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Overview 

  Map Reduce is a good abstraction to map to GPUs 
  It is easy for programmers to understand a computation in terms of Map 

Reduce 

  Map Reduce can map well to GPUs 

  Programming efficient Map Reduce on the GPU can be hard 
  Reduction is a global operation, requiring coordination 

  We show how a code generation framework for Map Reduce can 
ease programming and provide high performance 



What is Map Reduce? 
  “Map Reduce” can mean various things 

  To us, it means  
  A map stage, where threads compute  

independently 

  A reduce stage, where the results of the map stage are summarized 

  This is a pattern of computation and communication 
  Not tied to key/value pairs, etc... 

  We consider Map Reduce computations where: 
  Each instance of a map function produces one set of outputs 

  Each of a set of reduce functions, gated by per element predicates, produces 
a set of outputs  



Map Reduce on the GPU 

  GPUs are well suited for the Map phase of Map Reduce 
  Lots of parallelism to execute independent threads, multithreading, high 

bandwidth 

  The reduce phase is more difficult, since it introduces dependences  

  The natural dependence graph must be restructured to provide 
these dependences 
  Only local communication allowed, global synchronization very expensive  
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Reduction on the GPU 

  It’s well known that efficient reductions on the GPU are difficult 

  Many choices 
  How much serialization 

  How much loop unrolling 

  Pitfalls 
  Tree structure of reduction can map poorly to SIMD architectures 

  Bank conflicts  

  Strongly data size dependent 
  The best reduction for one data set size may be 60x worse than the best for 

another data set size 

  Solution: Have a framework take care of the reductions 
  At present, we provide two variations of a logarithmic reduction, that differ 

in their loop unrolling  



Code Generation Framework 

  Our framework takes as inputs: 
  A Map function, written in CUDA, which produces: 

  A set of outputs in local memory 

  A set of predicates, controlling how the outputs should be used in the various 
reduce functions  

  A set of binary reduce operators 

  And a cleanup function which operates on the outputs of the reductions 

  And creates:  

  A map + local reduce function 

  A global reduce + cleanup function 
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Map Reduce: Map


  Map function produces outputs in local memory 
  Each output is an array with one entry per thread 

  The Map function produces predicates which gate participation of 
each output in each reduction function 
  The predicates are stored in an array of integers, one entry per thread 

  This means we currently don’t support more than 32 reduce functions, 
since we use a bit in every entry for each reduce 

  Predicates provide algorithmic selection (limited “keys” from Google MR) 
and solve thread count boundary issues 
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Map Reduce: Reduce 

  Reduce operators take two sets of inputs, and produce one set of 
outputs 

  Reduce operators must be associative (or at least pseudo-
associative, like floating-point add) 
  This gives us flexibility to restructure the reduction however is best 

  Reduce operators must provide an identity value 



Support Vector Machines 

  SVMs are a popular binary classification technique 
  Recognition, Bioinformatics, Text processing, Network security, etc. 

  The idea is to find a hyperplane separating labeled training data 
with maximal margin 

  New points are classified against the hyperplane 

  Maximal margin criterion provides generality 

  Use of kernel functions allows for nonlinearity  



SVM Training 

  Quadratic Program 

  Some kernel functions: 
                                              Polynomial 
                                              Radial Basis Function 

max
l∑

i=1

αi −
1
2
αT Qα

yT α = 0
s.t. 0 ≤ αi ≤ C, ∀i ∈ [1, l]

Qij = yiyjΦ(xi, xj)

Φ(xi, xj ; γ) = exp{−γ||xi − xj ||2}

Variables: 
α: Weight for each training 
point (determines classifier) 

Data: 
l: number of training points 

C: trades off error on training 
set for generalization 
performance 

y: Label (+/- 1) for each training 
point 

x: training points  

Φ(xi, xj ; a, r, d) = (axi · xj + r)d



SVM Training: Implementation 
  We use the Sequential Minimal Optimization algorithm 

  The computation is iterative, with each iteration containing a Map Reduce 

  The framework enables composition of the loop & the Map Reduce 
  Library based approaches have too much overhead 

  At each iteration, we find the arg max and arg min of two data dependent 
subsets of a vector 
  Predication used for algorithmic purposes 

  SVM Training requires computation of a large matrix 
  We cache rows of this matrix on the GPU, managing the cache on the CPU 

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 

… 



SVM Training Results 

  Comparing GeForce 8800GTX to LibSVM, on 2.66 GHz Intel Core 2 Duo 

  10-30x speedup 

  This despite our currently naive algorithm compared to competitors 

  Map Reduce Framework reduced kernel LOC by 34% 
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SVM Classification 

  Training points with nonzero weights determine the classifier 
  “Support Vectors” 

  Classify new point against support vectors: 

  SVM Classification involves lots of dot products 

  We cast the dot products as an SGEMM, and then use the Map 
Reduce framework to finish the classification 

ẑ = sgn

{
b +

l∑

i=1

yiαiΦ(xi, z)

}



SVM Classification Results 

  120-150x speedup 
  Some of this is due to suboptimal implementation by LibSVM 

  Map Reduce Framework reduced kernel LOC by 64% 
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Conclusion & Future Work 

  The Map Reduce programming framework is a natural fit for GPUs 

  Using the framework saves significant programmer effort 
  The most error prone sections of code subsumed in framework 

  Framework enables composition of Map Reduce computations  

  Our SVM training and classification implementations perform 
well on the G80 

  Future work  
  Prove applicability of framework with more applications 

  Add more reduction styles (including hybrid CPU/GPU reductions) 



The end 


