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Stream ProgrammingStream Programming
• Programming style

– Embedded domain
• Audio/video (H.264), wireless 

(WCDMA)
– Mainstream

• Continuous query processing (IBM 
SystemS), Search (Google Sawzall)

• Stream
– Collection of data records

• Kernels/Filters
– Functions applied to streams
– Input/Output are streams
– Coarse grain dataflow
– Amenable to aggressive compiler 

optimizations [ASPLOS’02, ’06, 
PLDI ’03, PLDI ‘08]
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Compiling Stream ProgramsCompiling Stream Programs

Core 1 Core 2 Core 3 Core 4

Mem Mem Mem Mem

?

Stream Program Multicore System

• Heavy lifting
• Equal work distribution
• Communication
• Synchronization
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Target ArchitectureTarget Architecture
• Cores with disjoint address spaces

• Explicit copy to access remote data

• DMA engine independent of Processors
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Orchestrating Stream GraphsOrchestrating Stream Graphs
• Common phases:

– Rate Matching
– Graph Refinement
– Scheduling
– Mapping

• The phase ordering varies in different 
approaches.

5



University of Michigan
Electrical Engineering and Computer Science

Static Stream Compilation 

Fission +
Processor

assignment

Stage
assignment

Code
generation

Load balance Causality
DMA overlap

Kudlur, PLDI 2008
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Processor Assignment
• Assign filters to processors

– Goal : Equal work distribution
• Graph partitioning?
• Bin packing?
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Filter Fission Choices

PE0 PE1 PE2 PE3

Speedup ~ 4 ?
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Integrated Fission + PE Assign
• Exact solution based on Integer Linear 

Programming (ILP)

…

Split/Join overhead
factored in

• Objective function-
Maximal load on any PE
– Minimize

• Result
– Number of times to “split”

each filter
– Filter → processor mapping
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Static Stream Compilation –
Step 2

Fission +
Processor

assignment

Stage
assignment

Code
generation

Load balance Causality
DMA overlap
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Forming the Software Pipeline
• To achieve speedup

– All chunks should execute concurrently
– Communication should be overlapped

• Processor assignment alone is insufficient 
information
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Stage Assignment
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Preserve causality
(producer-consumer dependence)

Communication-computation
overlap

• Data flow traversal of the stream graph
– Assign stages using above two rules
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Stage Assignment Example
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Static Stream Compilation –
Step 3

Fission +
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Code Generation for Cell
• Target the Synergistic Processing 

Elements (SPEs)
– PS3 – up to 6 SPEs
– QS20 – up to 16 SPEs

• One thread / SPE
• Challenge

– Making a collection of independent threads 
implement a software pipeline

– Adapt kernel-only code schema of a modulo 
schedule
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Complete Example
void spe1_work()
{

char stage[5] = {0};
stage[0] = 1;
for(i=0; i<MAX; i++) {

if (stage[0]) {
A();
S();
B1();

}
if (stage[1]) {
}
if (stage[2]) {

JtoD();
CtoD();

}
if (stage[3]) {
}
if (stage[4]) {    

D(); 
}
barrier();

}
}
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SGMS(ILP) vs. Greedy (8 core 
Cell)

0

1

2

3

4

5

6

7

8

9

bitonic channel dct des fft filterbank fmradio tde mpeg2 vocoder radar

Benchmarks

Re
la

tiv
e 

Sp
ee

du
p

ILP Partitioning Greedy Partitioning Exposed DMA

(MIT method, ASPLOS’06)

• Solver time < 30 seconds for 16 processors
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Summary of Static ApproachSummary of Static Approach
• Advantages:

– Optimal load balance
– Allocate local memory 
– Overlap DMAs with 

computation
– No runtime overhead

• But, lacks ability to 
change
– Filter behavior

• Dynamic stream rates
• Data-dependent control 

flow

– Execution environment
• Stationary vs. moving
• Noise

– Resource availability
• Multiple applications 

concurrently executing

• Worst case conditions18
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Dynamic Approach

• Scoreboard
• Resource usage
• Memory map  
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Dynamic stream scheduler

• Commands
• Execution history

• Similar to superscalar scheduler
• Global memory serves as central
repository for all stream data
• Master processor issues commands
• Focus on mapping/scheduling
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Dynamic ExampleDynamic Example
• Use a heuristic 

functions to select the 
next filter to run on a 
free processor

• Each filter after 
completion notifies the 
main processor

• The main processor 20
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Tradeoffs in Dynamic ApproachTradeoffs in Dynamic Approach
• Execute filters when inputs are available
• Advantages:

– Responsive to resource availability and filter 
variability

– Lightweight algorithm
• Disadvantages:

– Exposes DMA latency
– Simple management of local buffers required
– Scalability
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Can We Have Our Cake and Eat Can We Have Our Cake and Eat 
It Too?It Too?
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• Cake
– Distributed static schedule for typical scenario
– Relocatable filters/DMA commands

• Eat
– Greedy folding at run-time
– Space folding – Intra-stage filter migration 

between cores
– Time folding – Extend/contract stage length

• Maintain same pipeline flow but with 
different workers
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Adaptive Approach IdeaAdaptive Approach Idea
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Unsolved Issues and Final Unsolved Issues and Final 
ThoughtsThoughts

• Memory management
– Folding memory spaces
– Spill to global memory

• DMA transfers
– Run-time configurable source/target

• Adaptive streaming
– Static baseline schedule for performance 

efficiency
– Dynamic adjustment for dealing with run-time 

events
Will this work does folding loose too much
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