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Overview 

  Map Reduce is a good abstraction to map to GPUs 
  It is easy for programmers to understand a computation in terms of Map 

Reduce 

  Map Reduce can map well to GPUs 

  Programming efficient Map Reduce on the GPU can be hard 
  Reduction is a global operation, requiring coordination 

  We show how a code generation framework for Map Reduce can 
ease programming and provide high performance 



What is Map Reduce? 
  “Map Reduce” can mean various things 

  To us, it means  
  A map stage, where threads compute  

independently 

  A reduce stage, where the results of the map stage are summarized 

  This is a pattern of computation and communication 
  Not tied to key/value pairs, etc... 

  We consider Map Reduce computations where: 
  Each instance of a map function produces one set of outputs 

  Each of a set of reduce functions, gated by per element predicates, produces 
a set of outputs  



Map Reduce on the GPU 

  GPUs are well suited for the Map phase of Map Reduce 
  Lots of parallelism to execute independent threads, multithreading, high 

bandwidth 

  The reduce phase is more difficult, since it introduces dependences  

  The natural dependence graph must be restructured to provide 
these dependences 
  Only local communication allowed, global synchronization very expensive  
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Reduction on the GPU 

  It’s well known that efficient reductions on the GPU are difficult 

  Many choices 
  How much serialization 

  How much loop unrolling 

  Pitfalls 
  Tree structure of reduction can map poorly to SIMD architectures 

  Bank conflicts  

  Strongly data size dependent 
  The best reduction for one data set size may be 60x worse than the best for 

another data set size 

  Solution: Have a framework take care of the reductions 
  At present, we provide two variations of a logarithmic reduction, that differ 

in their loop unrolling  



Code Generation Framework 

  Our framework takes as inputs: 
  A Map function, written in CUDA, which produces: 

  A set of outputs in local memory 

  A set of predicates, controlling how the outputs should be used in the various 
reduce functions  

  A set of binary reduce operators 

  And a cleanup function which operates on the outputs of the reductions 

  And creates:  

  A map + local reduce function 

  A global reduce + cleanup function 

Reduce 
1 2 

Map 
Annotated CUDA Generated CUDA 

Cleanup 



Map Reduce: Map

  Map function produces outputs in local memory 
  Each output is an array with one entry per thread 

  The Map function produces predicates which gate participation of 
each output in each reduction function 
  The predicates are stored in an array of integers, one entry per thread 

  This means we currently don’t support more than 32 reduce functions, 
since we use a bit in every entry for each reduce 

  Predicates provide algorithmic selection (limited “keys” from Google MR) 
and solve thread count boundary issues 
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Map Reduce: Reduce 

  Reduce operators take two sets of inputs, and produce one set of 
outputs 

  Reduce operators must be associative (or at least pseudo-
associative, like floating-point add) 
  This gives us flexibility to restructure the reduction however is best 

  Reduce operators must provide an identity value 



Support Vector Machines 

  SVMs are a popular binary classification technique 
  Recognition, Bioinformatics, Text processing, Network security, etc. 

  The idea is to find a hyperplane separating labeled training data 
with maximal margin 

  New points are classified against the hyperplane 

  Maximal margin criterion provides generality 

  Use of kernel functions allows for nonlinearity  



SVM Training 

  Quadratic Program 

  Some kernel functions: 
                                              Polynomial 
                                              Radial Basis Function 

max
l∑

i=1

αi −
1
2
αT Qα

yT α = 0
s.t. 0 ≤ αi ≤ C, ∀i ∈ [1, l]

Qij = yiyjΦ(xi, xj)

Φ(xi, xj ; γ) = exp{−γ||xi − xj ||2}

Variables: 
α: Weight for each training 
point (determines classifier) 

Data: 
l: number of training points 

C: trades off error on training 
set for generalization 
performance 

y: Label (+/- 1) for each training 
point 

x: training points  

Φ(xi, xj ; a, r, d) = (axi · xj + r)d



SVM Training: Implementation 
  We use the Sequential Minimal Optimization algorithm 

  The computation is iterative, with each iteration containing a Map Reduce 

  The framework enables composition of the loop & the Map Reduce 
  Library based approaches have too much overhead 

  At each iteration, we find the arg max and arg min of two data dependent 
subsets of a vector 
  Predication used for algorithmic purposes 

  SVM Training requires computation of a large matrix 
  We cache rows of this matrix on the GPU, managing the cache on the CPU 

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 

… 



SVM Training Results 

  Comparing GeForce 8800GTX to LibSVM, on 2.66 GHz Intel Core 2 Duo 

  10-30x speedup 

  This despite our currently naive algorithm compared to competitors 

  Map Reduce Framework reduced kernel LOC by 34% 
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SVM Classification 

  Training points with nonzero weights determine the classifier 
  “Support Vectors” 

  Classify new point against support vectors: 

  SVM Classification involves lots of dot products 

  We cast the dot products as an SGEMM, and then use the Map 
Reduce framework to finish the classification 

ẑ = sgn

{
b +

l∑

i=1

yiαiΦ(xi, z)

}



SVM Classification Results 

  120-150x speedup 
  Some of this is due to suboptimal implementation by LibSVM 

  Map Reduce Framework reduced kernel LOC by 64% 
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Conclusion & Future Work 

  The Map Reduce programming framework is a natural fit for GPUs 

  Using the framework saves significant programmer effort 
  The most error prone sections of code subsumed in framework 

  Framework enables composition of Map Reduce computations  

  Our SVM training and classification implementations perform 
well on the G80 

  Future work  
  Prove applicability of framework with more applications 

  Add more reduction styles (including hybrid CPU/GPU reductions) 



The end 


