
A Map Reduce Framework for
Programming Graphics Processors

Bryan Catanzaro
Narayanan Sundaram
Kurt Keutzer

Overview

  Map Reduce is a good abstraction to map to GPUs
  It is easy for programmers to understand a computation in terms of Map

Reduce

  Map Reduce can map well to GPUs

  Programming efficient Map Reduce on the GPU can be hard
  Reduction is a global operation, requiring coordination

  We show how a code generation framework for Map Reduce can
ease programming and provide high performance

What is Map Reduce?
  “Map Reduce” can mean various things

  To us, it means
  A map stage, where threads compute

independently

  A reduce stage, where the results of the map stage are summarized

  This is a pattern of computation and communication
  Not tied to key/value pairs, etc...

  We consider Map Reduce computations where:
  Each instance of a map function produces one set of outputs

  Each of a set of reduce functions, gated by per element predicates, produces
a set of outputs

Map Reduce on the GPU

  GPUs are well suited for the Map phase of Map Reduce
  Lots of parallelism to execute independent threads, multithreading, high

bandwidth

  The reduce phase is more difficult, since it introduces dependences

  The natural dependence graph must be restructured to provide
these dependences
  Only local communication allowed, global synchronization very expensive

Map

Reduce

Map +
Local
Reduce

Global
Reduce

Reduction on the GPU

  It’s well known that efficient reductions on the GPU are difficult

  Many choices
  How much serialization

  How much loop unrolling

  Pitfalls
  Tree structure of reduction can map poorly to SIMD architectures

  Bank conflicts

  Strongly data size dependent
  The best reduction for one data set size may be 60x worse than the best for

another data set size

  Solution: Have a framework take care of the reductions
  At present, we provide two variations of a logarithmic reduction, that differ

in their loop unrolling

Code Generation Framework

  Our framework takes as inputs:
  A Map function, written in CUDA, which produces:

  A set of outputs in local memory

  A set of predicates, controlling how the outputs should be used in the various
reduce functions

  A set of binary reduce operators

  And a cleanup function which operates on the outputs of the reductions

  And creates:

  A map + local reduce function

  A global reduce + cleanup function

Reduce
1 2

Map
Annotated CUDA Generated CUDA

Cleanup

Map Reduce: Map

  Map function produces outputs in local memory
  Each output is an array with one entry per thread

  The Map function produces predicates which gate participation of
each output in each reduction function
  The predicates are stored in an array of integers, one entry per thread

  This means we currently don’t support more than 32 reduce functions,
since we use a bit in every entry for each reduce

  Predicates provide algorithmic selection (limited “keys” from Google MR)
and solve thread count boundary issues

Computation

Outputs
Predicates

Map Reduce: Reduce

  Reduce operators take two sets of inputs, and produce one set of
outputs

  Reduce operators must be associative (or at least pseudo-
associative, like floating-point add)
  This gives us flexibility to restructure the reduction however is best

  Reduce operators must provide an identity value

Support Vector Machines

  SVMs are a popular binary classification technique
  Recognition, Bioinformatics, Text processing, Network security, etc.

  The idea is to find a hyperplane separating labeled training data
with maximal margin

  New points are classified against the hyperplane

  Maximal margin criterion provides generality

  Use of kernel functions allows for nonlinearity

SVM Training

  Quadratic Program

  Some kernel functions:
 Polynomial
 Radial Basis Function

max
l∑

i=1

αi −
1
2
αT Qα

yT α = 0
s.t. 0 ≤ αi ≤ C, ∀i ∈ [1, l]

Qij = yiyjΦ(xi, xj)

Φ(xi, xj ; γ) = exp{−γ||xi − xj ||2}

Variables:
α: Weight for each training
point (determines classifier)

Data:
l: number of training points

C: trades off error on training
set for generalization
performance

y: Label (+/- 1) for each training
point

x: training points

Φ(xi, xj ; a, r, d) = (axi · xj + r)d

SVM Training: Implementation
  We use the Sequential Minimal Optimization algorithm

  The computation is iterative, with each iteration containing a Map Reduce

  The framework enables composition of the loop & the Map Reduce
  Library based approaches have too much overhead

  At each iteration, we find the arg max and arg min of two data dependent
subsets of a vector
  Predication used for algorithmic purposes

  SVM Training requires computation of a large matrix
  We cache rows of this matrix on the GPU, managing the cache on the CPU

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

…

SVM Training Results

  Comparing GeForce 8800GTX to LibSVM, on 2.66 GHz Intel Core 2 Duo

  10-30x speedup

  This despite our currently naive algorithm compared to competitors

  Map Reduce Framework reduced kernel LOC by 34%

0

5

10

15

20

25

30

35

usps face web adult mnist

SVM Training Speedup (x)

SVM Classification

  Training points with nonzero weights determine the classifier
  “Support Vectors”

  Classify new point against support vectors:

  SVM Classification involves lots of dot products

  We cast the dot products as an SGEMM, and then use the Map
Reduce framework to finish the classification

ẑ = sgn

{
b +

l∑

i=1

yiαiΦ(xi, z)

}

SVM Classification Results

  120-150x speedup
  Some of this is due to suboptimal implementation by LibSVM

  Map Reduce Framework reduced kernel LOC by 64%

0

20

40

60

80

100

120

140

160

usps face web adult mnist

SVM Classification Speedup (x)

Conclusion & Future Work

  The Map Reduce programming framework is a natural fit for GPUs

  Using the framework saves significant programmer effort
  The most error prone sections of code subsumed in framework

  Framework enables composition of Map Reduce computations

  Our SVM training and classification implementations perform
well on the G80

  Future work
  Prove applicability of framework with more applications

  Add more reduction styles (including hybrid CPU/GPU reductions)

The end

