MATS: MULTICORE ADAPTIVE TRACE SELECTION

JASON MARS, MARY LOU SOFFA UNIVERSITY OF VIRGINIA

BINARY LEVEL DYNAMIC OPTIMIZATION

- Optimize Based on Runtime Information
- Optimize Paths of Execution (Traces)
- Must Identify Hot Paths
 - Hot = frequently executed
- "90% Execution in Only 10% of Code"

WHAT IS A HOT TRACE?

Application Control Flow

Hot Trace

TRACE QUALITY

Optimization Potential Depends on Trace Quality

- Time Spent on Traces
- Trace Length
- Ideal Trace Executions
 - Trace Executes to Completion

GOALS

"How can we perform trace selection without incurring too much application overhead?"

"If we use a more expensive algorithm would our traces be better?"

- Low/No Overhead Traces Selection
- Higher Quality Traces
 - Long
 - Hot
 - Ideal

TYPICAL TRACE SELECTION APPROACH: NET

- Dynamo Model
 - Binary Translator
 Instruments Application
 - Next Executing Tail (NET)
 - Backedge Branches
 Profiled

CHALLENGES

- Overhead Due to Application Obtrusion
 - Overhead impacts optimization benefits

- Limitation of Monitoring Analysis Due to the Overhead Constraints
 - Trace Quality May Suffer
 - Potential benefits depends on trace quality

CHALLENGES

Multicore Brings New Possibilities

MATS APPROACH: OVERVIEW

The Core Wide Branch Trace Buffer (CWBTB) is a centralized BTB that is readable by all cores

GOALS

"How can we do trace selection without incurring too much application overhead?"

"If we use a more expensive algorithm would our traces be better?"

- Low/No Overhead Traces Selection
- Higher Quality Traces
 - Long
 - Hot
 - Ideal

MATS APPROACH: TRACE SELECTION ALGORITHM

- Pattern Based Approach
 - Patterns in a sequence of taken branches from CWBTB
 - The Sequitur algorithm used for pattern detection
 - Take advantage of global information

MATS APPROACH: TRACE SELECTION ALGORITHM

Execution Path:

acefhadefhbdefh

MATS APPROACH: SPECULATION ENGINE

EVALUATION

• Goal: Determine if our traces are better.

- Time Spent on Traces
- Ideal Traces Execution
- Trace Length

RESULTS: TIME SPENT ON TRACES

GOALS

"How can we do trace selection without incurring to much application overhead?"

"If we use a more expensive algorithm would our traces be better?"

- Low/No Overhead Traces Selection
- Higher Quality Traces
 - Long
 - Hot 🔽
 - Ideal

RESULTS: TIME ON IDEAL TRACES

GOALS

"How can we do trace selection without incurring to much application overhead?"

"If we use a more expensive algorithm would our traces be better?"

- Low/No Overhead Traces Selection
- Higher Quality Traces
 - Long

 - Hot
 Ideal

RESULTS: TRACE LENGTH

GOALS

"How can we do trace selection without incurring to much application overhead?"

"If we use a more expensive algorithm would our traces be better?"

- Low/No Overhead Traces Selection
- Higher Quality Traces
 - Long
 Hot

SUMMARY

- Used multicore architecture to unobtrusively perform trace selection
- Designed new trace selection analysis that produces higher quality traces
- Demonstrated that using more expensive trace analysis can produce better traces
- Demonstrated the benefits possible from leveraging performance monitoring hardware

FUTURE WORK

- Study the best "harvesting" criteria for patterns, and the best trace invalidation criteria and how they apply to different workloads
- Develop a self tuning speculation engine to tune to different applications and application phases
- Integrate this trace selector with an optimizing engine

RELATED WORK

- Hardware Approach
 - Trace Cache
 - does not facilitate software dynamic optimization
 - Trident (Zhang et al.)
 - not available

RELATED WORK

- <u>Software Dynamic Approach</u>
 - Employed successfully by :
 - Dynamo (Bala, Duesterwald et al.)
 - Sequitur Used for Static Path Profiling
 - Ball and Laurus
 - See Paper for more

QUESTIONS?

DISCUSSION QUESTIONS

- With all this Multi/Manycore talk going on, what can we do for single threaded and legacy programs?
- Is there a place of Binary Translator VEE Research for the Multicore?
- Is a Managed OS (like Singularity) The Future, or Just a waste of time? (Singularity = OS built around CLR)

SEQUITUR

Sequitur: S-> A -8 0 A A-> 12 -22

