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OutlineOutline

• Context: HPEC applications, Polymorphous Computer 
Architectures, Streaming Compilers, Streaming Virtual Machines

• Streaming language, or just do it from C?
• Streaming programming model vs. streaming execution model
• Streaming API for cores, chips chassis, boards
• Start with the compiler technology
• What we’ve got now
• Some forward research opportunities
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Polymorphous Computer ArchitecturesPolymorphous Computer Architectures

• DARPA/IPTO 2001-2007 research program
• Architectures and software for versatile HPEC
• UT Austin, MIT, Raytheon/USC-ISI, Stanford, Reservoir, GT, …
• Hardware architectures: TRIPS, RAW, Smart Memories, Monarch
• High Level Compiler: R-Stream
• Low Level Compilers: Scale, StreamIT, Monarch
• Morphware: Machine Models, Streaming VM, Threaded VM, UVM, 

HAL
• Streaming Languages: StreamIT, Brook
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HPEC Application Focus, Radar AppHPEC Application Focus, Radar App
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RR--Stream ProjectStream Project

HPEC
Application

in
C Language

Smart Memories Monarch TRIPS RAW Cell GPU FPGA

LLC LLC LLC LLC LLCLLC LLC

R-Stream 3.0 Compiler
Raising

High-Level Analysis
Parallelization

Partitioning
Tiling

Locality Enhancement
Placement

Communication Generation
…

Virtual Machine Abstractions

PCA Hardware:
10-100x FLOPS/Watt advantage
- Parallelism
- SIMD
- Heterogeneous Functional Units
- Coarse grain communication ops
- Streaming Engines
- Tiled Chip Multiprocessing
- Distributed local memories
- Starved for pin bandwidth

Polymorphous Computer Architectures COTS Streaming Architectures

Capabilities beyond previous compilers

Input programs: increased scope of optimizations
Imperfect loop nests.
Parametric affine static control programs.

Out: increased scope of targets
Optimizations and transformations for PCA.

Based on mathematics:
Unique implementation of capabilities that would
otherwise just be theory.

Less “magic”
First opportunity to use theoretical techniques on C

Programming
Challenges

Leveraged Investment
One high-level optimizer leveraged across

multiple architectures and implementations.
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You have to take it as given You have to take it as given 

• (And you should because it’s true)… that in order to get high 
FLOPS/W from next generation hardware, you need to 
choreograph a tight execution with:

• High degrees of concurrency
• Multiple types of concurrency (coarse, ILP, SIMD, …)
• Explicitly controlled communication (DMA, RDMA, message 

passing)
• Overlapping communications with computations
• Simple pipelines
• Arithmetic intensity – high FLOPS/IO - with very high locality

• The reward is that you might be able to get high percentage of a
peak 100 GFLOPS/Watt performance …modulo software

6
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Streaming languages in PCA programStreaming languages in PCA program

• Brook (circa 2003, now adopted by AMD)
– Comes from early GPGPU, Imagine project at Stanford
– Syntactic extensions to C
– Stream data abstraction, kernel data abstraction
– “Guide/force programmer” to write in 1-D form
– “Stream Operators”

• StreamIT
– Filters, Pipelines, Split/Joins, etc.
– Elegant language, Java bindings, synchronous dataflow
– Ask Saman, Rodric (no time here)
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Sample Brook CodeSample Brook Code

Kernels perform computations on streams. 
This kernel computes pair-wise sum.

Use of streamAdd kernel to double stream.

Use of stream 
operator to read from 

array into stream.

Stream is 1D, but elements 
can be arrays.  This is a 

stream of 3x3 arrays.

Represents s3.push(s1.pop() + s2.pop()).

void kernel streamAdd(stream float s1, stream float s2, out stream float s3) {
s3 = s1 + s2;

}

void kernel weightedSum(stream float image_in[3][3], out stream float image_out) {
image_out = 1.0 / 9.0 * 

(image_in[0][0] + image_in[0][1] + image_in[0][2] +
image_in[1][0] + image_in[1][1] + image_in[1][2] +
image_in[2][0] + image_in[2][1] + image_in[2][2]);

} 

int brookMain() {
float image[100][100][3][3];
float imageOut[100][100];

stream float st[3][3];
stream float stOut;
stream float stOutDouble;
…
streamRead(st, image, 0, 99, 0, 99);
weightedSum(st, stOut); 
streamAdd(stOut, stOut, stOutDouble);
streamWrite(imageOut, stOutDouble, 0, 99, 0, 99);
…

}
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Observations on (our) BrookObservations on (our) Brook

• Fitting streaming into C execution model
– Expression had to be strip mined

• Could revert back to C, but this is a double edged sword
– “Stuff that couldn’t be streamed” expressed in C
– Transpose strictly in Brook – Puzzler, then 2 pages of code!

• (Same in StreamIt)
• One character – ‘ – in MATLAB, by the way
• This is a corner turn!

• To get results on GPU for “hard stuff” a suite of “stream operators”
were defined.
– Language spec became increasingly baroque, situation-specific

9
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Puzzled by how to compile BrookPuzzled by how to compile Brook

• Objective is to get parallelism, locality, to distributed memory
architectures, etc.

• We needed to undo the bindings in the input program
• We needed to compile C anyway
• We needed a way to express the semantics of stream operators
• …

• Stepping back:
• The claim was that streams abstraction helped avoid C language 

issues like aliasing, etc.
• But even the one dimensional abstraction was limiting

– Modern radar algorithms want N-Dimensional constructs
– STAP, STRAAP, MIMO, …

10
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Our next step: Abstract Array COur next step: Abstract Array C

• Let’s just make it easier to express abstract arrays in C
– Help avoid the need for alias analysis heroics
– Get the N-dimensional abstractions we need
– Light touch on the language

• Solution was a syntactic indication that an array is abstractible
– A[[i]][[j]]         (an easy modification in the EDG front end)
– Tells the compiler that the array’s layout is undetermined

• In contrast to regular C

• Reality intrudes
– How do you pass abstract arrays in functions?
– A few more “little” language features sneak in (doall, etc.)

11
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Abstract Array CAbstract Array C

• Who’s going to write in that new syntax  anyway?

• Meanwhile, we started to better understand next-generation 
mapping technologies (polyhedral “stuff”) – that was a problem we 
could get our arms around.

• We’re trying to raise the level of abstraction, divorce from physical 
considerations…

• Finally, we reach the conclusion that defining new language features 
is energy that we could just put into implementing the analyses that 
would allow us to take a subset of C programs and “abstract” them.
– We punt abstract array C, just use C, write the analyses

12
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At the output side, the Streaming Virtual MachineAt the output side, the Streaming Virtual Machine

• LOTS of effort goes into defining an abstraction layer that can 
encompass TRIPS, RAW, Monarch, Smart Memories

• Streams, Kernels, binding in C, accepted by “low level compiler”

• Push, pop, EOS tokens, stream contexts

• An accompanying Morphware Machine Model
– Describing capacities, operations, throughputs, topology
– Lots of stuff…

• Resulting specification available, www.morphware.org

13
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Learning from trying Learning from trying ……

• HLC only is able to target a few of the primitives in SVM
• R-Stream 2.0 gets locked into a specific “big VLIW” execution model

– Shaped by Imagine
– But what about RAW, Monarch, TRIPS?
– Is it the compiler limitation or an API limitation?

• …
• Very difficult, and hard to give answers without a mapper
• It’s not so hard.   A TI320cXX… has a clear definition

• DMA, SIMD, tasks, parallelism, …
• Maybe it’s not sufficient for PCAs, but it’s not bad…

• Oh, and the machine model: the compiler only uses a subset of the 
primitives in the Machine Model spec.

14
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The conclusion is that the mapper is centralThe conclusion is that the mapper is central

• How do you know what language features help or don’t help?
• How do you know what execution models are feasible?
• You only need machine model features that affect the mapper

• So we come up with this…

15
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RR--Stream 3.0 Compiler FlowStream 3.0 Compiler Flow

16
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Oh, and then QR decompositionOh, and then QR decomposition

• The first algorithms that the HPEC users try is QR decomposition…

• R-Stream 2.0 blows up.   Most people don’t write QR in a streaming 
style.

• And there are a few different algorithms for computing QR
– (Gram-Schmidt, Householder, Givens, …)
– And the guys who build real HPEC systems know that some are 

better than others depending on the target
• Shared memory: Householder or GS
• Systolic: Givens
• Decision shaped by shape

17
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QR DecompositionsQR Decompositions

• Decompose X = QR, where Q is orthonormal  (QT Q = I) and R is 
upper triangular

• High performance of QR decomposition is crucial to many HPEC 
applications, e.g., QR Recursive Least Squares (QR-RLS) in a 
Space Time Adaptive Processing (STAP) radar

• Very efficient “hand crafted” systolic implementations exist, e.g., 
Nguyen et. al., HPEC 2005:

18

Efficiencies of the systolic form
come from multidimensional,

wavefront parallelism and high
degrees of locality
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RR--Stream Compiler FlowStream Compiler Flow
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The Polyhedral ModelThe Polyhedral Model

• Linear algebraic model for representing loops
• Iteration spaces as polyhedra. Dependencies as polyhedral relations 
• Statement-wise schedules: when + where a statement is executed
• Advantages:

– Greater scope of programs optimized
– Parametric programs optimized
– Common representation for all mapping steps
– Optimizations framed as (relatively) efficient problems for 

common mathematical solvers
• This allows compiler to optimize QR algorithms 

– in a way that is not possible with “classic” optimizers.
• Not specific to QR (i.e., not a “fastest QR in the West” library)

– Allows high-level optimization of QR jointly with other kernels

20
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Polyhedral Representation in a NutshellPolyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++) 

B[i,N-j] = A[i,j+1];
}
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Affine SchedulingAffine Scheduling

22
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Affine Scheduling and SpaceAffine Scheduling and Space--Time MappingsTime Mappings
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Parallelism Types and Loop TransformationsParallelism Types and Loop Transformations

24

• Automatically exhibits wavefront hyperplanes essential for:
– Communication-free parallelism
– Pipelined parallelism with near-neighbor communications thanks 

to permutable loops (i.e. all dependences are forward)
– Tiling for data locality and task aggregation (register reuse)

• Finds hyperplanes automatically for whole programs, not just QR
• Enables hierarchical parallelism exploitation (FPGA, SMP, MPI …)
• General formulation only available since 2007; R-Stream improves it

Parallelism not always that trivial to exhibit
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Tradeoff between Parallelism and LocalityTradeoff between Parallelism and Locality

25

for (i=0; i < N; i++) {
forfor (j=0; j < N; j++) {
B[j][i] = A[j][i] + u1[j] * v1[i] + 

u2[j] * v2[i];
x[i] = x[i] + B[j][i] * y[j] * beta

}
x[i] = x[i] + z[i];
doall (j = 0; j < N; j++)

w[j] = w[j] + B[j][i] * x[i] * alpha;
}

doall (i = 0; i < N; i++) {
doall (j = 0; j < N; j++) 

B[j][i] = A[j][i] + u1[j] * v1[i] + 
u2[j] * v2[i];

reduction_for (j = 0; j < N; j++) 
x[i] = x[i] + B[j][i] * y[j] * beta;

x[i] = x[i] + z[i];
}
doall (i = 0; i < N; i++)

reduction_for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing locality

Maximizing a weighted sum of 
parallelism and locality

doall (i = 0; i <= N + -1; i++) 
doall (j = 0; j <= N + -1; j++) 

B[i][j] = A[i][j] + u1[i] * v1[j] + 
u2[i] * v2[j];

doall (i = 0; i <= N + -1; i++) 
for (j = 0; j <= N + -1; j++) 

x[i] = x[i] + B[j][i] * y[j] * beta;
doall (i = 0; i <= N + -1; i++) 

x[i] = x[i] + z[i]; 
doall (i = 0; i <= N + -1; i++) 

for (j = 0; j <= N + -1; j++) 
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing coarse-grained parallelism

Optimization can frames 
the tradeoffs between 

parallelism and locality
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Givens QRGivens QR

• Uses Given’s rotations to “locally” zero out elements

26
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Givens QR in Plain Old Sequential CGivens QR in Plain Old Sequential C
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#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k];       // S0
float b = A[i+1][k];     // S1
float d = sqrt(a*a+b*b); 
float c = a/d; 
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j]   = t1;
A[i+1][j] = t2;  // S3

}
}

}
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Array ExpansionArray Expansion

28

• Creates additional storage to ensure parallelism exploitation
• Removes “memory-based” dependences
• Allows exclusive focus on producer-consumer relationships 

• Discarding producer-producer conflicts
#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k];       // S0
float b = A[i+1][k];     // S1
float d = sqrt(a*a+b*b); 
float c = a/d; 
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j]   = t1;
A[i+1][j] = t2;  // S3

}
}

}

for (int i = 0; i <= 1022; i++) {
for (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
for (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k], 

c[i][j], s[i][j]));
}

}

Before
After (simplified statement notation)
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Parallelization AlgorithmParallelization Algorithm
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for (int i = 0; i <= 1022; i++) {     // permutable 
for (int j = i; j <= 1022; j++) {   // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)        
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}
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+=Θforfor (int i = 0; i <= 1022; i++) {

forfor (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
forfor (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k], 

c[i][j], s[i][j]));
}

}

Before

After

Schedule

Wavefront parallelism and 
locality found (by virtue of 

“permutable” attribute), 
now exploitable in next 

steps …
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22--D Analogy (Applying the Parallelization Algorithm)D Analogy (Applying the Parallelization Algorithm)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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TilingTiling

31

for (int i = 0; i <= 1022; i++) {     // permutable 
for (int j = i; j <= 1022; j++) {   // permutable

S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)        

S3(A[1022+i-j][i+k],
A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable
// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

The locality implicit in the schedule 
permits a self-contained inner loop tile 

with a small, constrained memory 
footprint

Before

After
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22--D Analogy (Tiling)D Analogy (Tiling)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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Skewing the Tile Space (Skewing the Tile Space ( Pipelined ParallelismPipelined Parallelism))
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for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable

// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {

for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {

doall (n = k; n <= min(k+127, -l+1023); n++) {
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

for (int i = 0; i <= 78; i++) {
doall (int j = max(i-15, (4*i+ 4) / 5); j <= min(i, 63); j++) {
// Tiled loops for S1, S2, S3 omitted
doall (k = 0; k <= min(7, ( - i + j + 15) / 2); k++) {
for (l = 64 * i -64 * j; 

l <= min(64*i-64*j+63, 16*j+15, 1022); l++) {
for (m=max(l, 16*j); m <= min(1022, 16 * j + 15); m++) {
doall (n = 128 * k; n <= min(128*k+127, -l+1023); n++) 

{
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],
s[l][-l+m]);
}

}
}

}
}

}

The wavefront parallelism in the schedule 
(the permutable loops) is skewed to create 

pipeline parallelism

Before

After
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22--D Analogy (Skewing the Tile Space)D Analogy (Skewing the Tile Space)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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22--D Analogy (Summary)D Analogy (Summary)
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Some Performance Results (Givens QR)Some Performance Results (Givens QR)
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Seconds

Processors
Xeon 8-core (bi quad core) Dell 2 GHz
512x512 matrix
OpenMP produced at back end
gcc 4.2.3 –O6 –SSE3

1 processor version is without R-Stream

Automatically parallelized
Speedup with increasing # of 

processors
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Modified GramModified Gram--Schmidt QRSchmidt QR
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for (int k = 0; k < N; k++) {
float nrm = 0;
for (int i = 0; i < M; i++)
nrm += A[i][k] * A[i][k];

R[k][k] = sqrt(nrm);
for (int i = 0; i < M; i++)
Q[i][k] = A[i][k] / R[k][k];

for (int j = k+1; j < N; j++) {
R[k][j] = 0;
for (int i = 0; i < M; i++)
R[k][j] += Q[i][k] * A[i][j];

for (int i = 0; i < M; i++)
A[i][j] -= Q[i][k] * R[k][j];

}
}

Plain Old Sequential C Input

This algorithm is also easy to 
raise to polyhedral 

representation
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Modified GramModified Gram--Schmidt QR Parallelized Schmidt QR Parallelized 
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// prologue elided
for (int i = 0; i <= 1022; i++) {

reduction_for (int j = 0; j <= 1023; j++)
nrm += A[j][i] * A[j][i]; 

nrm[i] = sqrt(R[i][i]);
doall (int j = 0; j <= 1023; j++)

Q[j][i] = A[j][i] / R[i][i];
// barrier
doall (int j = 0; j <= - i + 1022; j++) {

for (int k = 0; k <= 1023; k++)
R[i][1+i+j] += Q[k][i] * A[k][1+i+j];

doall (int k = 0; k <= 1023; k++)
A[i][j] -= Q[k][i] * R[i][1+i+j];

// barrier
}
// barrier

}
// epilogue elided

Result, after scheduling

Here, the scheduling algorithm 
finds coarse-grained parallelism
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Householder QRHouseholder QR
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#define M 1024
#define N 1024
void hh(float A[M][N], float Rdiag[N]) {

int i, j, k;
for (k = 0; k < N; k++) {

float nrm = 0;
for (i = k; i < M; i++) 

nrm = hypot(nrm, A[i][k]);
if (nrm != 0) {

if (A[k][k] < 0) 
nrm = -nrm;

for (i = k; i < M; i++) {
A[i][k] = A[i][k] / nrm;

A[k][k] = A[k][k] + 1;
for (j = k+1; j < N; j++) {

float s = 0;
for (i = k; i < M; i++) 

s = s + A[i][k]*A[i][j];
s = -s/A[k][k];
for (i = k; i < M; i++) 

A[i][j] = A[i][j] + s*A[i][k];
}

}
Rdiag[k] = -nrm;

}
}

Plain Old Sequential C Input

Raising Householder to polyhedral 
representation requires “if conversion”
approximations, due to data-dependent 

predicates
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Householder QR ParallelizedHouseholder QR Parallelized
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// prologue elided
for (int i = 0; i <= 1022; i++)
for (int j = 0; j <= - i + 1023; j++)

_hh_1(_v1[i],nrm[i]);
_hh_2(A[i + j, i],_v1[i],_v2[i, j]);
_hh_3(_v2[i, j],nrm[i]);

_hh_4(nrm[i],_p1[i]);
if (_p1[i])

_hh_5(A[i, i],_v1[i],_v3[i]);
_hh_6(nrm[i],_v3[i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_7(A[i + j, i],nrm[i]);
_hh_9(s[i, j]);

// barrier
_hh_7(A[1023, i],nrm[i]);
_hh_8(A[i, i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_11(A[i, i],_v4[i, j]);
for (int k = 0; k <= - i + 1023; k++)

_hh_10(A[i + k, i],A[i + k, 1 + i + j],<>s[i, j]);

_hh_12(s[i, j],_v4[i, j],_v5[i, j]);
doall (int k = 0; k <= - i + 1023; k++)

_hh_13(A[i + k, 1 + i + j],A[i + k, i],_v5[i, j]);
// epilogue elided

Here, the parallelization algorithm finds 
fine-grained parallelism

Result, after scheduling and tiling
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Various Downstream TransformationsVarious Downstream Transformations

• Tiling to match granularity of tasks to core (e.g., local memory size)
• Placing the tiles onto 1D and 2D arrays of cores
• Managing distributed local memories
• Generating explicit DMA and synchronization operations
• Multibuffering to overlap computation and communication
• Partitioning code for heterogeneous targets (hosts, accelerators)
• Unrolling and jamming for improved locality (enable SIMDization
• Converting to dataflow representation (for FPGA accelerators)
• Generating directives (e.g., OpenMP)
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R-Stream also automates all of these transformations

Parallelization is only the first step!
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So, what have we got?So, what have we got?

• A tool and algorithm for converting a sequential execution 
model into a streaming execution model!
– Particularly, to distributed memories and explicitly controlled 

architectures
– Solved a “DARPA hard” problem - mapping

• And, it can emit to other execution models, e.g., we can emit to
OpenMP!   (Various target architectures in progress).

• Disclaimer: various limitations (implementation, theory) need to be 
resolved.
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What next (research)?What next (research)?

• Want to revisit the input language issue
– Support higher levels of abstraction, algorithm exploration

• Need libraries of “raisable” BLASx

• Maybe we need to pick up SVM effort (SVM 2.0)
– Many APIs (MCF, DACS/ALF, MPI-C, SPURS, QA, SCA, DRI…)
– Extend to core/chip/board/chassis/cabinet level
– Extend to other considerations (e.g., fault tolerance)

• Dynamism

• Mapping algorithms

43


