
A Map Reduce Framework for
Programming Graphics Processors

Bryan Catanzaro
Narayanan Sundaram
Kurt Keutzer

Overview

  Map Reduce is a good abstraction to map to GPUs
  It is easy for programmers to understand a computation in terms of Map

Reduce

  Map Reduce can map well to GPUs

  Programming efficient Map Reduce on the GPU can be hard
  Reduction is a global operation, requiring coordination

  We show how a code generation framework for Map Reduce can
ease programming and provide high performance

What is Map Reduce?
  “Map Reduce” can mean various things

  To us, it means
  A map stage, where threads compute

independently

  A reduce stage, where the results of the map stage are summarized

  This is a pattern of computation and communication
  Not tied to key/value pairs, etc...

  We consider Map Reduce computations where:
  Each instance of a map function produces one set of outputs

  Each of a set of reduce functions, gated by per element predicates, produces
a set of outputs

Map Reduce on the GPU

  GPUs are well suited for the Map phase of Map Reduce
  Lots of parallelism to execute independent threads, multithreading, high

bandwidth

  The reduce phase is more difficult, since it introduces dependences

  The natural dependence graph must be restructured to provide
these dependences
  Only local communication allowed, global synchronization very expensive

Map

Reduce

Map +
Local
Reduce

Global
Reduce

Reduction on the GPU

  It’s well known that efficient reductions on the GPU are difficult

  Many choices
  How much serialization

  How much loop unrolling

  Pitfalls
  Tree structure of reduction can map poorly to SIMD architectures

  Bank conflicts

  Strongly data size dependent
  The best reduction for one data set size may be 60x worse than the best for

another data set size

  Solution: Have a framework take care of the reductions
  At present, we provide two variations of a logarithmic reduction, that differ

in their loop unrolling

Code Generation Framework

  Our framework takes as inputs:
  A Map function, written in CUDA, which produces:

  A set of outputs in local memory

  A set of predicates, controlling how the outputs should be used in the various
reduce functions

  A set of binary reduce operators

  And a cleanup function which operates on the outputs of the reductions

  And creates:

  A map + local reduce function

  A global reduce + cleanup function

Reduce
1 2

Map
Annotated CUDA Generated CUDA

Cleanup

Map Reduce: Map

  Map function produces outputs in local memory
  Each output is an array with one entry per thread

  The Map function produces predicates which gate participation of
each output in each reduction function
  The predicates are stored in an array of integers, one entry per thread

  This means we currently don’t support more than 32 reduce functions,
since we use a bit in every entry for each reduce

  Predicates provide algorithmic selection (limited “keys” from Google MR)
and solve thread count boundary issues

Computation

Outputs
Predicates

Map Reduce: Reduce

  Reduce operators take two sets of inputs, and produce one set of
outputs

  Reduce operators must be associative (or at least pseudo-
associative, like floating-point add)
  This gives us flexibility to restructure the reduction however is best

  Reduce operators must provide an identity value

Support Vector Machines

  SVMs are a popular binary classification technique
  Recognition, Bioinformatics, Text processing, Network security, etc.

  The idea is to find a hyperplane separating labeled training data
with maximal margin

  New points are classified against the hyperplane

  Maximal margin criterion provides generality

  Use of kernel functions allows for nonlinearity

SVM Training

  Quadratic Program

  Some kernel functions:
 Polynomial
 Radial Basis Function

max
l∑

i=1

αi −
1
2
αT Qα

yT α = 0
s.t. 0 ≤ αi ≤ C, ∀i ∈ [1, l]

Qij = yiyjΦ(xi, xj)

Φ(xi, xj ; γ) = exp{−γ||xi − xj ||2}

Variables:
α: Weight for each training
point (determines classifier)

Data:
l: number of training points

C: trades off error on training
set for generalization
performance

y: Label (+/- 1) for each training
point

x: training points

Φ(xi, xj ; a, r, d) = (axi · xj + r)d

SVM Training: Implementation
  We use the Sequential Minimal Optimization algorithm

  The computation is iterative, with each iteration containing a Map Reduce

  The framework enables composition of the loop & the Map Reduce
  Library based approaches have too much overhead

  At each iteration, we find the arg max and arg min of two data dependent
subsets of a vector
  Predication used for algorithmic purposes

  SVM Training requires computation of a large matrix
  We cache rows of this matrix on the GPU, managing the cache on the CPU

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

…

SVM Training Results

  Comparing GeForce 8800GTX to LibSVM, on 2.66 GHz Intel Core 2 Duo

  10-30x speedup

  This despite our currently naive algorithm compared to competitors

  Map Reduce Framework reduced kernel LOC by 34%

0

5

10

15

20

25

30

35

usps face web adult mnist

SVM Training Speedup (x)

SVM Classification

  Training points with nonzero weights determine the classifier
  “Support Vectors”

  Classify new point against support vectors:

  SVM Classification involves lots of dot products

  We cast the dot products as an SGEMM, and then use the Map
Reduce framework to finish the classification

ẑ = sgn

{
b +

l∑

i=1

yiαiΦ(xi, z)

}

SVM Classification Results

  120-150x speedup
  Some of this is due to suboptimal implementation by LibSVM

  Map Reduce Framework reduced kernel LOC by 64%

0

20

40

60

80

100

120

140

160

usps face web adult mnist

SVM Classification Speedup (x)

Conclusion & Future Work

  The Map Reduce programming framework is a natural fit for GPUs

  Using the framework saves significant programmer effort
  The most error prone sections of code subsumed in framework

  Framework enables composition of Map Reduce computations

  Our SVM training and classification implementations perform
well on the G80

  Future work
  Prove applicability of framework with more applications

  Add more reduction styles (including hybrid CPU/GPU reductions)

The end

