
MATS: Multicore
Adaptive Trace

Selection

Jason Mars, Mary Lou Soffa
University of Virginia

Binary Level Dynamic
Optimization

• Optimize Based on Runtime Information

• Optimize Paths of Execution (Traces)

• Must Identify Hot Paths

• Hot = frequently executed

• “90% Execution in Only 10% of Code”

c
d

a

b

What Is a Hot Trace?

a
b

c

d

Application Control Flow

Hot Trace

Trace Quality

• Optimization Potential Depends on Trace Quality

• Time Spent on Traces

• Trace Length

• Ideal Trace Executions

• Trace Executes to Completion

Trace Quality:
Time Spent on Traces

On Trace Original CodeOn Trace Original Code

Good Bad

Trace Quality:
Length

Trace Trace

Good Bad

Trace Quality:
Ideal Trace Execution

TraceTrace

Compensation
Code

Compensation
Code

Original BinaryOriginal Binary

Good Bad

Goals

• Low/No Overhead Traces Selection

• Higher Quality Traces

• Long

• Hot

• Ideal

“If we use a more expensive algorithm would our
traces be better?”

“How can we perform trace selection without incurring too much
application overhead?”

Typical Trace Selection
Approach: NET

• Dynamo Model

• Binary Translator
Instruments Application

• Next Executing Tail
(NET)

• Backedge Branches
Profiled

Application

Trace Selector

Core 1

Instrumentation

Binary Translator

Challenges

• Overhead Due to Application Obtrusion
• Overhead impacts optimization benefits

• Limitation of Monitoring Analysis Due to the
Overhead Constraints

• Trace Quality May Suffer

• Potential benefits depends on trace quality

Challenges

Multicore Brings
New Possibilities

MATS Approach:
Overview

Application

Core 1 Core 2CWBTB

The Core Wide Branch Trace Buffer (CWBTB) is a
centralized BTB that is readable by all cores

MATS

Goals

• Low/No Overhead Traces Selection

• Higher Quality Traces

• Long

• Hot

• Ideal

“If we use a more expensive algorithm would our traces be better?”

“How can we do trace selection without incurring too much application overhead?”

MATS Approach:
Trace Selection Algorithm

• Pattern Based Approach

• Patterns in a sequence of taken branches from
CWBTB

• The Sequitur algorithm used for pattern
detection

• Take advantage of global information

MATS Approach:
Trace Selection Algorithm

acefhadefhbdefh

a

dc

g

b

acefhadefhbdefh

e

f

h

e

f

h

Execution Path:

e
f
h

MATS Approach:
Speculation Engine

Read
CWBTB

Run
Sequitur

Branch
Window

Full?

Add New
Traces to

Bank

Remove
Stale

Traces

Clear
Branch

Window

Yes

No

Harvest

Evaluation

• Goal: Determine if our traces are better.

• Time Spent on Traces

• Ideal Traces Execution

• Trace Length

Results:
Time Spent On Traces

 MEATS
 NET

 0%

 60%

 80%

 100%

m
ea

n

x
al

an

sj
en

g

o
m

n
et

p
p

m
cf

li
b
q
u
an

tu
m

h
m

m
er

h
2
6
4
re

f

g
o
b
m

k

g
cc

b
zi

p
2

as
ta

r

T
im

e
S

p
en

t
o
n
 T

ra
ce

s

 20%

 40%

MATS

Goals

• Low/No Overhead Traces Selection

• Higher Quality Traces

• Long

• Hot

• Ideal

“If we use a more expensive algorithm would our traces be better?”

“How can we do trace selection without incurring to much application overhead?”

Results:
Time on Ideal Traces

 MEATS
 NET

 0%

 60%

 80%

 100%

m
ea

n

x
al

an

sj
en

g

o
m

n
et

p
p

m
cf

li
b

q
u

an
tu

m

h
m

m
er

h
2

6
4

re
f

g
o

b
m

k

g
cc

b
zi

p
2

as
ta

r

T
im

e
S

p
en

t
o

n
 I

d
ea

l
T

ra
ce

s

 20%

 40%

MATS

Goals

• Low/No Overhead Traces Selection

• Higher Quality Traces

• Long

• Hot

• Ideal

“If we use a more expensive algorithm would our traces be better?”

“How can we do trace selection without incurring to much application overhead?”

Results: Trace Length

 MEATS
 NET (ideal)
 NET

 MEATS (ideal)

as
ta

r 0

 10

 20

 30

 40

 50

m
ea

n

x
al

an

sj
en

g

o
m

n
et

p
p

m
cf

li
b

q
u

an
tu

m

h
m

m
er

h
2

6
4

re
f

g
o

b
m

k

g
cc

b
zi

p
2

T
ra

ce
 L

en
g

th
 (

B
as

ic
 B

lo
ck

s) MATS
MATS

Goals

• Low/No Overhead Traces Selection

• Higher Quality Traces

• Long

• Hot

• Ideal

“If we use a more expensive algorithm would our traces be better?”

“How can we do trace selection without incurring to much application overhead?”

Summary

• Used multicore architecture to unobtrusively perform
trace selection

• Designed new trace selection analysis that produces
higher quality traces

• Demonstrated that using more expensive trace analysis
can produce better traces

• Demonstrated the benefits possible from leveraging
performance monitoring hardware

Future Work

• Study the best “harvesting” criteria for patterns,
and the best trace invalidation criteria and how
they apply to different workloads

• Develop a self tuning speculation engine to tune to
different applications and application phases

• Integrate this trace selector with an optimizing
engine

Related Work

• Hardware Approach

• Trace Cache

• does not facilitate software dynamic optimization

• Trident (Zhang et al.)

• not available

Related Work

• Software Dynamic Approach

• Employed successfully by :

• Dynamo (Bala, Duesterwald et al.)

• Sequitur Used for Static Path Profiling

• Ball and Laurus

• See Paper for more

Questions?

Discussion
Questions

• With all this Multi/Manycore talk
going on, what can we do for single
threaded and legacy programs?

• Is there a place of Binary Translator
VEE Research for the Multicore?

• Is a Managed OS (like Singularity) The
Future, or Just a waste of time?
(Singularity = OS built around CLR)

Sequitur

Address: 30 42 20 12 12 24 2

Delta: 12 -22 -8 0 12 -22

Sequitur: S-> A -8 0 A
A-> 12 -22

S
Tree:

A A

