
Comparing Synthesizable HDL Design and Stream
Programming

Jesse G. Beu
Georgia Institute of Technology

Jesse.Beu@gmail.com

Thomas M. Conte
Georgia Institute of Technology

Tom@conte.us

In recent years there has been growing concern over
whether we as a community will be able to exploit future parallel
architectures, specifically with regard to the programmer’s ability
to adapt. It is often argued that programmers are not well
equipped to program in parallel and thus new paradigms are
developed to ease the transition from conventional sequential
semantics to more parallel friendly languages [1, 2, 6, 7]. One
area that is often ignored in this quest for new tools, however, are
synthesizable hardware descriptive languages (HDLs), such as
Verilog HDL [5] and VHDL [4], where hardware engineers have
been successfully implementing parallel algorithms for years.
This brings about an interesting consideration: how does HDL
design compare to stream programming?
 One of the fundamental properties of stream
programming is the decoupling of memory and computation
through a cycle of data organization phases followed by kernel
computation phases [3]. This results in a gather-operate-scatter
type methodology for execution. A similarity to hardware design
exists because one of the driving principals of good hardware
design is efficiency, often obtained by keeping hardware busy at
all times. This means being prepared to deliver data any time a
resource is available, often resulting in extensive use of buffers
and queues. As an interesting thought experiment, consider the
design of a familiar piece of hardware, a CPU core. A
considerable amount of resources are dedicated to the
organization and pre-processing of data in order to stream it
through small processing units (ALUs), then redistribute this data
back to memory. This is reflected in the HDL model that
represents a CPU core, which obviously mirrors the stream
programming methodology of gather-operate-scatter.
 Another important similarity between HDL and streams
are the similarities between Synchronous Data Flow (SDF)
graphs, which can represent stream programs, and pipelined block
diagrams, a common tool used during the design of ASICs. Both
break the problem into discrete pieces of work with specific
inputs and outputs to arrive at a solution. Both are also a
convenient way to represent parallel opportunity and pipeline-
potential, important factors for parallelization in both hardware
design and stream programming. Further, the hierarchical nature
of block diagrams provides a natural representation of locality at
multiple levels of granularity, another property often exploited by
stream program compilers [1, 7].
 A fundamental difference between these realms,
however, is the fact that dynamic memory allocation is not an
option in HDL since hardware cannot simply grow more silicon.
This restriction means that HDL has very finite bounds on what it
can and cannot do, which translates into restrictions on the kinds
and sizes of data structures that can be employed and the amount
of flexibility available; HDL algorithms often err on the safe side
of simplicity and worst-case scenarios. Stream programs, being

software rather than hardware, means not only are they free of
these concerns but also have the additional benefit of flexibility in
that they can be quickly modified and tuned as an application
space evolves, something that is often not a consideration during
hardware design. Additionally, since stream programmers are not
restricted to a box, they are afforded the luxury of more complex
and sophisticated techniques a hardware designer would never
dream of implementing.
 Hardware Descriptive Languages show us that
designers are capable of algorithmically parallel thinking and
have been successful at it for many years. Due to similarities
with stream programming, there is hope for the widespread
acceptance of stream programming in the future. Additionally,
considering HDLs as a form of stream programming may enable
the next generation of stream languages to learn from the success
of synthesizable HDLs to create more user friendly, successful
parallel languages for the future.

1. REFERENCES
[1] Buck, Foley, Horn, Sugerman, Fatahalian, Houston, and

Hanrahan 2004. Brook for GPUs: stream computing on
graphics hardware. In ACM SIGGRAPH 2004 Papers (Los
Angeles, California, August 08 - 12, 2004). J. Marks, Ed.
SIGGRAPH '04. ACM, New York, NY, 777-786.

[2] Gholoum, Sprangle, Fang, Wu and Zhou, "Ct: A Flexible
Parallel Programming Model for Tera-scale Architectures",
Intel Whitepaper, October 25, 2007

[3] Gummaraju and Rosenblum 2005. Stream Programming on
General-Purpose Processors. In Proceedings of the 38th
Annual IEEE/ACM international Symposium on
Microarchitecture (Barcelona, Spain, November 12 - 16,
2005). International Symposium on Microarchitecture. IEEE
Computer Society, Washington, DC, 343-354.

[4] IEEE. IEEE standard VHDL language reference manual,
IEEE Std. 1076-1993, 1994.

[5] IEEE std. 1364-2001, Verilog HDL Reference Manual, IEEE
press, 2001.

[6] NVIDIA. 2007. CUDA Technology;
http://www.nvidia.com/CUDA.

[7] Thies, Karczmarek and Amarasinghe, StreamIt: A Language
for Streaming Applications, Proceedings of the 11th
International Conference on Compiler Construction, p.179-
196, April 08-12, 2002

