
University of Michigan
Electrical Engineering and Computer Science1

Adaptive Streaming for Adaptive Streaming for
Dealing with Dynamic Dealing with Dynamic

HeterogeneityHeterogeneity

Amir Hormati and Scott Mahlke
Advanced Computer Architecture Lab.

University of Michigan

University of Michigan
Electrical Engineering and Computer Science2

Stream ProgrammingStream Programming
• Programming style

– Embedded domain
• Audio/video (H.264), wireless

(WCDMA)
– Mainstream

• Continuous query processing (IBM
SystemS), Search (Google Sawzall)

• Stream
– Collection of data records

• Kernels/Filters
– Functions applied to streams
– Input/Output are streams
– Coarse grain dataflow
– Amenable to aggressive compiler

optimizations [ASPLOS’02, ’06,
PLDI ’03, PLDI ‘08]

University of Michigan
Electrical Engineering and Computer Science3

Compiling Stream ProgramsCompiling Stream Programs

Core 1 Core 2 Core 3 Core 4

Mem Mem Mem Mem

?

Stream Program Multicore System

• Heavy lifting
• Equal work distribution
• Communication
• Synchronization

University of Michigan
Electrical Engineering and Computer Science

Target ArchitectureTarget Architecture
• Cores with disjoint address spaces

• Explicit copy to access remote data

• DMA engine independent of Processors

4

Master
Processor

P1 P1 P1

P
2P
2 P
2

P
2

P3P3

dm
a

dm
a

dm
a

dm
a

dm
a

dm
a

dm
a

dm
a

dm
a

Mem

University of Michigan
Electrical Engineering and Computer Science

Orchestrating Stream GraphsOrchestrating Stream Graphs
• Common phases:

– Rate Matching
– Graph Refinement
– Scheduling
– Mapping

• The phase ordering varies in different
approaches.

5

University of Michigan
Electrical Engineering and Computer Science

Static Stream Compilation

Fission +
Processor

assignment

Stage
assignment

Code
generation

Load balance Causality
DMA overlap

Kudlur, PLDI 2008

University of Michigan
Electrical Engineering and Computer Science

Processor Assignment
• Assign filters to processors

– Goal : Equal work distribution
• Graph partitioning?
• Bin packing?

A

B

D

C

A

B C

D

5

5

40 10

Original stream program

PE0 PE1

B

A
C
D Speedup = 60/40 = 1.5

A

B1

D

C

B2

J

S

Modified stream program

B2

C
J

B1

A
S
D Speedup = 60/32 ~ 2

University of Michigan
Electrical Engineering and Computer Science

Filter Fission Choices

PE0 PE1 PE2 PE3

Speedup ~ 4 ?

University of Michigan
Electrical Engineering and Computer Science

Integrated Fission + PE Assign
• Exact solution based on Integer Linear

Programming (ILP)

…

Split/Join overhead
factored in

• Objective function-
Maximal load on any PE
– Minimize

• Result
– Number of times to “split”

each filter
– Filter → processor mapping

University of Michigan
Electrical Engineering and Computer Science

Static Stream Compilation –
Step 2

Fission +
Processor

assignment

Stage
assignment

Code
generation

Load balance Causality
DMA overlap

University of Michigan
Electrical Engineering and Computer Science

Forming the Software Pipeline
• To achieve speedup

– All chunks should execute concurrently
– Communication should be overlapped

• Processor assignment alone is insufficient
information

A

B

C

A

C
B

PE0 PE1

PE0 PE1

Ti
m

e A
B

A1

B1

A2

A1

B1

A2
A→B

A1

B1

A2
A→B

A3
A→B

Overlap Ai+2 with Bi

X

University of Michigan
Electrical Engineering and Computer Science

Stage Assignment

i

j

PE 1

Sj ≥ Si

i

j

DMA

PE 1

PE 2

Si

SDMA > Si

Sj = SDMA+1

Preserve causality
(producer-consumer dependence)

Communication-computation
overlap

• Data flow traversal of the stream graph
– Assign stages using above two rules

University of Michigan
Electrical Engineering and Computer Science

Stage Assignment Example

A

B1

D

C

B2

J

S

A
S

B1
Stage 0

DMA DMA DMA Stage 1

C
B2

J

Stage 2

D

DMA Stage 3

Stage 4

DMA

PE 0

PE 1

University of Michigan
Electrical Engineering and Computer Science

Static Stream Compilation –
Step 3

Fission +
Processor

assignment

Stage
assignment

Code
generation

Load balance Causality
DMA overlap

University of Michigan
Electrical Engineering and Computer Science

Code Generation for Cell
• Target the Synergistic Processing

Elements (SPEs)
– PS3 – up to 6 SPEs
– QS20 – up to 16 SPEs

• One thread / SPE
• Challenge

– Making a collection of independent threads
implement a software pipeline

– Adapt kernel-only code schema of a modulo
schedule

University of Michigan
Electrical Engineering and Computer Science

Complete Example
void spe1_work()
{

char stage[5] = {0};
stage[0] = 1;
for(i=0; i<MAX; i++) {

if (stage[0]) {
A();
S();
B1();

}
if (stage[1]) {
}
if (stage[2]) {

JtoD();
CtoD();

}
if (stage[3]) {
}
if (stage[4]) {

D();
}
barrier();

}
}

A
S

B1

DMA DMA DMA

C
B2

J

D

DMA DMA

A
S

B1

A
S

B1

B1toJ
StoB2
AtoC

A
S

B1

B2

J

C

B1toJ
StoB2
AtoC

A
S

B1

JtoD
CtoD B2

J

C

B1toJ
StoB2
AtoC

A
S

B1

JtoD

D

CtoD B2

J

C

B1toJ
StoB2
AtoC

SPE1 DMA1 SPE2 DMA2

Ti
m

e

University of Michigan
Electrical Engineering and Computer Science

SGMS(ILP) vs. Greedy (8 core
Cell)

0

1

2

3

4

5

6

7

8

9

bitonic channel dct des fft filterbank fmradio tde mpeg2 vocoder radar

Benchmarks

Re
la

tiv
e

Sp
ee

du
p

ILP Partitioning Greedy Partitioning Exposed DMA

(MIT method, ASPLOS’06)

• Solver time < 30 seconds for 16 processors

University of Michigan
Electrical Engineering and Computer Science

Summary of Static ApproachSummary of Static Approach
• Advantages:

– Optimal load balance
– Allocate local memory
– Overlap DMAs with

computation
– No runtime overhead

• But, lacks ability to
change
– Filter behavior

• Dynamic stream rates
• Data-dependent control

flow

– Execution environment
• Stationary vs. moving
• Noise

– Resource availability
• Multiple applications

concurrently executing

• Worst case conditions18

University of Michigan
Electrical Engineering and Computer Science

Dynamic Approach

• Scoreboard
• Resource usage
• Memory map

Maste
r

Process
or

P1 P1 P1

P
2P
2 P
2

P
2

P3P3

d
m
a

d
m
a

d
m
a

d
m
a

d
m
a

d
m
a

d
m
a

d
m
a

d
m
a

Me
m

Dynamic stream scheduler

• Commands
• Execution history

• Similar to superscalar scheduler
• Global memory serves as central
repository for all stream data
• Master processor issues commands
• Focus on mapping/scheduling

University of Michigan
Electrical Engineering and Computer Science

Dynamic ExampleDynamic Example
• Use a heuristic

functions to select the
next filter to run on a
free processor

• Each filter after
completion notifies the
main processor

• The main processor 20

A

B

C

E

D

F

WA = WC = WE = 3

WB = WD = WF = 1

P1 P2 P3

A1

B1

E1

F1

C1

D1

A2

B2

C2
B3

C3

A3

University of Michigan
Electrical Engineering and Computer Science

Tradeoffs in Dynamic ApproachTradeoffs in Dynamic Approach
• Execute filters when inputs are available
• Advantages:

– Responsive to resource availability and filter
variability

– Lightweight algorithm
• Disadvantages:

– Exposes DMA latency
– Simple management of local buffers required
– Scalability

21

University of Michigan
Electrical Engineering and Computer Science

Can We Have Our Cake and Eat Can We Have Our Cake and Eat
It Too?It Too?

22

• Cake
– Distributed static schedule for typical scenario
– Relocatable filters/DMA commands

• Eat
– Greedy folding at run-time
– Space folding – Intra-stage filter migration

between cores
– Time folding – Extend/contract stage length

• Maintain same pipeline flow but with
different workers

University of Michigan
Electrical Engineering and Computer Science

Adaptive Approach IdeaAdaptive Approach Idea

23

A

B

C

E

D

F

WA = WC = WE = 3

WB = WD = WF = 1

P1 P2 P3

A1

B1

E1

F1

C1

D1

A2

B2

C2

D2

A3

B3

Common case schedule

E2

F2P3 unavailable reschedule

C3

D3

E2
F2

A4

B4 Busy

Wasted!

Resume execution with reduced PEs

C4

E3F3

A5

B4

D4

BusyFurther refinement

University of Michigan
Electrical Engineering and Computer Science

Unsolved Issues and Final Unsolved Issues and Final
ThoughtsThoughts

• Memory management
– Folding memory spaces
– Spill to global memory

• DMA transfers
– Run-time configurable source/target

• Adaptive streaming
– Static baseline schedule for performance

efficiency
– Dynamic adjustment for dealing with run-time

events
Will this work does folding loose too much

24

