
r eser voi r abs

Observations from Developing aObservations from Developing a
Streaming CompilerStreaming Compiler

for Polymorphous Computer Architecturesfor Polymorphous Computer Architectures

Richard Lethin
(credit for the good ideas here to colleagues at Reservoir and in

the Morphware Forum, and with significant gratitude to our
funding agencies)

© 2008 Reservoir Labs, Inc.

12008 Micro41

r eser voi r abs

OutlineOutline

• Context: HPEC applications, Polymorphous Computer
Architectures, Streaming Compilers, Streaming Virtual Machines

• Streaming language, or just do it from C?
• Streaming programming model vs. streaming execution model
• Streaming API for cores, chips chassis, boards
• Start with the compiler technology
• What we’ve got now
• Some forward research opportunities

2

r eser voi r abs

Polymorphous Computer ArchitecturesPolymorphous Computer Architectures

• DARPA/IPTO 2001-2007 research program
• Architectures and software for versatile HPEC
• UT Austin, MIT, Raytheon/USC-ISI, Stanford, Reservoir, GT, …
• Hardware architectures: TRIPS, RAW, Smart Memories, Monarch
• High Level Compiler: R-Stream
• Low Level Compilers: Scale, StreamIT, Monarch
• Morphware: Machine Models, Streaming VM, Threaded VM, UVM,

HAL
• Streaming Languages: StreamIT, Brook

3

r eser voi r abs 4

HPEC Application Focus, Radar AppHPEC Application Focus, Radar App

r eser voi r abs 5

RR--Stream ProjectStream Project

HPEC
Application

in
C Language

Smart Memories Monarch TRIPS RAW Cell GPU FPGA

LLC LLC LLC LLC LLCLLC LLC

R-Stream 3.0 Compiler
Raising

High-Level Analysis
Parallelization

Partitioning
Tiling

Locality Enhancement
Placement

Communication Generation
…

Virtual Machine Abstractions

PCA Hardware:
10-100x FLOPS/Watt advantage
- Parallelism
- SIMD
- Heterogeneous Functional Units
- Coarse grain communication ops
- Streaming Engines
- Tiled Chip Multiprocessing
- Distributed local memories
- Starved for pin bandwidth

Polymorphous Computer Architectures COTS Streaming Architectures

Capabilities beyond previous compilers

Input programs: increased scope of optimizations
Imperfect loop nests.
Parametric affine static control programs.

Out: increased scope of targets
Optimizations and transformations for PCA.

Based on mathematics:
Unique implementation of capabilities that would
otherwise just be theory.

Less “magic”
First opportunity to use theoretical techniques on C

Programming
Challenges

Leveraged Investment
One high-level optimizer leveraged across

multiple architectures and implementations.

r eser voi r abs

You have to take it as given You have to take it as given

• (And you should because it’s true)… that in order to get high
FLOPS/W from next generation hardware, you need to
choreograph a tight execution with:

• High degrees of concurrency
• Multiple types of concurrency (coarse, ILP, SIMD, …)
• Explicitly controlled communication (DMA, RDMA, message

passing)
• Overlapping communications with computations
• Simple pipelines
• Arithmetic intensity – high FLOPS/IO - with very high locality

• The reward is that you might be able to get high percentage of a
peak 100 GFLOPS/Watt performance …modulo software

6

r eser voi r abs

Streaming languages in PCA programStreaming languages in PCA program

• Brook (circa 2003, now adopted by AMD)
– Comes from early GPGPU, Imagine project at Stanford
– Syntactic extensions to C
– Stream data abstraction, kernel data abstraction
– “Guide/force programmer” to write in 1-D form
– “Stream Operators”

• StreamIT
– Filters, Pipelines, Split/Joins, etc.
– Elegant language, Java bindings, synchronous dataflow
– Ask Saman, Rodric (no time here)

7

r eser voi r abs

Sample Brook CodeSample Brook Code

Kernels perform computations on streams.
This kernel computes pair-wise sum.

Use of streamAdd kernel to double stream.

Use of stream
operator to read from

array into stream.

Stream is 1D, but elements
can be arrays. This is a

stream of 3x3 arrays.

Represents s3.push(s1.pop() + s2.pop()).

void kernel streamAdd(stream float s1, stream float s2, out stream float s3) {
s3 = s1 + s2;

}

void kernel weightedSum(stream float image_in[3][3], out stream float image_out) {
image_out = 1.0 / 9.0 *

(image_in[0][0] + image_in[0][1] + image_in[0][2] +
image_in[1][0] + image_in[1][1] + image_in[1][2] +
image_in[2][0] + image_in[2][1] + image_in[2][2]);

}

int brookMain() {
float image[100][100][3][3];
float imageOut[100][100];

stream float st[3][3];
stream float stOut;
stream float stOutDouble;
…
streamRead(st, image, 0, 99, 0, 99);
weightedSum(st, stOut);
streamAdd(stOut, stOut, stOutDouble);
streamWrite(imageOut, stOutDouble, 0, 99, 0, 99);
…

}

r eser voi r abs

Observations on (our) BrookObservations on (our) Brook

• Fitting streaming into C execution model
– Expression had to be strip mined

• Could revert back to C, but this is a double edged sword
– “Stuff that couldn’t be streamed” expressed in C
– Transpose strictly in Brook – Puzzler, then 2 pages of code!

• (Same in StreamIt)
• One character – ‘ – in MATLAB, by the way
• This is a corner turn!

• To get results on GPU for “hard stuff” a suite of “stream operators”
were defined.
– Language spec became increasingly baroque, situation-specific

9

r eser voi r abs

Puzzled by how to compile BrookPuzzled by how to compile Brook

• Objective is to get parallelism, locality, to distributed memory
architectures, etc.

• We needed to undo the bindings in the input program
• We needed to compile C anyway
• We needed a way to express the semantics of stream operators
• …

• Stepping back:
• The claim was that streams abstraction helped avoid C language

issues like aliasing, etc.
• But even the one dimensional abstraction was limiting

– Modern radar algorithms want N-Dimensional constructs
– STAP, STRAAP, MIMO, …

10

r eser voi r abs

Our next step: Abstract Array COur next step: Abstract Array C

• Let’s just make it easier to express abstract arrays in C
– Help avoid the need for alias analysis heroics
– Get the N-dimensional abstractions we need
– Light touch on the language

• Solution was a syntactic indication that an array is abstractible
– A[[i]][[j]] (an easy modification in the EDG front end)
– Tells the compiler that the array’s layout is undetermined

• In contrast to regular C

• Reality intrudes
– How do you pass abstract arrays in functions?
– A few more “little” language features sneak in (doall, etc.)

11

r eser voi r abs

Abstract Array CAbstract Array C

• Who’s going to write in that new syntax anyway?

• Meanwhile, we started to better understand next-generation
mapping technologies (polyhedral “stuff”) – that was a problem we
could get our arms around.

• We’re trying to raise the level of abstraction, divorce from physical
considerations…

• Finally, we reach the conclusion that defining new language features
is energy that we could just put into implementing the analyses that
would allow us to take a subset of C programs and “abstract” them.
– We punt abstract array C, just use C, write the analyses

12

r eser voi r abs

At the output side, the Streaming Virtual MachineAt the output side, the Streaming Virtual Machine

• LOTS of effort goes into defining an abstraction layer that can
encompass TRIPS, RAW, Monarch, Smart Memories

• Streams, Kernels, binding in C, accepted by “low level compiler”

• Push, pop, EOS tokens, stream contexts

• An accompanying Morphware Machine Model
– Describing capacities, operations, throughputs, topology
– Lots of stuff…

• Resulting specification available, www.morphware.org

13

r eser voi r abs

Learning from trying Learning from trying ……

• HLC only is able to target a few of the primitives in SVM
• R-Stream 2.0 gets locked into a specific “big VLIW” execution model

– Shaped by Imagine
– But what about RAW, Monarch, TRIPS?
– Is it the compiler limitation or an API limitation?

• …
• Very difficult, and hard to give answers without a mapper
• It’s not so hard. A TI320cXX… has a clear definition

• DMA, SIMD, tasks, parallelism, …
• Maybe it’s not sufficient for PCAs, but it’s not bad…

• Oh, and the machine model: the compiler only uses a subset of the
primitives in the Machine Model spec.

14

r eser voi r abs

The conclusion is that the mapper is centralThe conclusion is that the mapper is central

• How do you know what language features help or don’t help?
• How do you know what execution models are feasible?
• You only need machine model features that affect the mapper

• So we come up with this…

15

r eser voi r abs

RR--Stream 3.0 Compiler FlowStream 3.0 Compiler Flow

16

Compiler InfrastructureCompiler Infrastructure

Polyhedral
Mapper

Polyhedral
Mapper

ISO
 C

 Front End
ISO

 C
 Front End

C
ode G

en/B
ack End

C
ode G

en/B
ack End

A
PI

Low
-Level C

om
pilers

Low
-Level C

om
pilers

R-Stream

RaisingRaising LoweringLowering

…

Different APIs
and execution

models (C, OpenMP,
DMA, Mitrion, …)

Loop + data transformations,
locality, communication and

synchronization optimizations

r eser voi r abs

Oh, and then QR decompositionOh, and then QR decomposition

• The first algorithms that the HPEC users try is QR decomposition…

• R-Stream 2.0 blows up. Most people don’t write QR in a streaming
style.

• And there are a few different algorithms for computing QR
– (Gram-Schmidt, Householder, Givens, …)
– And the guys who build real HPEC systems know that some are

better than others depending on the target
• Shared memory: Householder or GS
• Systolic: Givens
• Decision shaped by shape

17

r eser voi r abs

QR DecompositionsQR Decompositions

• Decompose X = QR, where Q is orthonormal (QT Q = I) and R is
upper triangular

• High performance of QR decomposition is crucial to many HPEC
applications, e.g., QR Recursive Least Squares (QR-RLS) in a
Space Time Adaptive Processing (STAP) radar

• Very efficient “hand crafted” systolic implementations exist, e.g.,
Nguyen et. al., HPEC 2005:

18

Efficiencies of the systolic form
come from multidimensional,

wavefront parallelism and high
degrees of locality

r eser voi r abs

RR--Stream Compiler FlowStream Compiler Flow

19

Compiler InfrastructureCompiler Infrastructure

Polyhedral
Mapper

Polyhedral
Mapper

ISO
 C

 Front End
ISO

 C
 Front End

C
ode G

en/B
ack End

C
ode G

en/B
ack End

A
PI

Low
-Level C

om
pilers

Low
-Level C

om
pilers

R-Stream

RaisingRaising LoweringLowering

…

Different APIs
and execution

models (C, OpenMP,
DMA, Mitrion, …)

Loop + data transformations,
locality, communication and

synchronization optimizations

r eser voi r abs

The Polyhedral ModelThe Polyhedral Model

• Linear algebraic model for representing loops
• Iteration spaces as polyhedra. Dependencies as polyhedral relations
• Statement-wise schedules: when + where a statement is executed
• Advantages:

– Greater scope of programs optimized
– Parametric programs optimized
– Common representation for all mapping steps
– Optimizations framed as (relatively) efficient problems for

common mathematical solvers
• This allows compiler to optimize QR algorithms

– in a way that is not possible with “classic” optimizers.
• Not specific to QR (i.e., not a “fastest QR in the West” library)

– Allows high-level optimization of QR jointly with other kernels

20

r eser voi r abs 21

Polyhedral Representation in a NutshellPolyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++)

B[i,N-j] = A[i,j+1];
}

1 0 0 0 0
0 1 0 1 0
0 0 0 0 1

1

i
j

M
N

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
10000
10010
00001

N
M
j
i

},2|),{(NjiMiji ≤≤≤≤
Iteration domains as polyhedra

Variables and access functions
as polyhedra

Affine schedules determine
the execution order and place

AB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
10000
00100
00000
00010
10000
00001
00000

N
M
j
i

Dependence relations as polyhedra tie these components together

r eser voi r abs

Affine SchedulingAffine Scheduling

22

i,jyxyx

xx

ijSS

S

ij

ji

i

 allfor),(,)()(legal is schedule A

timeexecution its toSstatement of iteration maps)(

),...,(schedule affine wise-statement Find

, relations dependence and S,...,S statementsgiven :

i

SS

n1

n1

Riff

Rscheduling Affine

∈ΘΘ

Θ

ΘΘ=Θ

f

“Iteration x of Si depends on iteration y of Sj”
“after”

r eser voi r abs

Affine Scheduling and SpaceAffine Scheduling and Space--Time MappingsTime Mappings

23

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Θ

)(

)(

:mappingstoschedulesfromtion Generaliza

3

2

1

xt

(x)s
(x)t
(x)s

x

k

Si

M

time-space

Space dimensions (can be interpreted
as processor element coordinates)

Time dimensions determine execution order

r eser voi r abs

Parallelism Types and Loop TransformationsParallelism Types and Loop Transformations

24

• Automatically exhibits wavefront hyperplanes essential for:
– Communication-free parallelism
– Pipelined parallelism with near-neighbor communications thanks

to permutable loops (i.e. all dependences are forward)
– Tiling for data locality and task aggregation (register reuse)

• Finds hyperplanes automatically for whole programs, not just QR
• Enables hierarchical parallelism exploitation (FPGA, SMP, MPI …)
• General formulation only available since 2007; R-Stream improves it

Parallelism not always that trivial to exhibit

r eser voi r abs

Tradeoff between Parallelism and LocalityTradeoff between Parallelism and Locality

25

for (i=0; i < N; i++) {
forfor (j=0; j < N; j++) {
B[j][i] = A[j][i] + u1[j] * v1[i] +

u2[j] * v2[i];
x[i] = x[i] + B[j][i] * y[j] * beta

}
x[i] = x[i] + z[i];
doall (j = 0; j < N; j++)

w[j] = w[j] + B[j][i] * x[i] * alpha;
}

doall (i = 0; i < N; i++) {
doall (j = 0; j < N; j++)

B[j][i] = A[j][i] + u1[j] * v1[i] +
u2[j] * v2[i];

reduction_for (j = 0; j < N; j++)
x[i] = x[i] + B[j][i] * y[j] * beta;

x[i] = x[i] + z[i];
}
doall (i = 0; i < N; i++)

reduction_for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing locality

Maximizing a weighted sum of
parallelism and locality

doall (i = 0; i <= N + -1; i++)
doall (j = 0; j <= N + -1; j++)

B[i][j] = A[i][j] + u1[i] * v1[j] +
u2[i] * v2[j];

doall (i = 0; i <= N + -1; i++)
for (j = 0; j <= N + -1; j++)

x[i] = x[i] + B[j][i] * y[j] * beta;
doall (i = 0; i <= N + -1; i++)

x[i] = x[i] + z[i];
doall (i = 0; i <= N + -1; i++)

for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing coarse-grained parallelism

Optimization can frames
the tradeoffs between

parallelism and locality

r eser voi r abs

Givens QRGivens QR

• Uses Given’s rotations to “locally” zero out elements

26

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000

0)cos()sin(0

0)sin()cos(0

0001

),,(

LLL

MOMM

LLL

MMOMM

OLL

MMMOM

LLK

θθ

θθ
θjiG

i

i

j

j

r eser voi r abs

Givens QR in Plain Old Sequential CGivens QR in Plain Old Sequential C

27

#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k]; // S0
float b = A[i+1][k]; // S1
float d = sqrt(a*a+b*b);
float c = a/d;
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j] = t1;
A[i+1][j] = t2; // S3

}
}

}

r eser voi r abs

Array ExpansionArray Expansion

28

• Creates additional storage to ensure parallelism exploitation
• Removes “memory-based” dependences
• Allows exclusive focus on producer-consumer relationships

• Discarding producer-producer conflicts
#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k]; // S0
float b = A[i+1][k]; // S1
float d = sqrt(a*a+b*b);
float c = a/d;
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j] = t1;
A[i+1][j] = t2; // S3

}
}

}

for (int i = 0; i <= 1022; i++) {
for (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
for (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k],

c[i][j], s[i][j]));
}

}

Before
After (simplified statement notation)

r eser voi r abs

Parallelization AlgorithmParallelization Algorithm

29

for (int i = 0; i <= 1022; i++) { // permutable
for (int j = i; j <= 1022; j++) { // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

],,[),,(
],[),(
],[),(
],[),(

3

2

1

0

kjiikji
jiiji
jiiji
jiiji

S

S

S

S

+=Θ
+=Θ
+=Θ
+=Θforfor (int i = 0; i <= 1022; i++) {

forfor (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
forfor (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k],

c[i][j], s[i][j]));
}

}

Before

After

Schedule

Wavefront parallelism and
locality found (by virtue of

“permutable” attribute),
now exploitable in next

steps …

r eser voi r abs

22--D Analogy (Applying the Parallelization Algorithm)D Analogy (Applying the Parallelization Algorithm)

30

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

TilingTiling

31

for (int i = 0; i <= 1022; i++) { // permutable
for (int j = i; j <= 1022; j++) { // permutable

S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)

S3(A[1022+i-j][i+k],
A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable
// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

The locality implicit in the schedule
permits a self-contained inner loop tile

with a small, constrained memory
footprint

Before

After

r eser voi r abs

22--D Analogy (Tiling)D Analogy (Tiling)

32

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

Skewing the Tile Space (Skewing the Tile Space (Pipelined ParallelismPipelined Parallelism))

33

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable

// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {

for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {

doall (n = k; n <= min(k+127, -l+1023); n++) {
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

for (int i = 0; i <= 78; i++) {
doall (int j = max(i-15, (4*i+ 4) / 5); j <= min(i, 63); j++) {
// Tiled loops for S1, S2, S3 omitted
doall (k = 0; k <= min(7, (- i + j + 15) / 2); k++) {
for (l = 64 * i -64 * j;

l <= min(64*i-64*j+63, 16*j+15, 1022); l++) {
for (m=max(l, 16*j); m <= min(1022, 16 * j + 15); m++) {
doall (n = 128 * k; n <= min(128*k+127, -l+1023); n++)

{
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],
s[l][-l+m]);
}

}
}

}
}

}

The wavefront parallelism in the schedule
(the permutable loops) is skewed to create

pipeline parallelism

Before

After

r eser voi r abs

22--D Analogy (Skewing the Tile Space)D Analogy (Skewing the Tile Space)

34

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

22--D Analogy (Summary)D Analogy (Summary)

35

r eser voi r abs

Some Performance Results (Givens QR)Some Performance Results (Givens QR)

36

Seconds

Processors
Xeon 8-core (bi quad core) Dell 2 GHz
512x512 matrix
OpenMP produced at back end
gcc 4.2.3 –O6 –SSE3

1 processor version is without R-Stream

Automatically parallelized
Speedup with increasing # of

processors

r eser voi r abs

Modified GramModified Gram--Schmidt QRSchmidt QR

37

for (int k = 0; k < N; k++) {
float nrm = 0;
for (int i = 0; i < M; i++)
nrm += A[i][k] * A[i][k];

R[k][k] = sqrt(nrm);
for (int i = 0; i < M; i++)
Q[i][k] = A[i][k] / R[k][k];

for (int j = k+1; j < N; j++) {
R[k][j] = 0;
for (int i = 0; i < M; i++)
R[k][j] += Q[i][k] * A[i][j];

for (int i = 0; i < M; i++)
A[i][j] -= Q[i][k] * R[k][j];

}
}

Plain Old Sequential C Input

This algorithm is also easy to
raise to polyhedral

representation

r eser voi r abs

Modified GramModified Gram--Schmidt QR Parallelized Schmidt QR Parallelized

38

// prologue elided
for (int i = 0; i <= 1022; i++) {

reduction_for (int j = 0; j <= 1023; j++)
nrm += A[j][i] * A[j][i];

nrm[i] = sqrt(R[i][i]);
doall (int j = 0; j <= 1023; j++)

Q[j][i] = A[j][i] / R[i][i];
// barrier
doall (int j = 0; j <= - i + 1022; j++) {

for (int k = 0; k <= 1023; k++)
R[i][1+i+j] += Q[k][i] * A[k][1+i+j];

doall (int k = 0; k <= 1023; k++)
A[i][j] -= Q[k][i] * R[i][1+i+j];

// barrier
}
// barrier

}
// epilogue elided

Result, after scheduling

Here, the scheduling algorithm
finds coarse-grained parallelism

r eser voi r abs

Householder QRHouseholder QR

39

#define M 1024
#define N 1024
void hh(float A[M][N], float Rdiag[N]) {

int i, j, k;
for (k = 0; k < N; k++) {

float nrm = 0;
for (i = k; i < M; i++)

nrm = hypot(nrm, A[i][k]);
if (nrm != 0) {

if (A[k][k] < 0)
nrm = -nrm;

for (i = k; i < M; i++) {
A[i][k] = A[i][k] / nrm;

A[k][k] = A[k][k] + 1;
for (j = k+1; j < N; j++) {

float s = 0;
for (i = k; i < M; i++)

s = s + A[i][k]*A[i][j];
s = -s/A[k][k];
for (i = k; i < M; i++)

A[i][j] = A[i][j] + s*A[i][k];
}

}
Rdiag[k] = -nrm;

}
}

Plain Old Sequential C Input

Raising Householder to polyhedral
representation requires “if conversion”
approximations, due to data-dependent

predicates

r eser voi r abs

Householder QR ParallelizedHouseholder QR Parallelized

40

// prologue elided
for (int i = 0; i <= 1022; i++)
for (int j = 0; j <= - i + 1023; j++)

_hh_1(_v1[i],nrm[i]);
_hh_2(A[i + j, i],_v1[i],_v2[i, j]);
_hh_3(_v2[i, j],nrm[i]);

_hh_4(nrm[i],_p1[i]);
if (_p1[i])

_hh_5(A[i, i],_v1[i],_v3[i]);
_hh_6(nrm[i],_v3[i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_7(A[i + j, i],nrm[i]);
_hh_9(s[i, j]);

// barrier
_hh_7(A[1023, i],nrm[i]);
_hh_8(A[i, i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_11(A[i, i],_v4[i, j]);
for (int k = 0; k <= - i + 1023; k++)

_hh_10(A[i + k, i],A[i + k, 1 + i + j],<>s[i, j]);

_hh_12(s[i, j],_v4[i, j],_v5[i, j]);
doall (int k = 0; k <= - i + 1023; k++)

_hh_13(A[i + k, 1 + i + j],A[i + k, i],_v5[i, j]);
// epilogue elided

Here, the parallelization algorithm finds
fine-grained parallelism

Result, after scheduling and tiling

r eser voi r abs

Various Downstream TransformationsVarious Downstream Transformations

• Tiling to match granularity of tasks to core (e.g., local memory size)
• Placing the tiles onto 1D and 2D arrays of cores
• Managing distributed local memories
• Generating explicit DMA and synchronization operations
• Multibuffering to overlap computation and communication
• Partitioning code for heterogeneous targets (hosts, accelerators)
• Unrolling and jamming for improved locality (enable SIMDization
• Converting to dataflow representation (for FPGA accelerators)
• Generating directives (e.g., OpenMP)

41

R-Stream also automates all of these transformations

Parallelization is only the first step!

r eser voi r abs

So, what have we got?So, what have we got?

• A tool and algorithm for converting a sequential execution
model into a streaming execution model!
– Particularly, to distributed memories and explicitly controlled

architectures
– Solved a “DARPA hard” problem - mapping

• And, it can emit to other execution models, e.g., we can emit to
OpenMP! (Various target architectures in progress).

• Disclaimer: various limitations (implementation, theory) need to be
resolved.

42

r eser voi r abs

What next (research)?What next (research)?

• Want to revisit the input language issue
– Support higher levels of abstraction, algorithm exploration

• Need libraries of “raisable” BLASx

• Maybe we need to pick up SVM effort (SVM 2.0)
– Many APIs (MCF, DACS/ALF, MPI-C, SPURS, QA, SCA, DRI…)
– Extend to core/chip/board/chassis/cabinet level
– Extend to other considerations (e.g., fault tolerance)

• Dynamism

• Mapping algorithms

43

