it reduces the number of cache invalidations to one per lock release

operation [31].

4.1.1 The Mellor-Crummey-Scott Queue Lock

The Mellor-Crummey-Scott (MCS) queue lock [30] forms a linked list of cores waiting

to access a locked resource. Each core maintains its own local lock and knows the

location of a global lock corresponding to that resource. The locks are queue nodes

(qnodes), data structures that store the current locked state and the pointer to the

next core waiting on the lock. Cores acquiring an already-locked lock append them-

selves to the tail of the linked list. The core with the lock releases the lock by writing

to a field that allows the next core in the linked list to proceed. Figure 4-3 shows C

code to acquire and release MCS locks. Because of its linked-list structure, and the

way that each core unlocks the next, the MCS lock is well-suited to implementation

on Tardis.

Figure 4-2 illustrates the basic operation of the MCS lock. Threads attempt

to acquire the lock by performing a fetch-and-set operation (or atomic swap) with

the global lock value, replacing it with a pointer to the thread’s my_lock struct. If

global_lock contained the null pointer, then the thread has successfully acquired

the lock (step 2). If the pointer was not null, then the lock has already been acquired

– the thread sets its own locked field to 1. Then, it sets the next field of the queue

node at the end of the last node in the queue to point to its my_lock struct (step 3).

A thread with the lock passes it to the next thread by following the next pointer to

the next thread’s my_lock struct and setting its locked field to 0 (step 4). (If it is

the last thread in the queue, it sets global_lock back to the null pointer.)

The Tardis implementation of the MCS lock requires modifications to load the

latest value of the mcs_lock struct members. In particular, the loops on lines 21 and

38 of Figure 4-3 must load the latest value of locked and next, respectively. We used

the load-reserved instruction to obtain exclusive ownership to read the latest value.

53

1. Initially unlocked

global_lock

2. First lock by A

global_lock

my_lock (A)

0
locked

3. Second lock by B

global_lock

my_lock (A)

0
next

my_lock (B)

1

4. A unlocks B

global_lock

my_lock (B)

0

Figure 4-2: Diagram depicting the linked-list nature of the MCS queue lock. If a
thread has taken global_lock, as A does in step 2, subsequent locking threads set
the locked field of their copy of my_lock to 1, and append themselves to the end,
changing global_lock to indicate where the next arriving thread should append its
queue node.

4.2 Barriers

Barriers allow threads to synchronize their position in physical time before continuing.

They also ensure that operations occurring before the barrier (in program order) have

completed. Programmers can use barriers to make sure that straggling threads can

catch up before moving onto the next phase of a computation. However, a barrier

in Tardis must also synchronize threads in physiological time. We accomplish this

with memory fences. Figure 4-4 demonstrates where threads must synchronize in

physiological time.

54

1 struct mcs_lock {
2 struct mcs_lock *next;
3 int locked;
4 };
5
6 void acquire_lock(struct mcs_lock **global_lock, struct mcs_lock *my_lock)
7 {
8 struct mcs_lock *predecessor;
9

10 memory_fence();
11
12 my_lock->next = NULL;
13
14 predecessor = fetch_and_set(global_lock, my_lock);
15
16 if (predecessor) {
17 my_lock->locked = 1;
18 predecessor->next = my_lock;
19
20 /* wait for predecessor to unlock me */
21 while (my_lock->locked);
22 }
23
24 memory_fence();
25 }
26
27 void release_lock(struct mcs_lock **global_lock, struct mcs_lock *my_lock)
28 {
29 memory_fence();
30
31 if (!my_lock->next) {
32 /* if nobody follows me, try to clear global_lock */
33 if (compare_and_swap(global_lock, my_lock, NULL))
34 return;
35
36 /* a slow thread has set its locked field but not
37 * yet updated my_lock->next, wait for it to be set */
38 while (!my_lock->next);
39 }
40
41 my_lock->next->locked = 0;
42
43 memory_fence();
44 }

Figure 4-3: Source code for an implementation of the Mellor-Crummey-Scott queue
lock.

55

physiological time
0 1 2 3 4 5 6 7 8 9 10

Core A

Core B

Core C

barrier

Figure 4-4: Timeline diagram demonstrating where threads must be after a barrier
in physiological time. Rectangles represent the collective intervals of all memory
operations performed by Cores A, B, and C. A barrier must allow Cores A and B to
observe Core C’s operations.

Barriers typically count how many threads have arrived. All threads but the last

thread begin spinning on a shared cache block value. The last thread to arrive at the

barrier writes to the shared cache block, invalidating all shared copies and allowing

the threads to leave the barrier.

Barriers that rely on the update of a shared variable assume that threads quickly

learn the most-recent updates to a cache block. The algorithm only relies on one

cache block, so it is very memory efficient – however, the arrival of the last thread

triggers invalidations of all the cache block shared by all the other threads. These

invalidations are immediately followed by another set of shared requests that produce

the modified value that allows the threads to proceed, creating yet another thundering

herd.

Figure 4-5 shows the source of a sense-reversing barrier with modifications made

for clarity. A sense-reversing barrier solves a potential problem in naïvely imple-

mented barriers by allowing threads to know whether they are in an “even” or “odd”

phase of computation [21]. Each thread reverses its sense (stored in threadsense).

Upon arrival, each thread atomically increments the counter, and all threads but the

last thread spin on the sense variable to change. The last thread resets count and

sets sense, waking up the other threads. Because the Tardis protocol allows sharers

to read stale values, such a scheme may cause livelock in the absence of mechanisms

56

1 void barrier(int ncores)
2 {
3 static int sense;
4 static int count;
5 static __thread int threadsense;
6
7 memory_fence();
8
9 /* reverse my sense */

10 threadsense = !threadsense;
11
12 memory_fence();
13
14 /* see if i am the last arrival to the barrier */
15 if (fetch_and_add(count, 1) == ncores - 1) {
16 count = 0;
17 sense = threadsense;
18 } else {
19 /* spin until last arrival changes sense */
20 while (sense != threadsense);
21 }
22
23 memory_fence();
24 }

Figure 4-5: Source code for a sense-reversing barrier.

to periodically renew blocks. A barrier that wakes up waiting threads by invalidating

exclusively-owned cache blocks appears in Figure 4-6.

In the barrier algorithm presented in Figure 4-6, all but the last arriving core

spin on separate cache blocks. Once the last core arrives at the barrier, it writes

to each cache block, triggering invalidations. In a directory-based protocol, spinning

using ordinary loads – that is, without the use of atomic operations – will detect

changes to the cache block. However, the Tardis implementation of the barrier uses

the load-reserved instruction to assert exclusive ownership to detect changes to the

cache block. In Figure 4-6, we use the load-reserved instruction to load the latest

value of threadsense on lines 23 and 36.

The barrier implementations from Figures 4-5 and 4-6 use only one core to notify

the rest – a linear barrier. Tree barriers, one of many barrier algorithms analyzed

by Arenstorf and Jordan in [32], use multiple cores to inform other threads that they

are permitted to leave the barrier. Although our barrier mechanism – invalidating

57

1 /* maximum number of cores possible on the system */
2 #define NCORES 16
3 #define BYTES_PER_CACHE_BLOCK 64
4 #define INTS_PER_CACHE_BLOCK (BYTES_PER_CACHE_BLOCK / sizeof(int))
5
6 int load_latest(int *m)
7 {
8 return load_reserved(m);
9 }

10
11 void barrier(int ncores)
12 {
13 /* maintain one cache block per core */
14 static int threadsense[NCORES][INTS_PER_CACHE_BLOCK];
15 static int count;
16
17 /* add to the counter and tell me when i arrived */
18 int me = fetch_and_add(count, 1);
19
20 memory_fence();
21
22 /* reverse my sense */
23 int phase = *threadsense[me];
24 int wanted = !phase;
25
26 memory_fence();
27
28 if (me == ncores - 1) {
29 /* last one resets count and wakes up other threads */
30 count = 0;
31 for (int i = 0; i < ncores; i++)
32 *threadsense[i] = wanted;
33
34 } else {
35 /* maintain exclusive ownership while spinning */
36 while (*threadsense[me] != wanted);
37 }
38
39 memory_fence();
40 }

Figure 4-6: Barrier exploiting the exclusive ownership state to notify other cores.

58

exclusively-owned blocks – is implemented in a linear fashion, tree barriers can be

implemented analogously.

Summary

Today’s synchronization primitives assume that multicore systems have directory-

based cache coherence, but the Tardis protocols opens new possibilities for synchro-

nization that operate independently of physical time. In particular, timestamps may

obviate previously employed busy-waiting techniques. In this chapter, we reviewed

two of many possible synchronization primitives and how to build them on a system

implementing Tardis. In the next chapter, we discuss the hardware changes necessary

to run these modified synchronization primitives.

59

60

Chapter 5

Implementation

We implemented a cycle-level simulator for the Tardis cache coherence protocol – the

first we know of – on the Rocket Chip generator [15]. The Rocket Chip generator

generates a configurable system with Rocket cores connected to outer-level caches

and system environment (the “uncore”). The Rocket core is a six-stage, in-order

scalar RISC-V processor that supports a supervisor implementation as well as 64-

and 32-bit datapath widths. A four-stage pipelined non-blocking L1 data cache, the

HellaCache, connects Rocket to the outer levels of the memory hierarchy. The outer

memory hierarchies contain any number of L2 banks, which collectively serve as the

last-level cache; these banks interface with DRAMSim2, a cycle-level simulator of

main memory [33]. Rocket Chip is written in Chisel [34], a hardware design language

embedded in Scala that generates C++ for cycle-level emulation or Verilog for FPGA

synthesis and physical design.

In this chapter, we discuss our rationale for our design choices and the modifica-

tions required to the processor, network-on-chip, and coherence protocols needed to

implement Tardis.

5.1 Guiding Principles

In the interest of simplicity and elegance, we chose not to expose timestamps to the

programmer, so no instructions like “read timestamp“ or “write timestamp” exist. As

61

a result, we add no new instructions to the instruction set. Furthermore, we retain

binary compatibility. For the purposes of our evaluation, these features significantly

simplify our task.

Recall that a set of timestamps {ts
min

, ts
max

, ts
rel

} should be kept per program to

prevent one program from prematurely expiring the cache blocks of other programs

by performing too many memory fence operations. Implementations that expose

timestamps to the programmer could rely on the operating system to modify the

timestamps of individual cores to limit interference by other programs. However, in-

troducing timestamps as additional microarchitectural state means that programmers

must save and restore to the stack in the event of a context switch. Restoring incor-

rect timestamps could result in a program observing the wrong values in memory –

something that would not occur in a conventional directory-based protocol. Because

we prohibit cores from directly changing timestamps through software, all threads run

with the same set of timestamps. Despite this limitation, our evaluation programs,

which run without operating system facilities, do not degrade in performance due to

this choice.

5.2 The RISC-V Rocket Microarchitecture

Implementing a client in the Tardis cache coherence protocol requires the addition

of three timestamp counters: ts
rel

, ts
min

, and ts
max

. In a single-cycle core, the time-

stamps are always correct. Pipelining a processor, nowadays absolutely essential for

performance and efficiency, complicates the implementation of the Tardis timestamps.

5.2.1 Pipelining Timestamps

Pipelining processors increases performance by reducing the clock period, but it in-

troduces additional complexity because of the need for data bypasses and interlock-

ing. The timestamps needed by Tardis are part of the processor’s microarchitectural

state; although they are not directly accessible from software, the timestamps must

be pipelined through the processor. An instruction earlier in the pipeline could oth-

62

erwise be affected by modifications to these timestamps by instructions ahead in the

pipeline. Fortunately, release memory semantics allow operations to proceed out-of-

order in the absence of memory fences or acquire/release instructions. This choice of

memory model considerably simplifies Tardis-RC’s implementation, as Tardis-SC on

a pipelined processor would require bypassing timestamps.

The Rocket microarchitecture stalls the decode stage if there is a fence instruction

and remains stalled until the memory stage has completed all requests. Because we

have stored timestamps at the decode stage, it is unnecessary to bypass timestamps.

However, should timestamps be propagated into the execution units (such as in an

out-of-order core or an aggressively pipelined in-order processor), updates to ts
min

would need to be bypassed to the memory unit to preserve the relaxed consistency

model.

A processor’s timestamp counters only change when instructions commit, which

parallels the semantics of all other instructions. This means that if a core takes an

interrupt or encounters an exception, the instructions affected do not make updates to

the timestamp. Conveniently, this requirement aligns with typical instruction commit

semantics.

5.2.2 Extending the Memory Hierarchy

Many of the changes to needed to implement Tardis occur in the HellaCache and

the outer levels of the memory hierarchy. We extended the metadata arrays in the

HellaCache and the L2 to support the storage of the wts and rts timestamps. We

extended the cache coherence protocol abstraction layer to define the Tardis protocol,

which amounts to defining the effects of messages on the manager and client. Rec-

ognizing the diminished importance of leases and renewals in Tardis-RC, we set the

lease to a fixed value of 10.

In the baseline implementation, a counter in the HellaCache tracks the number

of cycles that have elapsed since the most recent load-reserved instruction. A store-

conditional will fail if this counter exceeds 32 cycles. However, as we demonstrated

in Section 3.2, the counter is not necessary; we eliminate the counter in the Tardis

63

implementation.

5.3 Network-on-Chip

Clients and managers communicate through the network-on-chip (NOC). Careful de-

sign reduces latency and avoids network-level deadlock. In this section, we discuss

the NOC architecture as used in our implementation.

5.3.1 Manager/Client Abstraction

To facilitate the implementation of a variety of coherence protocols, Rocket Chip

implements TileLink [35], a “cache coherence substrate” based on the architecture

of Manager-Client Pairing (MCP) [36]. TileLink is an abstraction layer that sup-

ports hierarchical coherence protocol implementations. Clients and managers in this

protocol communicate with five logical networks, as listed in Table 5-1.

Network Sent By Tardis Messages

Acquire Client share, modify, renew, upgrade requests
Probe Manager writeback requests
Release Client writeback responses
Grant Manager share, modify, renew, upgrade responses
Finish Client (not explicitly used by Tardis)

Table 5-1: Networks in the TileLink coherence protocol abstraction and mapping to
the Tardis network messages listed in Table 2-4.

To prevent protocol-level deadlock, Tardis requires at least three logical channels:

requests from the client, responses from the client, and messages from the manager

[7]. (These are respectively called c2pRq, c2pRp, and p2c.) These three networks

map cleanly to the Acquire, Release, and Probe/Grant networks used in TileLink1.

The Finish network establishes message ordering. Tardis’s cache coherence logic

fits cleanly into the TileLink abstraction, suggesting that Tardis requires no dras-

tic changes to existing architectures. We augmented messages on the networks with
1
The Acquire and Release TileLink networks have no relation to the acquire and release instruc-

tions of Section 2.3.

64

Network Sent By Timestamps

Acquire Client Client’s pts
Probe Manager none
Release Client Cache block’s wts, rts
Grant Manager Cache block’s wts, rts
Finish Client none

Table 5-2: Timestamps required as part of a network message for an implementation
of Tardis in the TileLink protocol.

Tardis’s timestamps, as listed in Table 5-2. Other than these modifications, Tardis’s

cache coherence logic required no major changes to the TileLink architecture.

5.3.2 Network Topology

In the original Rocket Chip generator design, crossbars connect clients and managers.

Each last-level cache bank requires one manager port on the crossbar, while each core

requires two client ports. For low core counts, a crossbar is an acceptable network-

on-chip. However, with many more cores, scaling the crossbar while maintaining

low latency becomes untenable because only one manager-client pair may hold the

network at a time. We chose to implement a mesh network to allow multiple messages

to be in flight at a modest cost in complexity. We anticipate our future massively

multicore systems will also use meshes.

Timestamps as wide as 64 bits may balloon the size of a message by 128 bits.

The impact of timestamp size can be mitigated with compression as proposed in [6].

Timestamps may also be sent as separate packets in the same message to reduce

network link width in exchange for a greater number of packets per message.

We selected the xy algorithm, a deterministic routing algorithm known for its

simplicity and deadlock freedom, to route packets on the network. Currently, all

packets carry header information, including the source and destination of a message,

but wormhole flow control [37] can reduce the area needed by the network-on-chip by

minimizing redundant routing information.

65

Summary

In this chapter, we discussed the cycle-level emulator infrastructure and the minimal

set of changes needed to implement Tardis on the Rocket Chip generator. Table 5-3

summarizes the system configuration. In the next chapter, we evaluate the per-

formance of a system implementing Tardis to a baseline system with a number of

microbenchmarks.

Cores 1 – 16
Microarchitecture Six-stage, in-order

Cache block size 64 B
L1 cache size 16 KB
L1 cache parameters 4 ways, random replacement

L2 banks 1 – 16
Protocol states MESI
L2 bank size, each 2048 KB
L2 cache parameters 8 ways, random replacement

Main memory 1 GB, DRAMSim2

Table 5-3: System configurations of the Tardis implementation.

66

Chapter 6

Evaluation

In this chapter, we evaluate the performance of our implementation of Tardis-RC

against a baseline implementation of a directory-based protocol in cycle-level simu-

lation. We sweep from systems with one core to sixteen cores. Limitations in the

simulator infrastructure made scaling systems to 32 cores and beyond impractical.

6.1 Atomic Instructions

We developed microbenchmarks to selectively exercise and evaluate the performance

of the load-reserved/store-conditional (LR/SC) pair and atomic memory operations

(AMOs). In these microbenchmarks, each core attempts to increment a counter using

the aforementioned instructions. All microbenchmarks follow the pattern in Figure 6-

1.

Compare-and-Swap

We do not implement or evaluate the performance of compare-and-swap (CAS), be-

cause the RISC-V architecture would require (1) substantial modifications to the

memory system and (2) a three-ported register file to read a memory address, the

comparison value, and the replacement value. Locking the bus from other cores, as

the x86 architecture does [23], is not feasible with a system with hundreds or thou-

67

1 static int count;
2
3 void atomically_count()
4 {
5 int i;
6
7 for (i = 0; i < 1000; i++)
8 count = count + 1; /* atomically */
9

10 barrier();
11 }

Figure 6-1: Microbenchmark source code. All cores execute atomically_count() in
parallel.

sands of cores connected on a mesh. Finally, the LR/SC instruction pair can emulate

CAS and vice-versa [21].

Load-Reserved/Store-Conditional

We use the LR/SC instruction pair to atomically increment a counter and then per-

form a barrier. We sweep the number of cores on the system from one to sixteen, and

tabulate our results in Table 6-1.

Cores

1 2 4 8 16

Baseline 11.1 54.8 107.5 222.9 451.7
Tardis 11.1 53.8 150.4 223.0 462.9

Table 6-1: Average number of cycles required to increment a counter using load-
reserved/store-conditional instructions as a function of core count, with the cost of a
barrier amortized over 1,000 iterations.

In three of the five testing configurations, the results are largely the same. We

observe slightly worse performance in Tardis because it allows invalidations to arrive

at any time. Recall that the baseline implementation only invalidates cache blocks

after executing the store-conditional instruction or after 32 cycles, whichever comes

first.

We observe a 39.9% performance degradation in the four-core system, which re-

68

sults from a particularly low-performance combination of the arrival of a writeback

request and Rocket’s branch predictor. Recall that cores must branch back to retry

LR/SC sequence if the store-conditional fails. This pathological case illuminates a po-

tential drawback of re-enabling invalidations to reach the cache in an LR/SC sequence:

without access to wts, the branch predictor cannot reliably predict whether the store-

conditional will succeed. In the baseline model, the execution of the load-reserved

instruction practically guarantees the success of the following store-conditional in-

struction. In this case, the branch predictor will always predict the branch not taken.

Temporarily preventing invalidations, as done in the baseline model, can help

improve performance by reducing hot spots on the network, implementing Tardis

and checking wts offers an elegant solution. We allow programmers to guarantee the

success of arbitrarily long LR/SC instruction sequences in the absence of interrupts

and exceptions. In the baseline implementation, we have demonstrated that livelock

occurs once the number of cycles between the load-reserved and store-conditional

instructions exceeds 32; in the Tardis implementation, no such livelock occurs. Recall

that the RISC-V ISA requires sixteen-instruction LR/SC sequences to succeed, and

that Rocket’s 32-cycle counter attempts to implement this mandate. By using Tardis,

we have not only eliminated the cycle counter but also reduced the ISA requirement

to merely a performance optimization.

Atomic Memory Operations

In Table 6-2, we show the results of using AMOs to atomically increment a counter

on systems with one to sixteen cores, and then perform a barrier.

Cores

1 2 4 8 16

Baseline 4.3 6.6 13.5 28.0 58.3
Tardis 4.3 6.6 13.5 28.1 58.4

Table 6-2: Average number of cycles required to increment a counter using atomic
memory operations.

69

Both implementations’ performance on the AMO microbenchmark are practically

identical. Because the L1 data cache performs atomic memory operations locally,

exclusive ownership moves between cores in this microbenchmark. Performing AMOs

at the last-level cache would keep the cache block data in one place.

Compared to LR/SC sequences, AMOs run much faster because of the design of

the miss state handling registers (MSHRs). They allow multiple writes to the same

cache block to be replayed in a burst once the cache block arrives at the data cache.

The LR/SC instruction pair cannot be replayed in this manner, as the core must

check whether the store-conditional instruction succeeded.

When operations on a shared variable commute, AMOs are an attractive choice;

LR/SC instruction sequences offer greater flexibility in the way a core may modify

memory atomically.

6.2 Synchronization Primitives

We also developed microbenchmarks to evaluate the performance of the Mellor-

Crummey-Scott (MCS) queue lock and a sense-reversing barrier. On this imple-

mentation of the Tardis protocol, an ordinary spin lock would cause livelock, so we

do not examine it here.

MCS Queue Lock

In this microbenchmark, we use the MCS queue lock to acquire a lock on a shared

memory variable, and then increment the shared memory variable. Figure 6-2 shows

the number of cycles required for each core to increment the counter 1,000 times and

perform the barrier. To minimize false sharing, each core stores its local copy of the

queue lock node in separate cache blocks.

As expected, running the code on single-core systems yields identical results. As

the core count increases, both implementations remain well-matched as they both rely

on invalidating cache blocks located at other cores. The bars represent how much time

it takes for the other (n � 1) cores on an n-core system to acquire and release the

70

1 2 4 8 16

Cores

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

C
y
c
l
e
s

Cycles to perform increment using MCS lock

Baseline

Tardis

Figure 6-2: Performance of the MCS queue lock on a microbenchmark that atomically
increments a variable.

lock. As a result, we see an exponential increase in wait time commensurate with the

exponential increase in core count.

Barrier

In this microbenchmark, cores complete consecutive barriers, and we measure the

average time required to complete one barrier. Figure 6-3 shows the performance of

two barrier implementations on the Tardis and baseline systems.

The measurements suggest at least two observations: at higher core counts, the

scalability of a sense-reversing barrier degrades much more rapidly than one that

employs exclusive ownership. The Tardis and directory protocols do not fundamen-

tally differ in their use of the exclusively owned state, so we do not see significant

71

1 2 4 8 16

Cores

0

500

1,000

1,500

2,000

2,500

3,000

C
y
c
l
e
s

Cycles to perform barrier with all cores

Baseline (sense-reversing)

Baseline (exclusive ownership)

Tardis (exclusive ownership)

Figure 6-3: Performance of a barrier microbenchmark.

differences in the performance of the second barrier. As our implementation does not

automatically increment timestamps, a sense-reversing barrier that relies on spinning

would cause livelock on the Tardis system.

6.3 Application Performance

In this section, we examine the performance of two simple applications: vector-vector

addition and matrix-matrix multiplication. Although they do not specifically target

the synchronization primitives, these benchmarks show that Tardis has comparable

performance to the directory-based baseline.

72

Vector-Vector Addition

This benchmark measures the number of cycles needed for the cores to element-wise

add two vectors together. In the in-place version of the benchmark, the sum is placed

in one of the input vectors; in the out-of-place version, the sum is placed in a separate

vector. The following performance results are collected by performing the out-of-place

addition first and the in-place addition second. As the out-of-place addition will have

cached some data at the cores, the second addition will take place with “warm” caches,

so we expect a modest performance improvement.

The first version of the benchmark structures the memory access pattern of both

the out-of-place and in-place additions to exhibit false sharing, in which different cores

access different addresses in the same cache block. This causes high network traffic

and latency as exclusive ownership of the cache block “ping-pongs” between cores.

Figure 6-4 shows results for vector-vector addition with deliberate false sharing.

In the single-core case, no false sharing actually occurs, so the bound on perfor-

mance depends on the cache parameters as well as network latencies. At lower core

counts, renewal traffic caused by memory fences decreases Tardis’s system perfor-

mance by 4.6% for the out-of-place and 14.6% for the in-place versions on the single-

core system. As the number of cores increases, we find less-than-linear speedup due

to false sharing. Furthermore, the number of invalidations needed for the baseline

directory protocol increase. At higher core counts, invalidations force the baseline sys-

tem to request more cache blocks than the Tardis system, yielding Tardis a modest

advantage over the baseline protocol.

Performance significantly increases in the sixteen-core version because the inter-

leaved accesses now straddle two cache blocks. Each 64-byte cache block contains

eight double-precision floating-point numbers. Although false sharing persists in this

benchmark, accesses to any cache block now originate from one of two groups of eight

cores.

The other version of the vector-vector addition benchmark divides work to avoid

false sharing, leaving the benchmarks only to the eviction rates and, in Tardis’s case,

73

1 2 4 8 16

Cores

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

C
y
c
l
e
s

Multithreaded vector-vector addition (n = 1000) performance

(with false sharing)

Baseline (out-of-place)

Tardis (out-of-place)

Baseline (in-place)

Tardis (in-place)

Figure 6-4: Performance of a vector-vector add benchmark exhibiting false sharing.

renewals. Figure 6-5 shows results for vector-vector addition without deliberate false

sharing.

In the single-core case, just as before, renewals degrades performance on the Tardis

system by 6.9% for the out-of-place and 12.8% for the in-place versions, respectively.

The Tardis implementation outperforms the baseline implementation by 19.4% on

the sixteen-core system. At higher core counts, the number of invalidations issued for

the baseline system exceeds the number issued by the Tardis protocol. Furthermore,

the baseline system sees a modest increase in the number of cache blocks requested

from the last-level cache.

To learn more about the performance discrepancies, we count the number of Ac-

quire messages – requests for cache blocks – sent on the network in Figure 6-6 (with

74

1 2 4 8 16

Cores

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

C
y
c
l
e
s

Multithreaded vector-vector addition (n = 1000) performance

(without false sharing)

Baseline (out-of-place)

Tardis (out-of-place)

Baseline (in-place)

Tardis (in-place)

Figure 6-5: Performance of a vector-vector addition benchmark without false sharing.

false sharing) and Figure 6-7 (without false sharing). For the Tardis protocol, we also

show the fraction of Acquire messages that are renewals for this benchmark. (The

out-of-place vector-vector addition occurs does not follow any fences, so no renewals

occur.)

Despite the number of renewals, the number of acquire messages sent during in-

place addition remain almost consistently lower for Tardis than the baseline, especially

for the 2-, 4-, and 8-core systems. The time needed to service these requests increases

benchmark completion time compared to the baseline system. Figure 6-7 shows the

number of Acquire messages in the vector-vector addition benchmark without false

sharing.

As expected, the number of requests sharply drops when cores work without inval-

75

1 2 4 8 16

Cores

0

100

200

300

400

500

600

M
e
s
s
a
g
e
s

Number of acquire messages sent

(vector-vector addition with false sharing)

Baseline (out-of-place)

Tardis (out-of-place)

Baseline (in-place)

Tardis (in-place)

Figure 6-6: Number of messages sent on the Acquire TileLink network during the
vector-vector addition benchmark with false sharing. For the in-place addition on
Tardis, the hatched white bar represents the fraction of requests that are renewals.

Tardis, the fraction of which are renewals.

idating each others’ cache blocks. At core counts of 8 and 16, it appears that renewal

traffic on Tardis matches or exceeds the traffic incurred by the baseline. As the core

count increases, the vectors become shorter, but renewals must happen because of

the memory fence occurring between the out-of-place and in-place additions.

Matrix-Matrix Multiplication

In this benchmark, cores naïvely multiply (i.e., not with the Strassen algorithm) two

32 by 32 element matrices in parallel. This benchmark exercises the memory system

76

1 2 4 8 16

Cores

0

100

200

300

400

500

600

M
e
s
s
a
g
e
s

Number of acquire messages sent

(vector-vector addition without false sharing)

Baseline (out-of-place)

Tardis (out-of-place)

Baseline (in-place)

Tardis (in-place)

Figure 6-7: Number of messages sent on the Acquire TileLink network during the
vector-vector addition benchmark without false sharing. For the in-place addition on
Tardis, the hatched white bar represents the fraction of requests are renewals.

under heavy read and relatively light write loads. Figure 6-8 shows the cycles required

to complete a matrix-matrix multiplication on the baseline and Tardis systems.

As we expect with an embarrassingly parallel benchmark, we achieve nearly per-

fect speedup in runtime, tempered only by overhead from processes like synchroniza-

tion. In both vector-vector addition and matrix-matrix multiplication, the Tardis

implementations perform very comparably to the baseline measurements.

As we observed in the vector-vector addition benchmarks, a source of performance

degradation arises from renewals, although Tardis-RC eliminates many of the renewals

that Tardis-SC would have incurred. Renewals hinder performance on (1) single-core

systems and (2) systems that perform relatively few operations but many memory

77

1 2 4 8 16

Cores

0

100,000

200,000

300,000

400,000

500,000

600,000

C
y
c
l
e
s

Multithreaded matrix-matrix multiply (n = 32) performance

Baseline

Tardis

Figure 6-8: Performance of a matrix-matrix multiplication.

fences. We observed the second effect as we scaled the vector-vector addition without

false sharing to 8 and 16 cores.

Although these applications use synchronization only peripherally, these results

demonstrate that implementing the Tardis protocol is not only feasible but also prac-

tical.

Summary

In this chapter, we compared the performance of the Tardis cache coherence protocol

to a baseline directory protocol using several microbenchmarks. In most cases, the

Tardis protocol performed just as well as the baseline. We found that differences in

performance arise from cache block renewals and conditions on the on-chip network.

78

Despite the need for renewals in our applications, we saw that renewals become less

relevant in hampering overall protocol performance. We also find that renewals, once

a significant consideration in Tardis-SC, become diminished in relevance in Tardis-RC.

This evaluation yields many insights that can steer future inquiries into timestamp-

based coherence protocols.

79

80

Chapter 7

Conclusion

This thesis examined Tardis in sequentially-consistent and release-consistent variants.

We devised new atomic instructions to take advantage of Tardis’s timestamps and

used them to construct commonly-used synchronization primitives. We demonstrated

that the Tardis implementations perform nearly as well as our baseline system.

7.1 Future Work

We have only taken a glimpse at the unique possibilities offered by timestamp-based

cache coherence protocols like Tardis, and there is plenty of room for future work.

The Tardis invariant links the write timestamp to the value of the data. In this

thesis, we used it to eliminate the ABA problem in compare-and-swap and the livelock

problem in load-reserved/store-conditional sequences. Linking physiological time to

data will yield yet more innovation.

Currently, the only way to obtain the latest value of data in a cache is to load

it in the exclusive state (accomplished in our implementation with the load-reserved

instruction). We hope to find other ways of explicitly loading the latest value of a

cache block while minimizing cache invalidations. Ideally, we would establish some

mechanism to notify cores of an updated value and allow them to sleep or yield to

the operating system to schedule another process.

The prototype implementation has several shortcomings that hinder its practical-

81

ity. In each core, fully implementing the finer-grained timestamps – wts
min

, wts
max

,

rts
min

, and rts
max

in lieu of ts
min

and ts
max

– would align Rocket’s microarchitecture

to fully exploit the relaxations allowed by release consistency, but Rocket would also

need to be extended to make full use of these features.

Currently, all clients and managers have a mesh node on the network. Each client

and manager has its own node on the mesh, which is somewhat sub-optimal. We plan

to move to a tiled architecture, in which each node contains a core, its L1 cache, and

slice of the last-level cache, to reduce the number of routers and nodes on the main

network. All packets on the network, regardless of overall message length, contain

routing header information. With wormhole routing, we can dispense with all but

one of the copies of the header, and subsequently narrow the networks. To reduce

network area, we may merge logical networks which see relatively little traffic, like

the Probe and Grant networks.

Our evaluation uses microbenchmarks to individually evaluate the performance of

atomic instructions and synchronization primitives. A logical extension is to diverse

applications that measure realistic uses of the instructions and primitives covered in

this thesis. Synchronization plays a crucial role in operating system performance, so

incorporating physiological time may yield performance and scalability benefits. Of

course, synchronization is not the only bottleneck – today’s programming paradigms

make deep-seated assumptions about the underlying system architecture. To take

advantage of Tardis’s properties, we should find algorithms best-suited for scaling to

systems with thousands of cores. For instance, lock-free algorithms can reduce the

waiting ordinarily incurred by conventional synchronization primitives.

Our immediate future work involves the extension of this work towards the con-

struction of a thousand-core system1 with logic distributed throughout several inter-

connected FPGAs. Accordingly, we will optimize our design for FPGA synthesis,

including the elimination of any critical paths in the design. We especially want to

optimize the network-on-chip, as we have yet to synthesize it. In particular, we would

1
The system is tentatively named T-1000, the time-traveling antagonist in Terminator 2: Judg-

ment Day (1991).

82

like to demonstrate a minimum of additional complexity and modest area2 and power

requirements.

7.2 Concluding Remarks

We will need a variety of techniques to build computers that satisfy strict constraints

on performance, power, and complexity. Tardis removes a major impediment to the

scaling of multiprocessor systems. Some efforts can be devoted to increasing the

number of cores on a single die. Others can extend the ideas from Tardis to other

domains. We will need to rethink the way concurrent applications run today to meet

the demands of the future. It’s not just about time; it’s about physiological time.

2
To prove that a system implementing Tardis is not bigger on the inside.

83

84

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. Elsevier, 2011.

[2] E. Gardner, “What public disclosures has Intel made about Knights Landing?”
November 2014. [Online]. Available: https://software.intel.com/en-us/articles/
what-disclosures-has-intel-made-about-knights-landing

[3] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories: A
scalable cache coherence scheme,” SIGPLAN Not., vol. 26, no. 4, pp. 224–234,
Apr. 1991. [Online]. Available: http://doi.acm.org/10.1145/106973.106995

[4] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based cache
coherence in large-scale multiprocessors,” Computer, vol. 23, no. 6, pp. 49–58,
June 1990.

[5] Y.-C. Maa, D. K. Pradhan, and D. Thiebaut, “Two economical directory
schemes for large-scale cache coherent multiprocessors,” SIGARCH Comput.
Archit. News, vol. 19, no. 5, pp. 10–, Sep. 1991. [Online]. Available:
http://doi.acm.org/10.1145/379189.379198

[6] X. Yu and S. Devadas, “Tardis: Time Traveling Coherence Algorithm for
Distributed Shared Memory,” CoRR, vol. abs/1501.04504, 2015. [Online].
Available: http://arxiv.org/abs/1501.04504

[7] X. Yu, M. Vijayaraghavan, and S. Devadas, “A proof of correctness for the
tardis cache coherence protocol,” CoRR, vol. abs/1505.06459, 2015. [Online].
Available: http://arxiv.org/abs/1505.06459

[8] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator for mul-
ticores,” in High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, Jan 2010, pp. 1–12.

[9] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for mul-
tiprocessors with private cache memories,” in ACM SIGARCH Computer Archi-
tecture News, vol. 12, no. 3. ACM, 1984, pp. 348–354.

[10] Doctor Who, “Blink,” episode 10, originally aired June 9, 2007.

85

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
http://doi.acm.org/10.1145/106973.106995
http://doi.acm.org/10.1145/379189.379198
http://arxiv.org/abs/1501.04504
http://arxiv.org/abs/1505.06459

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359545.359563

[12] ——, “How to make a multiprocessor computer that correctly executes multipro-
cess programs,” Computers, IEEE Transactions on, vol. 100, no. 9, pp. 690–691,
1979.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable shared-memory
multiprocessors,” in Proceedings of the 17th Annual International Symposium on
Computer Architecture, ser. ISCA ’90. New York, NY, USA: ACM, 1990, pp.
15–26. [Online]. Available: http://doi.acm.org/10.1145/325164.325102

[14] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: a tuto-
rial,” Computer, vol. 29, no. 12, pp. 66–76, Dec 1996.

[15] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou,
D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman,
“The Rocket Chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[16] A. Waterman, “Design of the risc-v instruction set architecture,” Ph.D.
dissertation, EECS Department, University of California, Berkeley, Jan
2016. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-1.html

[17] P. L. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J. Popek, “Re-
solving file conflicts in the Ficus file system,” in Summer USENIX Conference,
Proceedings of the, June 1994, pp. 183–195.

[18] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser, “Managing update conflicts in Bayou, a weakly connected repli-
cated storage system,” in ACM Symposium on Operating Systems Principles,
Proceedings of the 15th, December 1995.

[19] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Treadmarks: Dis-
tributed shared memory on standard workstations and operating systems,” in
USENIX Winter, vol. 1994, 1994, pp. 23–36.

[20] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner: Google’s glob-
ally distributed database,” ACM Transactions on Computer Systems (TOCS),
vol. 31, no. 3, p. 8, 2013.

86

http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/325164.325102
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

[21] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Revised
Reprint. Elsevier, 2012.

[22] R. P. Case and A. Padegs, “Architecture of the IBM System/370,”
Commun. ACM, vol. 21, no. 1, pp. 73–96, Jan. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359327.359337

[23] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel Corpora-
tion, April 2016, vol. 2 (2A, 2B & 2C).

[24] E. H. Jensen, G. W. Hagensen, and J. M. Broughton, “A new approach to exclu-
sive data access in shared memory multiprocessors,” Technical Report UCRL-
97663, Lawrence Livermore National Laboratory, Tech. Rep., 1987.

[25] S. Steely, S. Van Doren, and M. Sharma, “Livelock prevention by delaying
surrender of ownership upon intervening ownership request during load locked /
store conditional atomic memory operation,” Oct. 5 2004, uS Patent 6,801,986.
[Online]. Available: https://www.google.com/patents/US6801986

[26] C. P. Kruskal, L. Rudolph, and M. Snir, “Efficient synchronization
of multiprocessors with shared memory,” ACM Trans. Program. Lang.
Syst., vol. 10, no. 4, pp. 579–601, Oct. 1988. [Online]. Available:
http://doi.acm.org/10.1145/48022.48024

[27] J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchronization
primitives for large-scale cache-coherent multiprocessors,” in Proceedings of
the Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS III. New York, NY, USA: ACM,
1989, pp. 64–75. [Online]. Available: http://doi.acm.org/10.1145/70082.68188

[28] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always wanted
to know about synchronization but were afraid to ask,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013, pp. 33–48. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522714

[29] “The Jargon File,” version 4.4.7. [Online]. Available: http://www.catb.org/
jargon/html/T/thundering-herd-problem.html

[30] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization
on shared-memory multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 1,
pp. 21–65, Feb. 1991. [Online]. Available: http://doi.acm.org/10.1145/103727.
103729

[31] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-scalable
locks are dangerous,” in Proceedings of the Linux Symposium, 2012, pp. 119–130.

[32] N. S. Arenstorf and H. F. Jordan, “Comparing barrier algorithms,” Parallel Com-
puting, vol. 12, no. 2, pp. 157–170, 1989.

87

http://doi.acm.org/10.1145/359327.359337
https://www.google.com/patents/US6801986
http://doi.acm.org/10.1145/48022.48024
http://doi.acm.org/10.1145/70082.68188
http://doi.acm.org/10.1145/2517349.2522714
http://www.catb.org/jargon/html/T/thundering-herd-problem.html
http://www.catb.org/jargon/html/T/thundering-herd-problem.html
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729

[33] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate
memory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1,
pp. 16–19, Jan 2011.

[34] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in a Scala
Embedded Language,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 1216–1225.

[35] H. Cook, “TileLink 0.3.3 specification.” [Online]. Available: https://docs.google.
com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub

[36] J. G. Beu, M. C. Rosier, and T. M. Conte, “Manager-client pairing: a frame-
work for implementing coherence hierarchies,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 2011, pp.
226–236.

[37] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Net-
works. Elsevier, 2004.

88

https://docs.google.com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub
https://docs.google.com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub

	Introduction
	Timestamp-Based Cache Coherence Protocols
	The Tardis Cache Coherence Protocol
	Timestamps
	Reading Cache Blocks with Leases
	Writing Cache Blocks through Time Travel
	Renewals
	Per-Program Timestamps
	Main Memory, Incoherent Memory, and I/O

	Release Consistency and RISC-V
	Fences
	Release and Acquire Instructions

	Release Consistency Support for Tardis
	Compact Timestamp Configurations
	Cache Transactions
	Leases and Renewals in Tardis-RC

	Stale Reads
	Techniques for Writing Tardis Programs
	Previous Use of Timestamps for Coherence

	Atomic Instructions
	Compare-and-Swap
	Load-Reserved and Store-Conditional
	Atomic Memory Operations

	Synchronization
	Locks
	The Mellor-Crummey-Scott Queue Lock

	Barriers

	Implementation
	Guiding Principles
	The RISC-V Rocket Microarchitecture
	Pipelining Timestamps
	Extending the Memory Hierarchy

	Network-on-Chip
	Manager/Client Abstraction
	Network Topology

	Evaluation
	Atomic Instructions
	Synchronization Primitives
	Application Performance

	Conclusion
	Future Work
	Concluding Remarks

