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Abstract. Trimaran is an integrated compilation and performance mon-
itoring infrastructure. The architecture space that Trimaran covers is
characterized by HPL-PD, a parameterized processor architecture sup-
porting novel features such as predication, control and data speculation
and compiler controlled management of the memory hierarchy. Trimaran
also consists of a full suite of analysis and optimization modules, as
well as a graph-based intermediate language. Optimizations and analy-
sis modules can be easily added, deleted or bypassed, thus facilitating
compiler optimization research. Similarly, computer architecture research
can be conducted by varying the HPL-PD machine via the machine de-
scription language HMDES. Trimaran also provides a detailed simulation
environment and a flexible performance monitoring environment that au-
tomatically tracks the machine as it is varied.

1 Introduction

Trimaran is a compiler infrastructure for supporting state of the art research in
compiling for Instruction Level Parallel (ILP) architectures. The system is cur-
rently oriented toward Explicitly Parallel Instruction Computing (EPIC) [24],
and supports a variety of compiler research, including instruction scheduling,
register allocation, and software pipelining. The Trimaran compiler infrastruc-
ture is comprised of the following components:

– A parameterized ILP architecture called HPL-PD.
– A machine description facility for describing HPL-PD architectures.
– An optimizing compiler with a large suite of optimizations. The compiler is

designed such that it may be easily modified and extended by a compiler
researcher. The compiler employs an extensible IR (intermediate program
representation) which has both an internal and textual representation, with
conversion routines between the two. The IR supports modern compiler tech-
niques by representing control flow, data and control dependence, and many
other attributes.
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– A detailed HPL-PD architecture simulator which is parameterized via a
machine description and provides run-time information on execution time,
branch frequencies, and resource utilization. This information can be used
for profile-driven optimizations as well as to provide validation of new opti-
mizations.

– A Graphical User Interface (GUI) for configuring and running the Trimaran
system.

– Various tools for the graphical visualization of the program intermediate
representation and of the performance results.

The infrastructure is used for designing, implementing, and testing new com-
pilation optimizations, as well as the evaluation of various architectural innova-
tions.

Although there are several compiler infrastructures available to the research
community, Trimaran is unique in that it is especially geared toward ILP and
EPIC research. It provides a rich compilation framework. The parameterized
ILP architecture (HPL-PD) space allows the user to experiment with machines
that vary considerably in the number and kinds of functional units and register
files, as well as their instruction latencies. The modular nature of the compiler
and the hierarchical intermediate program representation used throughout the
compiler makes the construction and insertion of new compilation modules into
the compiler especially easy. The framework is already populated with a large
number of existing compilation modules, providing leverage for new compiler
research and supporting meaningful experimentation. The Trimaran Graphical
Interface makes the configuration and use of the system surprisingly easy. There
is a commitment on our part to releasing a robust, tested, and documented
software system. Our website (http://www.trimaran.org) provides the latest in-
formation on Trimaran, and includes extensive documentation, and facilities to
download the infrastructure and other useful material.

The next section briefly describes the Trimaran user community and pro-
vides examples of how the infrastructure has been used to further research. In
addition, Section 2 also discusses the quality of the code produced by the Tri-
maran compiler. Section 3 describes the parametric HPL-PD architecture space,
and Section 4 presents an overview of the machine description facility for de-
scribing HPL-PD architectures. This is followed by an overview of Trimaran
compilation technology (Section 5). Section 6 describes the Trimaran simulation
environment, and Section 7 concludes the paper.

2 User Community and Field Tests

The Trimaran user community has steadily grown since the first public release
of the infrastructure. Today, the user community spans many universities world-
wide, and papers which used Trimaran as their evaluation and experimentation
vehicle have appeared in numerous conferences on programming languages, com-
pilers, and computer architecture. Trimaran is also used in several classroom set-
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tings where it facilitates student projects in compilation technology and VLIW
architecture research.

Trimaran has proved to be a versatile infrastructure, and examples of its
many uses include research in predicated static single assignment [4] and predicate-
aware scheduling [27], software pipelining that is sensitive to register pressure [2],
implementation strategies that improve the performance of object oriented codes [3],
and optimizations for improving the performance of the memory system [18, 19].
Other published works have leveraged Trimaran as a vehicle for architectural
design space exploration and processor customization [5, 17].

Furthermore, researchers have extended Trimaran so that it can target real
architectures such as the Itanium [10], ARM [6], and WIMS (wireless integrated
micro systems) [32]. A Trimaran extension which generates ARM assembly is
distributed on our website [30]. The Itanium-specific Trimaran is a collaborative
effort between the National University of Singapore and the George Washington
University [31].

The compiler, in addition to being versatile, is robust and competitive with
widely used compilers (e.g., gcc). Trimaran can successfully compile several
benchmark suites including SPEC [28], Mediabench [13], and Olden [16] to name
a few. Furthermore, an extensive set of results was presented at the 2004 Inter-
national Symposium on Computer Architecture (ISCA) to demonstrate that
Trimaran is on-par with state of the art compilation technology for EPIC archi-
tectures [26]. The code quality produced by Trimaran is largely controlled by the
compiler front-end which applies a series of transformations as the code is lowered
from the input source language. The compilation process begins with applica-
tion profiling, followed by procedure inlining to reduce function call overhead,
alias analysis, classical optimization, and a slew of structural transformation for
enhancing ILP (as discussed in the later portions of this paper).

3 Architecture Space

The architecture space targeted by Trimaran is the HPL-PD parametric proces-
sor [11]. HPL-PD was designed to promote research in instruction-level paral-
lelism and serves as a vehicle to investigate ILP architectures and the compiler
technology needed to effectively exploit such architectures.

HPL-PD is a parametric architecture in that it admits machines of different
composition and scale, especially with respect to the amount of parallelism of-
fered. The HPL-PD parameter space includes the number and types of functional
units, the composition of the register files, operation latencies and descriptors
that specify when operands may be read and written, instruction formats, and
resource usage behavior of each operation.

The architecture’s instruction set is akin to a RISC load-store architecture,
with standard arithmetic and memory operations. It also supports specula-
tive and predicated execution, compiler exposed memory systems, a decoupled
branch mechanism, and software pipelining. The following briefly describe the
advanced features of HPL-PD which are geared toward enhancing and exploiting
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ILP. The interested reader can review the HPL-PD architecture specification [11]
for a more thorough description of the architecture.

3.1 Speculative Execution

HPL-PD supports control and data speculation. The former represents code
motion across conditional branches. When an instructions is control speculated,
it is moved above a branch and unconditionally executed, whereas previously
it was executed conditionally. This transformation is generally safe but may
lead to exceptions. For example, if instructions are speculated from the “taken”
path following a branch, but the branch resolves to the “not taken” path, then
any exceptions that may have been encountered during speculative execution
must be ignored. If on the other hand the branch is taken, then the exception
must be exposed. HPL-PD provides the necessary support to enable speculative
execution [14]. Briefly, if an exception occurs during a speculative operation, the
exception is not raised. Instead, a bit is set in the result register to indicate that
such a condition occurred. If a non-speculative operation has an operand with
its speculative bit set, the exception is immediately raised.

Another form of speculation known as data speculation is geared toward
increasing the range of code motion for memory instructions [7, 23]. For example,
a long latency read operation may not be hoisted above an intervening memory
write because the load and the store instructions may access (alias) the same
location. It is often difficult for the compiler to determine when such a conflict
occurs. In order to safely move the data fetch above a store—to better mask an
access latency for example—some form of alias detection and recovery support
is necessary. The HPL-PD ISA provides the necessary support to enable data
speculation.

3.2 Predicated Execution

In HPL-PD, operations can be predicated, or in other words, their execution is
guarded by a predicate. For example (p) LOAD rd = [rs] is a predicate mem-
ory read: the operation is nullified (i.e., the state of the machine does not change)
when the predicate is not set (p = 0). If on the other hand the predicate is af-
firmed (p = 1) the operation fetches the data stored at address rs and writes
it to register rd (in other words the instruction is issued and allowed to update
the state of the machine).

In HPL-PD, a predicate instruction requires an additional operand. The ex-
tra operand is a one-bit predicate register whose value guards the execution
of the instruction. The value of a predicate register is usually defined using
compare-to-predicate instructions (CMPP) that are a part of the ISA. The ISA
provides a rich set of these operations. The CMPP instructions are unique in that
they define two predicate registers simultaneously, subject to a specified action.
For example, a CMPP may write the value of a comparison to one predicate, and
the complementary value to the other predicate. There is a sufficient number
of actions defined in the ISA to cover most of the requirements imposed by the
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various uses of predicates. Furthermore, the architecture permits multiple oper-
ations to write into a register simultaneously, provided all producers generate
the same value. These write semantics are particularly valuable for the efficient
evaluation of boolean reductions as carried out by the CMPP instructions.

Predication is most notably used to eliminate hard-to-predict branches. Pred-
icate execution is also used in software pipelining as noted in a subsequent sec-
tion.

3.3 Exposed Memory Hierarchy

The HPL-PD memory hierarchy is unusual in that it is visible to the compiler.
The ISA includes instructions for managing data across the hierarchy, for saving
and restoring registers, and for performing run-time data disambiguation.

The instructions that manage the memory hierarchy do so by way of latency
specifications and cache directives. For example, a store instructions can specify
the highest level in the hierarchy where the stored data should be left for use
by subsequent memory operations. A load instructions can also specify a cache
directive to indicate its view of the highest level in the memory hierarchy where
the fetched data should be left. In addition, a load may specify its expectation
as to where its source operand (i.e., data address) is cached. Concomitantly, this
hint also specifies the operation latency that is assumed for scheduling.

In order to support run-time disambiguation, HPL-PD provides instructions
that can speculatively load data from memory and then verify that the address
read was not updated by an intervening store; if it was, then the appropriate
register is updated. The ISA also permits a branch to compensation code when
the verification fails.

3.4 Branch Architecture

In HPL-PD, there is a rich repertoire of branches, and it includes operations to
support software pipelining, and as noted earlier, run-time memory disambigua-
tion. HPL-PD replaces conventional branch operations with two operations. A
prepare-to-branch instruction loads the target address into a branch target
register and initiates a prefetch of the branch target to minimize delays. The
instruction may also hint that a branch is taken or not. A branch instruction
updates the program counter according to its source branch target operand and
perform the actual transfer of control.

3.5 Software Pipelining

Software pipelining [12, 20] is a technique for exploiting parallelism across iter-
ations of a loop. In software pipelining, the loop iterations are overlapped such
that new iterations begin execution before previous iterations are complete. The
set of instructions that are in flight at steady state constitute a kernel. To reach
steady state, a subset of the instruction in the kernel are executed during a
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prologue stage; similarly, another subset is executed during an epilogue stage to
complete the loop. During the prologue and epilogue stages, predication is used
to nullify the appropriate subsets of the kernel.

HPL-PD supports both static and rotating registers. The latter provide au-
tomatic register renaming across iterations such that a register r[i] in one
iteration is referenced as r[i+1] in the next.

4 Machine Model

HPL-PD adopts an EPIC philosophy whereby the compiler is responsible for
statically orchestrating the execution of a program. Thus, a compiler must have
exact information pertaining to the particulars of the architecture definition
within the HPL-PD space. In Trimaran, a machine-description (MDES) database
specifies those particulars which include the register file structure, the operation
repertoire, the set of resources in the architectures (e.g., functional units and
memory hierarchy), the resource utilization patterns for each instruction, and
the latency descriptors that define when an operand may be read or written after
an instruction is issued.

The architecture is defined using a human-readable, high-level machine de-
scription (HMDES) language [8]. The description is translated to a low-level
language that specifies the same information but in a format that is suitable
for a compiler. A MDES Query System (mQS) relays the information to a com-
piler through a procedural interface. The MDES methodology allows for a re-
targetable compiler infrastructure and enables experimentation with numerous
performance-oriented compiler algorithms (e.g., register allocation, scheduling)
as well as architecture-exploration algorithms [29, 25] that attempt to discover
a machine description best suited for one or more applications of interest.

5 Optimizing Compiler

The Trimaran optimizing compiler is a profile/feedback driven compiler: applica-
tions are instrumented and executed using representative workloads to generate
information that describes the salient tendencies of the program. For example,
profiling information quantifies the likelihood of executing different regions of
the program, the predominant control flow paths in the program, and the extent
of load-store address aliasing.

The Trimaran compiler generates a control flow graph (CFG) for an input
program, where nodes in the graph represent a basic block or an atomic unit
of execution, and edges connecting nodes represent control flow. The compiler’s
front-end is charged with applying classic optimizations as well as advanced
region formation for boosting ILP. In particular, the compiler leverages profiling
information to form traces or long sequences of basic blocks that traverse a
frequently occurring control flow path in the CFG. The traces are known as
super blocks [9] and hyper blocks [15]; the later uses predication to merge paths
that forge out of a conditional branch. The trace formation algorithms enable
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many scheduling optimizations and afford more opportunities for control and
data speculation.

In addition to these transformations, the compiler’s back-end can apply many
novel optimizations, many of which are machine specific (e.g., register allocation
and scheduling). The back-end is especially rich in scheduling technology and
complements the ILP optimizations applied in the front-end.

The Trimaran compiler is highly modularized and is designed to operate in
a plug-and-play manner. Thus, the optimizations represent modules that are
invoked by a top level driver as dictated by an elaborate set of compiler param-
eters.

The driver has at its disposal several acyclic scheduling algorithms, including
inter-region scheduling [1] where scheduling decisions made in one block affect
those made in subsequent blocks. In addition, the compiler can perform modulo
scheduling [21], a widely used technique for software pipelining. There are also
compiler modules that perform rotating register allocation for software pipelined
loops [22], and register allocation for acyclic regions.

The compiler also includes (i) techniques to eliminate redundant array loads
and stores within loop iterations, and redundant register-to-register moves; (ii)
if-conversion to form predicated code to enable software pipelining, or to reduce
critical path length through a computation; (iii) a sophisticated region-based
register allocator with predicate code analysis to reduce register saves and re-
stores; and (iv) scheduling strategies to tolerate branch and memory latencies.

The intermediate representation (IR) used in the Trimaran compiler is a
graph-based IR that is easy to use and extend. The IR is also hierarchical with
a program node at the root. A program consists of a set of procedures which in
turn are composed of blocks. A block is made up of operations which consist
of source and destination operands. The compiler provides many built-in utili-
ties for traversing, transforming, and visualizing the IR. There is also a textual,
human-readable equivalent for the internal representation. In Trimaran, all op-
timizations are IR to IR transformations. This greatly simplifies the design of
the compiler and makes the tool chain easy to use and extend.

6 Instruction Set Simulator

The Trimaran infrastructure also includes an instruction set simulator (ISS). The
ISS consumes the output of the Trimaran compiler to generate an executable
binary which can simulate the original program. The simulator was specifically
engineered to allow for an intermixing of HPL-PD and native code. This allows
subsets of a large application to be compiled using Trimaran and linked against
the remaining portions of the program that are compiled using a native compiler
(e.g., gcc). The advantage of such a design is faster simulation.

The main simulation loop processes a table of operations and for each oper-
ation it invokes a function that implements the semantics of the opcode. These
functions are automatically generated from the machine description file which
defines the ISA. Thus, the main simulation core is small and extensible.
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The ISS also includes a device stack model to support various components
of the architecture such as a branch predictor, an instruction buffer, and any
reasonable memory hierarchy configuration. The simulator also tracks many dif-
ferent events and generates a plethora of data and statistics with varying levels
of granularity. For example, the ISS can track the execution frequency of a sin-
gle instruction, as well as its memory system behavior (e.g., how often fetching
the instruction resulted in an instruction cache miss). The statistics are also
aggregated at the block, procedure, and program levels.

The ISS supports all of the HPL-PD features, including speculation, pred-
ication, software pipelining and rotating registers, as well as various register
write semantics. It can simulate unscheduled code (i.e., serial execution), unreg-
ister allocated code, and allows for intermixing of the different modes. It is also
amenable to integration with other tools such as Wattch6 which would enable
power-based experimentation and evaluation.

7 Concluding Remarks

We have described Trimaran, a compilation and simulation infrastructure that
was designed to support research in instruction level parallelism. Trimaran is
founded upon HPL-PD, a parametric architecture that scales in the amount of
parallelism it affords. The architecture and compiler support a variety of ILP-
enhancing techniques, including speculation, predication, and software pipelin-
ing. Trimaran also provides a detailed instruction set simulator to facilitate ex-
perimentation and evaluation of architecture features and compiler optimiza-
tions.

We invite researchers who have interests in ILP and EPIC computing to
adopt Trimaran and join the user community which currently spans numerous
universities worldwide. We encourage users to contribute to the infrastructure
to provide a greater repertoire of ideas in a unified environment. This will aid
in the comparison of results and the evaluation of ideas. Trimaran is currently
evolving to address important research questions that are facing architects and
compiler engineers as we forge ahead into a new era of computer system design
and organization. We will try to ensure that the evolution takes place in a
controlled, coordinated, and timely manner.
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