
Comparing Synthesizable HDL Design and 
Stream Programming

Jesse G Beu
Thomas M. Conte
Georgia Institute of Technology



Outline

Origin
Stream Programming
Synthesizable HDL ‘programming’
Design example
Comparison
Why should we care?



Origin

Computing Beyond Von Neumann
– Micro 2007 Panel discussion
– Concerns over future of programming
– Human brain, Quantum, Biology, Microarchitect
– No ‘hardware’ representative

What about HDL as a programming model?
– Hardware designers have been ‘programming’ in 

parallel for years



Stream Programming

Data organization followed by computation
– Gather-operate-scatter type methodology
– DMA and Kernel Processing

Extensive use of Synchronous Data Flow 
(SDF) graphs
Readily available, visible parallelism
– Compiler opportunity
– Easier mapping to hardware resources



Synthesizable HDL ‘programming’

ASICs are inherently parallel
Synchronous steps via procedural blocks
– Sensitivity lists
– @posedge clock
– Non-blocking assignment <=

Block Diagram Organization
RTL design – SDF analog

Always @(posedge clk) begin

a <= b;

b <= a;

end



Register Transfer Level

Register to register signal flow
Signal operator logic
– Explicit combination expression
– Standard constructs (if-then-else)

Synthesizable RTL is strict
– Enforces a design-before-coding style
– Heavy block diagram and flowchart use



Design Example – CPU Core

Datapaths
Control Units
Memory
Clock Circuitry



Design Example – CPU Core

Notice ALU’s size
Reflects Stream 
Programming

– Primary effort in packing 
and unpacking

– Small yet powerful kernel
– Overall effective design

Image for CMU11 RTL borrowed from http://research.microsoft.com/~gbell/computer_engineering/00000472.htm



Streams and HDL Similarities

Stream Programming
Decouple memory and 
computation
Synchronous Data Flow

– Discrete work units
– Expresses parallel and 

pipeline potential

Stream compiler exploit 
locality

Synthesizable HDL
Decouple function units 
and communication
Pipelined Block Diagram

– Discrete function units
– Expresses parallel and 

pipeline potential

Hierarchical nature 
expresses locality



Contrasting Streams and HDL

Stream Programming
Dynamic Memory

– Performance Impact

Algorithmically complex 
is acceptable
Easily manipulated

– Application evolution
– Fast turn around
– Tuning

Synthesizable HDL
Fixed resources

– Data structure implications

World of ‘worst cases’ 
Targeting high-volume, 
long term deployment
Validation and Reliability 
consideration



Why should we care?

Streams and HDL are similar, yet disjoint fields
Potential for better streaming languages
– Learn from HDLs widespread acceptance
– Use as a model for teaching parallel programmers

Potential for better HDLs
– Possible application of stream techniques to 

design?
– Atomicity anecdote: Rishiyur Nikhil and Bluespec



Thank you

Questions?


