
Data-Flow Deadlock Avoidance for Streaming Applications
Mapped on Network-on-Chips

Vittorio Zaccaria
Dipartimento di Elettronica e Informazione

Politecnico di Milano - ITALY
Email: zaccaria@elet.polimi.it

ABSTRACT
In this paper, we tackle the problem of deadlocks within
streaming applications running on network-on-chip (NoC)-
based architectures. First, we introduce a motivating exam-
ple which shows that even a deadlock-free streaming pipeline,
when mapped onto a deadlock-free network-on-chip, can
produce a data-flow deadlock. Second, we analyze state-of-
the-art deadlock-avoidance techniques to understand their
scalability versus increasingly complex application scenarios
and multi-core architectures. Finally, we provide some po-
tential solution from a combined compiler/OS/architecture
point of view.

1. A MOTIVATING EXAMPLE
Let us consider Figure 1, which shows a pipeline of streaming
filters. We assume the general case of variable-rate filters.
Data is generated by filter A and elaborated by the chain
composed of filters B, C and D. Each filter is a program run-
ning on a core of our target many-core system; the program
contains an input queue from which data can be extracted
with get and peek primitives exposed by the filter run-time
architecture. Once elaborated, data is sent to the receiving
filter’s input queue by using put operations. In this paper,
we consider that each put streaming primitive tightly inter-
acts with the network interface (NI) of the core itself in order
to send data across the network on chip connecting the pro-
cessors. We assume that the put primitive blocks whenever
the NoC router queue associated to the corresponding NI is
full.

!"

#"

$"

%"

&'()*+"

Figure 1: A deadlock-free pipeline of streaming fil-
ters.

We briefly show that the pipeline in Figure 1 is susceptible
of data-flow deadlock whenever it is deployed into a low-

level deadlock-free NoC. Let us assume to use a set of mesh
routers for connecting the cores associated to the filters of
Figure 1. The routers are organized in a row (see Figure 2).
Packet routing between routers happens in the X-direction,
which is provably low-level deadlock free. In fact, this is an
instance of the more generalized XY routing which avoids
circular dependencies between the buffers associated to the
routers of a mesh.

Figure 2 shows that, since paths a and b within router 2
share the same physical channel (channel 2.3), they create
a circular dependency between buffers involved in the com-
munication between A-B and B-C. As can be noted, this
situation is prone to a data-flow deadlock. Assume, for in-
stance, that C is slow in consuming data produced by B.
In this situation, the buffers associated to the B → C path
(i.e., 2.C, 3.2, 4.3 and B.4) are filled back-to-back, forcing
B to be often blocked into a put operation. The delay is
accumulated over channels on the A→ B path (4.B, 3.4 and
2.3). Those channels are, pessimistically, filled all with data
coming from A towards B. Now, nothing prevents B from
blocking again into a put (waiting for C to consume) while
C is blocked waiting that channel 2.3 is freed for at least
one slot (being all occupied by data directed to B). This is
a circular dependency since C is waiting, essentially, on an
event that only itself can produce; a data-flow deadlock has
been generated.

2. STATE-OF-THE-ART
Although the general problem of deadlock-avoidance is a
very investigated topic since decades, the interaction be-
tween NoCs and filter-mapping has been rarely taken into
account in the recent research on streaming architectures.

Ideally, the problem can be solved by a suitable static filter
mapping technique that avoids that streams belonging to
the same pipeline branch do not intersect within the NoC
topology. This would ensure that no circular dependencies
are created within the streaming graph, for both static and
variable rate filters.

One of the most notable and explicit contributions in this di-
rection has been developed within the StreamIt framework
[1, 2, 3]. The solution proposed by the StreamIt ideators
deals specifically with the RAW architecture, a communica-
tion exposed multi-processing system where the NoC is com-
posed by a 2D mesh. The nature of the solution combines
the ability to orchestrate the communication between filters
by using static information derived from the pipeline graph
with a sofisticated simulation technique. This implies the



Figure 2: A set of streaming filters connected by buffered channels. Routing of packets between routers is
free from low-level deadlocks. However, a data-flow deadlock is present.

implementation of a communication scheduler which stati-
cally schedules the communication by identifying deadlock
conditions and serializing the communication to avoid buffer
full scenarios.

3. A POTENTIAL SOLUTION - SYNERGY
BETWEEN THE OS, THE COMPILER AND
THE ARCHITECTURE

We must note that, in the literature, very few insights have
been given for answering the following questions:

• How the static communication scheduling is put in
place? Is it either enforced by the distributed action
of the routers or by a single master entity regularly
orchestrating the behavior of the single filters?

• What is the overall overhead due to the communica-
tion scheduling? How much the actual performance
of the system are far from an ideal deadlock-free and
scheduling-free scenario?

• Is static scheduling scalable and generalizable to dif-
ferent NoC-based streaming systems and future many-
core architectures?

The above questions are key in order to understand the scal-
ability and operability of the streaming paradigm towards
NoC-based many-core architectures. In this scenario, sev-
eral independent streaming applications can exploit the NoC
fabric in a way that is hardly predictable by a static com-
munication scheduler.

This situation can be easily identified in the IBM CELLTM

architecture where the OS is in charge of scheduling tasks
(filters) on the available tiles (or SPUs). In this case, the
compiler could not even access physical information about
the actual NoC fabric, which is embedded in the OS ker-
nel (as of version 2.6.23 of the Linux kernel for IBM Blade
Servers). The current API allows for specifying an abstract
’affinity’ property associated with tasks that should run on
neighorhood SPUs, but this is not enough for implementing
a ’traditional’ static communication scheduler. On the other
hand, the OS kernel is completely blind about the commu-
nication patterns of the tasks running on the SPUs. The
four uni-directional buses constituting the CELL’s Element
Interconnect Bus might be used to construct ’virtual net-
works’ to avoid deadlocks, but an inspection of the current
Linux OS kernel and the API shipped with the CELL pro-
cessor does not confirm any design decision taken in this
direction.

The deadlock scenario is just the surface of an iceberg-sized
problem which is essentially due to the missing synergy be-
tween the OS, the streaming compiler and the architecture.
We believe that this gap should be filled in order to build
performant and safe (working) streaming applications in the
future many-core era.

The gap can be filled by: 1) virtualizing the network re-
sources at the OS level and 2) allowing information about
the actual data-flow to be passed from the compiler to the
OS, in some standardized form (maybe just embedded into
the ELF image associated with the application).

Concerning the first point, we believe that exposing the ar-
chitecture/NoC features to the OS, such as the presence of
alternative paths or virtual networks, is of utmost impor-
tance in improving the overall system efficiency. This would
enable the OS to virtualize the streaming network resource
into safe streaming channels to be exploited by the filters. In
this sense, the put, get and peek operations would be imple-
mented as actual OS system calls operating on virtualized
resources.

Cocerning the second point, we note that a streaming-aware
OS would open a wide-range of run-time optimization possi-
bilities by allowing for safe communication among the stream-
ing filters and optimized, ad-hoc filter mapping for perfor-
mance and power consumption. We believe that the quest
for such optimized run-time techniques is sound and should
be taken into account by the OS developers in order to take
full advantage of the streaming paradigm. This paradigm
shift is comparable with the introduction of run-time binary
optimization techniques for statically compiled programs.

4. REFERENCES
[1] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting

coarse-grained task, data, and pipeline parallelism in stream
programs. ACM SIGPLAN Notices, 41(11), Nov 2006.

[2] M Gordon, D Maze, S Amarasinghe, W Thies, and et al. A
stream compiler for communication-exposed architectures. ACM
SIGARCH Computer Architecture News, Jan 2002.

[3] J. Chen, M. Gordon, W. Thies, M. Zwicker, K. Pulli, and Frédo
Durand. A reconfigurable architecture for load-balanced
rendering. HWWS ’05: Proceedings of the ACM conference on
Graphics hardware, Jul 2005.


