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Abstract

This paper considers “streaming” applications that are

implemented on multicore systems. The paper explores

the use of the simulation component (X-Sim) of the Auto-

Pipe development system. Under Auto-Pipe, users consider

streaming application development in terms of sets of tasks

that can be viewed as nodes in an acyclic graph. These

nodes can be mapped to computational resources (e.g.,

General Purpose Processors (GPPs), Field Programmable

Gate Arrays (FPGAs), Digital Signal Processors (DSPs),

etc.), and the application can be simulated and subse-

quently deployed to a real system. In this paper Auto-Pipe

is introduced and then applied to a streaming application,

VERITAS. Here, gamma ray observation data from an array

of telescopes is processed by a multicore system. This pa-

per shows how the processing algorithm can be developed

as a set of parallel pipelined tasks. It evaluates the effects

of different task-to-core mapping strategies on overall per-

formance. Simulated performance results are obtained for

systems containing up to 16 cores. Actual deployed perfor-

mance results for 1,2,3 and 4-core systems are gathered and

compared with simulation results.

1. Introduction

Multicore systems present opportunities for large

speedups and have become the standard offering for the

dominant general purpose processor vendors (e.g., Intel and

AMD). Commonly, the multiple processors are used to sup-

port the execution of distinct processes that are either in-

dependent or require infrequent inter-process communica-

tions and synchronization. These processes are scheduled

by the OS. If the processor cores work together, as one

would like in a parallel processing implementation of an

application, then synchronization and inter-thread commu-

nication is necessary and mechanisms such as mutual ex-
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clusion locks and/or semaphores must be employed.

There are various problems associated with using such

approaches for exploiting the parallelism that may be found

in a given application algorithm. One concern relates to the

communications and synchronization overhead associated

with the use of “heavy” processes. This problem is solved,

or at least reduced, through the development of more effec-

tive hardware and OS techniques (i.e., light-weight threads).

Perhaps a more difficult issue concerns the programming of

parallel applications using a thread-based paradigm. De-

veloping and debugging parallel applications that require

extensive communications and synchronization is generally

difficult and error-prone.

This paper presents, for a selected application domain,

an approach to exploiting parallelism and pipelining in a

manner that simplifies parallel program development, simu-

lation, and deployment. The application domain of interest

is what is broadly referred to as “streaming” applications;

that is applications that are driven by streams of data that

must be processed in a designated sequence. Such applica-

tions are typical of real-time data collection and processing

systems, whether the data derives from a scientific experi-

ment or from a financial market feed. Numerous applica-

tions are also found in the processing of real-time speech

and video derived data.

Such applications can often be expressed in terms of par-

allel pipelines of tasks where individual stages may them-

selves consist of parallel execution components. In this pa-

per, we briefly present a system called Auto-Pipe (detailed

descriptions can be found in [5, 6, 13]) that has been de-

veloped to ease the expression, simulation, and deployment

of streaming applications on a variety of computational re-

sources. At the highest level, applications are expressed in

terms of directed acyclic graphs where nodes in the graph

execute standard compiled (say C++ or VHDL) code that

executes on selected computational resources. While Auto-

Pipe permits use of a diverse set of resources (e.g., FPGAs),

in this paper we restrict ourselves to multicore systems.

One key feature of the system is that interconnections

between the graph nodes are modeled (and to an extent im-



plemented) as queues. Viewing the overall application in

terms of a graph where interconnections are queues simpli-

fies expression of the overall application as well as individ-

ual tasks, and eliminates the need for explicit synchroniza-

tion, thus easing the program development process. Auto-

Pipe, through its X language, hides low level implemen-

tation and communication details from the application de-

signer by providing a library of implementations and a sim-

ple queue-based interface.

Approaches such as OpenMP [3], for example, require

the use of explicit synchronization primitives and, depend-

ing on the application, programming such applications can

be difficult. Message-passsing systems such as MPI [8]

are not streaming languages and thus are not tailored to

the sort of applications associated with directed acyclic

graphs. Some streaming languages and systems include

StreamIt [11] and StreamC [4]. These systems, while gen-

erally easier to use than OpenMP and MPI, have the draw-

backs that they are each specific to a single target archi-

tecture. StreamIt, for example, and its associated simula-

tor btl [10] are targeted specifically to the RAW proces-

sor [14] developed at MIT. Similarly StreamC and its as-

sociated simulator ISim [1] are targeted to the Imagine pro-

cessor [1] developed at Stanford.

Auto-Pipe, on the other hand, is an extensible framework

for supporting streaming application development on a va-

riety of platforms (e.g., ”heterogeneous” systems). It does

this, in part, by decoupling the coordination language from

the block implementation language. Application tasks, or

blocks, are implemented in a language appropriate for the

computational execution platform (e.g., C/C++ for proces-

sors, VHDL or Verilog for FPGAs). Streaming interactions

between blocks are coded in the X coordination language.

This paper briefly introduces Auto-Pipe, illustrates how

a simple application is developed, and then proceeds to con-

sider a scientific application, VERITAS, that involves real-

time collection and processing of gamma ray observation

data. The focus is on illustrating how different mappings

(allocations) of the computational graph nodes to processor

core resources can be explored with Auto-Pipe and how rel-

ative performance can be obtained. Simulation results are

compared with deployed execution results on 1,2,3 and 4-

core systems, while additional simulation results are gath-

ered to predict performance on larger 8 and 16-core sys-

tems.

2. Auto-Pipe Toolset

The Auto-Pipe toolset is targeted primarily towards

streaming computation applications. These applications

typically involve a large amount of data flowing sequen-

tially through a pipeline of computational stages, with each

stage performing an incremental computation. Algorithms

for streaming applications can often be represented using

an acyclic dataflow graph. Figure 1 shows a dataflow graph

for a simple example streaming application that serves as an

illustrative example.
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Figure 1. Algorithm for the test1 example

The algorithm represented by this dataflow graph con-

sists of five tasks, shown in the graph as blocks. A task may

represent any computational process, from a simple addi-

tion to arbitrarily complex computations. A block is the

representation of a computational task in a dataflow graph.

Blocks are connected to each other by edges which are

dataflow graph representations of communication channels

between tasks. Edges can be thought of as infinite queues

that are present between blocks. The dataflow graphs con-

sidered are acyclic in that there is no path by which data

can re-enter a block it has passed through. Although this

is a restriction, many high performance scientific computa-

tions can either be represented by such graphs, or their data

intensive computation component can be reduced to such a

representation.

shared
mem.

gen1

proc[1]

gen2

sum half store

proc[2]

Figure 2. A one-core mapping of test1

Consider now deployment of the given example appli-

cation to a sample processing architecture. Figure 2 shows

a two-processor multicore system where the two symmet-

ric cores communicate via a shared memory. Also shown

here is a sample mapping of the algorithm to the target ar-

chitecture. Mapping an algorithm to an architecture is the

process of assigning each block to a Computational Re-

source (CR), and each application edge to an Interconnect

Resource (IR). In this initial mapping, the entire algorithm

has been mapped to a single core.

The general framework for Auto-Pipe supports multiple

computation resources (e.g., GPPs, FPGAs, GPUs, etc.),

as well as a variety of interconnect resources (e.g., shared

memory, TCP/IP, PCI-X, file-based, etc.). This allows the
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integration of multiple parallel computing domains in a sin-

gle heterogeneous system. Currently, Auto-Pipe supports

native execution and basic simulation on processor cores,

simulation of HDL (hardware description language) imple-

mentations in ModelSim [9], and hardware deployment on

FPGAs [2]. In Figure 3, the sample test1 application has

been mapped and deployed to a heterogeneous architecture

composed of general purpose processors and an FPGA con-

nected by a PCI-X bus.

Figure 4. Auto-Pipe design flow

Figure 4 depicts a typical Auto-Pipe design flow to op-

timize an application’s mapping. In this flow, the user pro-

vides an X Language [12] description of the algorithm, the

resources available, and a mapping of the algorithm compo-

nents onto simulation resources. The user also may provide

implementations (“user code”) of any blocks not already

written. These components are input to the X Language

compiler, which produces binaries that may be run by X-

Sim. The results of the execution can then be analyzed to

determine correctness; any errors here necessitate a change

to the algorithm or user’s code. If the application runs cor-

rectly, then its performance is analyzed. Performance is im-

proved by modifying the mapping until it meets the users

needs. At this point a mapping onto real resources is cre-

ated from the simulation mapping, compiled, and deployed

onto the target system.

The Auto-Pipe infrastructure makes the evaluation of a

variety of target architectures and mappings a straight for-

ward task for application developers. In this paper, we focus

on the simulation and performance profiling of streaming

applications targeted to multicore systems.

3. X-Sim Simulator

X-Sim [6, 7] is a federated, trace-based simulation sys-

tem; that is a simulation system that uses different simula-

tors for simulating different parts of the whole system being

investigated. For example, X-Sim uses native execution on

processors to simulate execution on GPPs, but uses Model-

Sim to simulate execution on FPGAs. The term trace-based

implies that X-Sim makes use of data traces (marked ‘D’ in

figures in this paper) and timing traces (marked ‘T’) to keep

track of intermediate data and simulation dataflow.
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Figure 5. A 2-core mapping of test1

X-Sim analyzes the dependencies between different re-

sources in a streaming application mapping and then runs

the simulations for each part of the system in the correct

dependency order. For example, consider the 2-core map-

ping of test1 in Figure 5. In this mapping, X-Sim runs in

three stages. In the first stage, X-Sim simulates proc[1]

to produce the data (D) and timing (T) traces collected at

the points shown in the left half of Figure 5.

The data trace file (D) records all the data leaving the

half block. The corresponding nearby timing trace file (T)

records the times at which this data leaves proc[1]. Other

timing trace files record the times at which user-inserted

testpoints were triggered. Such testpoints allow the user to

capture the processor clock (using an rdtsc system call)

at arbitrary points in the implementation of a block mapped

to a core. For example, the timing trace files on the very left

of the figure record the times at which the gen1 and gen2

blocks started generating each number.

In the next simulation step, a communication delay

model is applied to output timestamps from proc[1]

to generate availability timestamps for proc[2]. These

timestamps indicate the times at which data was available

to the block(s) mapped to proc[2]. X-Sim has the abil-

ity to apply arbitrary communication delay models, includ-

ing constant delay models, effective bandwidth models, and



distribution based models.

In the final simulation step for this mapping, the simu-

lation for proc[2] is run using the availability data and

timing traces generated in the previous steps. In this step,

input timing traces (in the middle) are generated to indicate

the time that data was input into the core, while testpoint

timing traces (on the right) indicate the time that processing

of a data element finished.

Note that this resource-by-resource (e.g. proc[1] then

proc[2]) simulation of the application explicitly prevents

cyclic mappings from being simulated. For example, con-

sider a mapping of the example application where the half

block is mapped to proc[2] and all other blocks are

mapped to proc[1]. This mapping can not be simulated

because there is a cyclical data dependency between the

processors. Future versions of X-Sim will support the abil-

ity to run multiple platform simulators in parallel, and thus

support the simulation of cyclical mappings.

At the end of simulation, a comprehensive history of all

data and timing traces is available for analysis. For exam-

ple, the distribution of total times spent in various blocks in

the test1 application (Figure 6 shows times for the 1-core

mapping) indicates that roughly half of the entire time in

this application is spent in the store block. A speedup of

about 2× can be expected between a 1-core mapping (Fig-

ure 2) and a 2-core mapping (Figure 5) where the store

block has been moved to a separate core.
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Figure 6. Time spent in test1 blocks

Simulations of 1-core and 2-core mappings of test1

show roughly this result, as can be seen in Figure 7.

Throughout the paper, a constant, zero-cost communication

model was used to represent the shared memory intercon-

nect resource. This figure also shows the execution times

gathered from actual deployments of the test1 applica-

tion. The 1-core native execution simulation and deploy-

ment are identical. In the 2-core mapping, the two differ-

ences in the deployment run from the simulation are that:

1) the communication mechanism is physical shared mem-

ory rather than a zero-delay model, and 2) two cores are

used to execute the application in parallel. Recall that in the

simulation, each core execution is performed in a separate
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Figure 7. Application run times for test1

simulation step while recording the application execution

state in trace files. From the graph in Figure 7, we can see

that the 2-core deployment result closely matches X-Sim’s

simulated prediction for the simple test1 example appli-

cation.

4. VERITAS Example Application

We now focus our attention on results gathered from sim-

ulation and deployment runs of an astrophysics application.

The VERITAS experiment [15] is an astrophysical gamma

ray detection experiment with high data throughput require-

ments. Due to its streaming and highly parallel nature, it

easily fits into Auto-Pipe’s programming model.

Gamma rays are produced by extraterrestrial sources

such as pulsars, supernovae, neutron star collisions, and

super-massive black holes in galactic nuclei. When these

rays strike the atmosphere, they result in photon showers

called Cherenkov radiation.

Figure 8. Simplified VERITAS dataflow

In the VERITAS experimental setup, this radiation is

captured by arrays of hundreds of photomultiplier tubes.

Analog to digital converters then generate a large amount
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of raw pixel data, which subsequently undergoes computa-

tionally intensive digital signal processing. This processing

consists of steps to clean up the signal data, to analyze it,

and finally to determine the origin (in space) of the gamma

ray source. Figure 8 shows a highly simplified view of the

VERITAS application.

The Front section reads raw pixel data from a database

and distributes it to N parallel pipes where the bulk of the

computationally intensive digital signal processing is per-

formed. Data from the pipes is merged into the Back sec-

tion, which combines the processed pixel data.

Processing a sample set of 5000 gamma ray events on a

single processor core required 127.2 seconds. Note that the

actual physical system used to test out deployments was an

AMD Athlon 64 X2 4400+ system with four cores, 1MB L2

cache and 8GB of system memory. Since scientists would

like operate on inputs derived from millions of events, there

is a need to speed up the application. Profiling the applica-

tion shows that about 95% of the processing time is spent

in the pipes of Figure 8. Within each pipe, the LowPass

block takes up about 13% of the processing time, with the

rest of the processing roughly evenly divided between the

FFT and IFFT blocks. In this section, we will show how

X-Sim can be used to explore alternative multicore map-

pings of the VERITAS application.

First consider the problem of mapping the VERITAS ap-

plication to the same two-processor multicore system earlier

used in the test1 example. Consider a small system con-

sisting of six pipes. Figure 9 shows two approaches to map-

ping VERITAS to two cores, one vertical (map2v) and one

horizontal (map2h). In the vertical mapping, the Front

section and the three Pipe blocks on the left are mapped to

one processor, while the Back section and the three Pipe

blocks on the right are mapped to the other processor. In the

horizontal mapping, everything feeding the IFFT blocks is

mapped to one processor (i.e., everything up to and includ-

ing the LowPass blocks), while the IFFT and downstream

blocks are mapped to the other processor. Note that the ver-

tical mapping is a relatively balanced mapping, whereas the

horizontal mapping is somewhat imbalanced with a higher

processing load placed on proc[1].
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Figure 10. VERITAS speedups and runtimes

on 2 and 3 cores

Figure 10 shows the results in terms of the application

speedup relative to the single processor case. The bars la-

beled map2v and map2h show the total application run

time measured from X-Sim simulations as well as deploy-

ments of the two mappings. Also shown in this figure is the

running time for the 1-core mapping as well as 3-core map-

pings that are described later. There are two main things to

note here. The first is that the simulation times are within

5% of the corresponding times measured on the multicore

deployed application. Also of note is that the vertical and

horizontal mappings are relatively close to each other, with

times of 70.2 s and 75.2 s. The vertical 2-core mapping

is slightly faster than the horizontal 2-core mapping, since

it is a more balanced partitioning of the processing costs.

Speedups (1.8× for map2v and 1.7× for map2h for the
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deployment runs) over the 1-core mapping are shown on

the y-axis.

The next mapping problem was to run the VERITAS ap-

plication on a 3-core system. Once again, two mappings

were evaluated, one vertical and one horizontal. These map-

pings are shown in Figure 11. In the vertical mapping,

two Pipe blocks are mapped to each processor, while the

Front block is additionally mapped to proc[1] and the

Back block is additionally mapped to proc[3]. In the

horizontal 3-core mapping, the LowPass blocks are the

only things mapped to proc[2]. Everything upstream of

the LowPass blocks is mapped to proc[1], while every-

thing downstream is mapped to proc[3].

The vertical mapping is a relatively balanced partition-

ing. The horizontal mapping, however, is not very bal-

anced. This is because the part (LowPass) of the Pipe

blocks mapped to the second processor is not as significant

a portion of total processing as the FFT and IFFT blocks.

Results from the 3-core mappings are shown on the bars

labeled map3v and map3h in Figure 10. Once again the

times from running the X-Sim simulations of the two map-

pings are within 5% of the times gathered from running the

deployed mappings.

The vertical 3-core mapping shows a 2.6× speedup over

the 1-core mapping, while the horizontal 3-core mapping

only shows a 2.0× speedup. This difference can be at-

tributed to the difference in balancing the processing load

between the two mappings.

In the final experiment, X-Sim simulation results from

mapping the VERITAS application to 1, 2, 3, 4, 8, and 16-

core systems are considered. Earlier results indicated that a

vertical partitioning of the VERITAS blocks resulted in rel-

atively balanced distribution of the processing load. Thus,

we only consider that mapping approach and allocate the

Pipe blocks evenly among the processor resources. For ex-

ample, the 4-core mapping has four Pipe blocks mapped to

each processor. For the 3-core mapping, a 15-Pipe version

of the application was used with five Pipe blocks mapped

to each processor.

The results for simulation runs for each of the multicore

mappings are shown in Figure 12. Also shown in this fig-

ure are the deployed application run times for the 1 through

4-core mappings. Additionally, the leftmost bar in each

grouping shows the ideal speedups (equal to the number of

cores) that would be obtained for a perfectly balanced par-

titioning.
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Figure 12. VERITAS performance scaling with

number of processors

The graph shows that X-Sim predicts times that roughly

follow the ideal speedups, with the difference from the ideal

increasing with the number of processors. The cause for this

is that the Front and Back sections are always mapped

to the first and last processors, and only the Pipe sec-

tion processing is evenly distributed among the different

processors. Say the processing on Front takes f sec-

onds, while the processing on a Pipe takes p seconds.

For the 8-core mapping, proc[1] has the Front sec-

tion and 2 Pipes mapped to it (and takes f + 2p sec-

onds). For the 16-core mapping, proc[1] has the Front



section and 1 Pipe mapped to it (and takes f + p sec-

onds). The speedup (for proc[1]) from 8-core to 16-core

would thus be (f + 2p)/(f + p). Going a step back, the

speedup from 4-core to 8-core can similarly be calculated

to be (f + 4p)/(f + 2p). Thus, the speedup from 8-core to

16-core is less than the speedup from 4-core to 8-core. An-

other way of looking at this is that, as more processors are

available, on the first and last processor, Front and Back

computation times become a higher percentage of the over-

all processing time for the first and last cores.

The 4-core system was used to test out physical deploy-

ments of the VERITAS application. As shown by the graph,

the 1 and 2-core deployments match the simulation predic-

tions fairly closely. The deployed 4-core application ran

approximately 6% slower than the predicted X-Sim simula-

tion. One possible reason for this discrepancy is that in uti-

lizing all four cores available on the deployment system, the

application is more likely to be interrupted by OS processes

which need to run simultaneously. Another reason for dis-

crepancies is that shared memory is able to hide its latency

by allowing computation to occur in parallel with memory

accesses. In mappings where a processor must both read

from and write to memory, it is harder for shared memory

to hide its delay, and this adds to processing time.

The comparison of simulated and deployed times helps

validate X-Sim simulations of shared memory based multi-

core systems. The simulation times for the 8-core and 16-

core systems, on the other hand, show how X-Sim can be

used to predict times for application runs on systems that

are not available currently.

5. Conclusions

This paper considers the use of multicore systems in

streaming applications. The development tool Auto-Pipe

and its simulation component X-Sim are presented and ap-

plied to a streaming application, VERITAS, where gamma

ray data is sent from a telescope array through various con-

verters, and then to the multicore system for further process-

ing. The paper illustrates how the Auto-Pipe system can be

used to evaluate candidate mappings of the streaming al-

gorithm to available multicore systems. Various mappings

are considered for systems ranging from 1 to 4 cores, and

relative performance is obtained from both simulated and

measured (deployed) execution of the algorithm. Simula-

tion results using the optimal mapping is obtained for mul-

ticore systems containing 8 and 16 processors. From this,

speedup as a function of number of processors is obtained.

A number of results are presented including non-ideal scal-

ing with the number of cores due to imbalanced mapping.

The Auto-Pipe system continues to be enhanced and is

currently being used in heterogeneous system design activ-

ities involving both multicores and FPGAs.
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