Adaptive Streaming for
Dealing with Dynamic
Heterogeneity

Amir Hormati and Scott Mahlke

Advanced Computer Architecture Lab.
University of Michigan

CCC %\ compilers creating custom processors 1

 Programming style
— Embedded domain

» Audio/video (H.264), wireless
(WCDMA) _

— Mainstream

» Continuous query processing (IBM
SystemS), Search (Google Sawzall)

e Stream
— Collection of data records

o Kernels/Filters
— Functions applied to streams @/
]
—_

[]
[]

— Input/Output are streams
— Coarse grain dataflow

— Amenable to aggressive compiler
optimizations [ASPLOS’02, '06,
PLDI 03, PLDI ‘08]

CCC %\ compilers creating custom processors 2 University of Michigan
& Electrical Engineering and Computer Science

-

.

Compiling Stream Programs

Stream Program Multicore System

v

Core 4

Mem

Ition

-
-
-
=
-
-
-
-
-
~
<
]
3 L
-
-

CCC & compilers creating custom processors 3 University of Michigan

Electrical Engineering and Computer Science

Target Architecture

o Cores with disjoint address spaces
« EXxplicit copy to access remote data

« DMA engine independent of Processors

.

Mem

CCC 2*9 compilers creating custom processors 4

4)
Orchestrating Stream Graphs

« Common phases:
— Rate Matching
— Graph Refinement
— Scheduling
— Mapping

 The phase ordering varies in different
approaches.

.

CCC %\ compilers creating custom processors 5 University of Michigan
Electrical Engineering and Computer Science

Static Stream Compilation

Load balance Causality

DMA overlap

I
$ %

Kudlur, PLDI 2008

c'c'c X compilers creating custom processors University of Michigan
s Electrical Engineering and Computer Science

Processor Assignment

* Assign filters to processors
— Goal : Equal work distribution

e Graph partitioning?
* Bin packing?

Nibyfiel stream program

PEO PE1
A
B2 B1
0
A Speedup =60/40=1.5
Cj 51| Speedup=60/32~2

CCC %\ compilers creating custom processors University of Michigan
S Electrical Engineering and Computer Science

Filter Fission Choices

PEO PE1 PE2 PE3

Qeef

Speedup ~ 4 ?

CCC %\ compilers creating custom processors University of Michigan

-

Integrated Fission + PE Assign

o EXxact solution based on Integer Linear

Programming (ILP)

i 11 = Mb1,1

i The 2z-M+ I\)‘Ib,],1

i 1.2 s IImb1,2

i—bjp—32-M+Mb,,

bio+ by +tbyy=1

Spllt/Jom overhead

factored in

* Objective function-
Maximal load on any PE
— Minimize

Result

— Number of times to “split”
each filter

— Filter — processor mapping

~

CCC & compilers creating custom processors

University of Michigan
Electrical Engineering and Computer Science

Y
®

4)

Static Stream Compilation —
Step 2

ﬁ Load balance

* . .
CCC compilers creating custom processors

-

.

|
Forming the Software Pipeline

 To achieve speedup
— All chunks should execute concurrently
— Communication should be overlapped

* Processor assignment alone is insufficient
Information

PEO PE1
A
PEO PE1 o A
g _k !!!!!!
|_
— . 3
L c | A

Overlap A,,, with B,

CCC %\ compilers creating custom processors University of Michigan
& Electrical Engineering and Computer Science

Stage Assignment

5 Tlels

.2 S.
S;2S Soua > S
PE 2
Q S SDMA
Preserve causality Communication-computation
(producer-consumer dependence) overlap

e Data flow traversal of the stream graph
— Assign stages using above two rules

.

CCC %\ compilers creating custom processors University of Michigan
S Electrical Engineering and Computer Science

-

.

Stage Assignment Example

Stage 0

[1PEO
[]PE1

CCC & compilers creating custom processors

-

45

Step 3

Static Stream Compilation —

- - -

Load balance

Causality
DMA overlap

I
$ %

-
o

\

c'c'c : compilers cre

ating custom processors

Code Generation for Cell

e Target the Synergistic Processing
Elements (SPES)

— PS3 —upto 6 SPEs
— QS20 — up to 16 SPEs

e One thread / SPE

 Challenge

— Making a collection of independent threads
Implement a software pipeline

— Adapt kernel-only code schema of a modulo

amla e o] o
CCC X com;?e%c!’ellggtflu}ﬁlnlngocessors University of Michigan
E

ectrical Engineering and Computer Science g2

.

Complete Example

voi d spel_wor k()
{ g Bl
char stage[5] ¥ {0}; [
stage| J] = I, A BltoJ
for(i=0; i<MAX; i++) { o
it (stage[0]) { =
A(); I —
S() : é BltoJ
B2 StoB2
} - AtoC
if (stage[1]) { c
}
1 (stage(2]) { P 2 | [sose
. gg((g , / B1 _ AtoC
} ’ c
;f (stage[3]) { A JtoD BitoJ
CtoD B2 StoB2
I f (stage[4]) { B1 AtoC
}) = c
} barrier(); SPE1 DMA1 SPE2 DMA?2
}

CCC & compilers creating custom processors

Electrical Engineering and Computer Science

University of Michigan

" SGMS(ILP) vs. Greedy (8 core
C e I I) (MIT method, ASPLOS’06)

@ ILP Partitioning m Greedy Partitioning O Exposed DMA
9
Y = e YAVA
L 0 [|
56 -
e
o
L 5 |
n
g4 :
IS
23 :
2 |
1 |
0 -
bitonic channel dct des fit filterbank fmradio tde mpeg2 vocoder radar
Benchmarks

» Solver time < 30 seconds for 16 processors
_ J
CCC& e Electrical Engineering :nncjvgcr)?riltgu?;:vl Slf:?é%ire] @

-

.

~

Summary of Static Approach

« Advantages: e But, lacks ability to
— Optimal load balance change
— Allocate local memory — Filter behavior
— Overlap DMAs with e Dynamic stream rates
computation « Data-dependent control

flow

— Execution environment
e Stationary vs. moving
* Noise

— Resource availability

« Multiple applications
concurrently executing

— No runtime overhead

Electrical Engineering and Computer Scie

CCC & compilers creating custom processors ® W O rSt C aS e C Q mQ/l)t I/IQ E?e@

Dynamic Approach

» Scoreboard « Commands

::> » Resource usage » Execution history
* Memory map

*. Dynamic stream scheduler "

.. P1 P1 P1
 Similar to superscalar scheduler I] II] II] I
r m m m

» Global memory serves as central m
repository for all stream data

» Master processor issues commands - -
* Focus on mapping/scheduling

ol 3
of 3
of 3
of 3

Zd
cd
¢d
cd

.

CCC %\ compilers creating custom processors University of Michigan
& Electrical Engineering and Computer Science

Dynamic Example

 Use a heuristic
functions to select the
next filter to run on a
free processor

e Each filter after

completion notifies the

main processor

.

P2

P3

Wy =

Wpg =

We =

Wp =

W =3

We =1

cceaFhe matnprocessonro

University of Michigan

Electrical Engineering and Computer Science

4)
Tradeoffs in Dynamic Approach

e Execute filters when inputs are available

 Advantages:
— Responsive to resource availability and filter
variability
— Lightweight algorithm
e Disadvantages:
— Exposes DMA latency
— Simple management of local buffers required
— Scalability

CCC %\ compilers creating custom processors 21 University of Michigan
Electrical Engineering and Computer Science Qs

‘Can We Have Our Cake and Eat®

It TOO?

e Cake

— Distributed static schedule for typical scenario
— Relocatable filters/DMA commands

e Eat
— Greedy folding at run-time

— Space folding — Intra-stage filter migration
between cores

— Time folding — Extend/contract stage length
e Maintain same pipeline flow but with

| | y
cccHHIETENLWOrKers e Engmennng e o g (G

o

Adaptive Approach ldea

Common case schedule

P3 unavailable - reschedule

W, =W, =W_=3

W, =W, =W,.=1

Further refinement

Resume execution with reduced PEs ﬁ

P1

P2 P3

A4

Wasted!
\—J_

CC'C & compilers creating custom processors 23

Electrical Engineering and Computer Science

University of Michigan

[Unsolved Issues and Final
Thoughts
« Memory management
— Folding memory spaces
— Spill to global memory
« DMA transfers
— Run-time configurable source/target
« Adaptive streaming
— Static baseline schedule for performance
efficiency
— Dynamic adjustment for dealing with run-time y
CCC rP¥deshston rocesor 24 s oo s i (B)

VALl #lAaiA vhrAawl, AAa~nA~ FAlAi~nA lAamaaAaA FAA ar AL

