
Scheduling Load Operations on VLIW Machines

Charles R. Hardnett, Krishna V. Palem,
Rodric M. Rabbah

Georgia Institute of Technology
777 Atlantic Drive, NW

Atlanta, GA 30332

{hardnett, palem,
rabbah}@ece.gatech.edu

Weng-Fai Wong
National University of Singapore

Singapore

wongwf@comp.nus.edu.sg

ABSTRACT
There continues to be a widening gap between processor speeds
and memory access time. This gap is seen in systems ranging from
embedded computing systems to high-performance supercomput-
ing systems. In this paper, we present an instruction scheduling
algorithm that can be targetted towards VLIW architectures com-
monly found in embedded systems and high-performance worksta-
tions i.e. Itanium. The goal of this paper is to present a simple
instruction scheduling algorithm that does not require substantial
hardware support to address the scheduling of load operations to
mask the latency of delinquent loads; which are associated with
high miss rates and very long average latencies. Our algorithm is
namedCache Sensitive Scheduling(CSS). CSS is designed to be
sensitive to the varying memory latencies of load operations, and
compensate for those latencies within the instruction schedule by
masking the typically long latencies of load operations with useful
operations to reduce stall penalties. CSS can extend a rank-function
based scheduler with two additional components to intelligently in-
corporate the profiled average latency of an operation, and the la-
tencies of its predecessors. Our results show that these additional
components are effective in generating schedules that are more sen-
sitive to the latencies of load instructions. To support the selection
and relative weight of our rank function components we use multi-
variate statistical analysis to determine the degree of correlation be-
tween our rank components and the execution time of the program.
In our experiments with a VLIW parameterized compiler-simulator
infrastructure using a variety of memory hierarchy configurations;
we were able to achieve 20% speedups and 44% stall cycle reduc-
tions over a more conventional critical path scheduling algorithm.

Keywords
Instruction Scheduling, VLIW, EPIC, Instruction Level Parallelism,
Cache, Rank Function, Multivariate Statistics

1. INTRODUCTION
∗This work is supported in part by DARPA contract F33615-99-
1499, Hewlett-Packard Laboratories and Yamacraw.

There continues to be a widening gap between processor execu-
tion rates and memory access times. Researchers have proposed a
number of strategies that address this problem via additional hard-
ware logic, extensions to the instruction set, compiler optimiza-
tions, or some combination of these approaches. Our approach is
a compiler-based instruction scheduling algorithm namedCache
Sensitive Scheduling(CSS). CSS is targetted towards VLIW in-
struction set architectures found in embedded systems as well as
high-performance workstations. These instruction set architectures (ISAs)
support high degrees of instruction level parallelism (ILP). A single
VLIW instruction contains a set of operations that are executed in
parallel. These ISAs rely on the compiler to derive efficient instruc-
tion schedules; and as result provide the compiler with information
regarding the number and type of functional units as well as the
latencies of individual operations.

CSS is a localized instruction scheduler that benefits from the cre-
ation of large regions of code containing no branches. This pro-
vides CSS with more opportunities to shuffle operations to mask the
latencies of load operations. Examples of these regions are hyper-
blocks [1] and superblocks [2] depending on how they are formed.
Forming these regions requires the ability to convert branches re-
sulting from if-statements to sequences of operations with no branches.
Therefore, CSS requires ISAs to provide instruction predication,
which is found in many embedded processors (ARM and SHARC)
as well as high-performance explicitly parallel instruction com-
puter (EPIC) workstations such as Itanium.

CSS is extends traditional compiler-based rank-function instruction
scheduling techniques that focus on maintaining the critical path
and improving ILP [3] [4] to mask the latency of delinquent load
operations. CSS indirectly uses average latencies of load operations
which are gathered from light-profiling. This makes CSS sensitive
to the impact that a given load operation has on instruction sched-
ule. CSS lessens or hides the impact these delinquent loads while
still maintaining a high degree of ILP.

When an instruction scheduler becomes more aware of the latencies
of load instructions and uses such information during scheduling,
then we say it is aLoad Sensitive Scheduler[5]. The algorithm we
are presenting here, CSS, is a load-sensitive scheduler. The state-
of-art instruction schedulers today will treat all load operations as
equals. Either the load operations are assumed to always experi-
ence a cache hit latency (Optimistic Scheduler), or the load opera-
tions are expected to experience a cache miss latency (Pessimistic
Scheduler). The example in figure 1 illustrates the problems with
these approaches. As shown in part A, the pessimistic scheduler

2

LDADDMULADD

LDSUBMULDIV

SUBMULDIV

SUBMULDIV

I1

I1

I2

I2

(A) Pessimistic

Unnecessary
Gap in Time

Time

(B) Optimistic

Time

Stall on Use

Data Arrives

Data Arrives

Figure 1: How conventional instruction schedulers handle load
instructions

chooses to schedule the load instructions with longer latencies that
resemble miss latencies. The result is that when data arrives early,
the uses of that data are unnecessarily delayed in beginning exe-
cution. As shown in part B, an optimistic scheduler will choose
to schedule the instruction earlier; however, if the data arrives in a
later cycle the processor will be stalled until the data arrives. This
approach will shorten the schedule, but increase the execution time.
In addition, the optimistic scheduler is not concerned with hiding
latencies; and therefore, there are no gaps to insert other useful
non-dependent instructions.

for k = 1 to N step 5
S1 += A[i][k]*B[k][j];
S1 += A[i][k+1]*B[k+1][j];
S1 += A[i][k+2]*B[k+2][j];
S1 += A[i][k+3]*B[k+3][j];
S1 += A[i][k+4]*B[k+4][j];

endfor

Figure 2: The above code is from the inner loop of a matrix-
multiply implementation. The inner loop has been unrolled by
5.

Consider the example in figure 2. This example is based on code
from an implementation of matrix-multiplication. The original in-
ner loop requires two floating point load operations, one multiply
operation, and one add operation. After loop-unrolling, it requires
5 times as many operations. This scenario provides an opportunity
for uncovering ILP in the schedule. Due to the number of load oper-
ations, there are likely to be varying degrees of latencies and some
delinquent loads. Ideally, the loads producing cache misses should
be scheduled earlier in the iteration, while scheduling the opera-
tions that use the data later in the iteration. The cycles in between
can be used to schedule the other operations that do not depend on
the offending load operations. This reduces the effect of processor
stalls related to dependent operations attempting to access data that
has not arrived. At the same time, this increases the amount of ILP
in the program. This is the essence of what CSS is designed to ac-
complish using a rank-based instruction scheduler framework. In
other words, CSS uses realistic latencies of operations to determine
how much of a gap should be placed between the load operation
and the use of the data. The gap is tailored to the behavior of each
load operation to provide the proper time for that particular load
operation to load its data, while minimizing the effects found in
optimistic and pessimistic scheduling. The result is a schedule that

balances ILP against proper load-to-use distance, which results in
better overall performance as shown in the table below.

Benchmark % Compute Cycle
Reduction

% Stall Cycle
Reduction

DARPA DIS
Benchmarks

18.18% 44.48%

Olden
Benchmarks

6.35% 5.17%

Spec2000 Bench-
marks

5.88% 6.46%

Table 1: Average percentage reductions in execution and stall
cycles experienced by CSS in relation to the baseline scheduler
over all selected benchmarks from a given suite.

We chose a rank-based instruction scheduling framework due to
its power and simplicity. Rank functions can be easily integrated
within a standard list-scheduling framework. Properly formulated,
a rank function is an excellent heuristic for ordering operations in
instruction scheduling. A conventional rank function could be:

CPFSrank(i) = α∗height(i)+β∗ f anOut(i) (1)

The rank in equation 1 is used for the baseline scheduler, referred to
as the Critical Path with Fanout Scheduler(CPFS). CPFS is based
on two components, theheight(i) and thef anOut(i). The first com-
ponent,height(i), gives priority to instructions which are on the
critical path; and the second component,f anOut(i) gives priority
to instructions which enable the scheduling of the largest number
of instructions. Theα and β allow these factors to be weighted
when computing the rank; for simplicity assumeα = β = 0.5. This
rank function is not load-sensitive because it does not enable spe-
cial handling of load operations that are present in the function.
The two components of CPFS rank only characterize an operation
by its data dependence relationships. A load-senstive rank function
needs components that are directly affected by the varying latencies
of load operations. Since CPFS is not load-sensitive, it will not be
able to generate the appropriate gap between a load and its uses to
alleviate the stall penalties of delinquent load operations.

Our solution uses profile-feedback compilation to enable the com-
piler ot take advantage of realistic memory usage measurements of
each load operation including the average hit latency and miss, and
the hit and miss ratios per instruction. Profile-feedback compila-
tion is a well accepted methodology for compiling for embedded
environments. It is now gaining acceptance for high-performance
processors. We use linear regression and multivariate analysis tech-
niques to support our algorithm is two ways:

1. Multivariate analysis is used to assess the degree to which
each of the rank function components affects performance.

2. Linear regression is used to assess the stability of the profile
data in context of varying benchmark input sets.

1.1 Summary of Main Results
In this paper, we make the following contributions:

1. We present a new scheduling algorithm with a load-sensitive
rank function that has a running timeO(N ∗ |V|) whereV is

3

the set of all instructions in a region within the program, and
N is the number of regions. Details are described in section 3.

2. Our scheduling algorithm obtains 20% improvements over
the baseline CPFS scheduler. Details are found in section 4.

3. We also introduce a statistical analysis framework to evaluate
the impact of the components of our rank function and to
establish the stability of profile-based compiler optimization
techniques. This methodology is detailed in section 5.

1.2 Experimental Setup
Our experimental infrastructure is based onTrimaran [6]. Tri-
maranprovides a flexible compiler and simulator infrastructure for
VLIW/EPIC-centered research.Trimaranallows the researcher to
create any processor configuration within the HPL-PD [7] design
space. In addition, a parameterized cache simulator is used to en-
able the creation of various cache structures. The flexibility ofTri-
maranenables us to validate our solution across various memory
hardware parameters.

2. RELATED WORK
There have been other schedulers proposed to address the above
stated issue in different ways. Kerns and Eggers [3] developed a
scheduler that computes the available ILP for a given instruction.
Their work targets RISC processors and shows a 3% to 18% im-
provement over a typical critical path scheduler. The Kerns sched-
uler treats all loads as having an optimistic latency, where CSS
gives the operations a more realistic latency.

Sánchez and González [8] propose a way to integrate software prefetch-
ing with software pipelining in VLIW architectures. Their ap-
proach is to insert prefetch instructions into software-pipelined loops.
The work extends the contributions of other similar algorithms [9]
[10][11][12]. Prefetch insertion algorithms solve some of the prob-
lem, but require special hardware support. In addition, they are
limited by the prefetch queue and buffer sizes. CSS does not re-
quire any special hardware support. In addition, CSS can be used
with any prefetch insertion algorithm as well.

Johnson and Abraham [5] developed a load-sensitive scheduler which
was available in internal releases of the Elcor compiler. This sched-
uler computed the slack in the schedule, which was the amount of
time in the schedule that is found on non-critical paths through the
DAG. They developed a framework for assigning this slack time
to the load operations that were most likely going to miss. Their
scheduler performed transformations on the DAG of operations in
one of three ways: loads given longer latencies in the schedule,
loads converted to prefetches and then moved within the control-
flow, and loads converted to speculative loads and then moved up
within the control-flow. Our CSS algorithm does not have to per-
form and control-flow transformations, and is applied to all loads
in a very systematic way.

Ozawa, et al [13] developed an analytical algorithm for identifying
loads that will cause misses during execution, and they comple-
mented this algorithm with a scheduling strategy that targets these
loads for optimization. Their work focused on scientific applica-
tions with regular access patterns via arrays. Our CSS algorithm
is targeted applications with both regular and irregular access pat-
terns.

3. THE CSS ALGORITHM

This section describes the details of CSS algorithm. The discus-
sion is a top-down explanation of the algorithm, which includes
the greedy list scheduler followed by the CSS rank function, and
formal definitions of the rank function components.

3.1 Greedy List Scheduling with Ranks
Input: A Basic Block, Hyperblock, or SuperblockG ≡
{V,E}
Output: A schedule where eachn∈V is bound to a cycle

1. Assign arank (priority) to each instruction (n∈V).

2. Sort and build a priority listL of the instructions in
non-increasing order of rank.

3. Greedily list-schedule LAn instruction is ready pro-
vided that it has not been scheduled earlier, all of its
predecessors have been scheduled, and the appropri-
ate latencies have elapsed.

Scan listL iteratively at each cycle, and choose the
largest set ofready instructions that can be bound to
resources given constraints on the number of available
functional units (FUs).

Figure 3: Greedy list scheduling

Many instruction schedulers are based on the greedy list scheduling
algorithm shown in figure 3. The greedy list scheduling algorithm
schedules instructions found in a directed acyclic graph (DAG),
which can represent a program region such as a basic block, hy-
perblock, or superblock. The nodes of the graph are the operations,
the directed edges of the graph represent the data dependences be-
tween operations which are annotated with the expected latency of
the source operation. The rank function prioritizes the instructions
in the DAG [4]. This allows the scheduler to schedule instructions
based on that priority ordering. The priority is a function of what
the algorithm designer views as an important criteria in selecting
operations. One traditional rank function is based on the height of
the instruction within the DAG. This is typically referred to as the
critical path scheduler, because the height in the DAG is a good
estimator of the instructions on the critical path. The critical path
is the longest path from the root node of the DAG to the farthest
leaf node. Obviously, lengthening this path will likely lengthen the
execution time of the program.

In the next subsection, we will define the CSS rank. After that,
we will define the factors contributing to the rank function in the
context of standard scheduling dependence DAG definitions.

3.2 The CSS Rank
The goal of the CSS rank is to create the appropriate distance be-
tween loads and uses of the values loaded. The appropriate distance
as discussed in section 1 depends on the latency characteristics of
each individual load instruction. This goal in itself can increase the
length of the critical path; therefore, the CSS algorithm exploits
ILP within the program to reduce the effect of the load latencies.

CSSrank(i) = α ∗ height(i) + β ∗ f anOut(i) + γ ∗
avgLatency(i)−δ∗ predLatency(i)

(2)

The CSS rank function as shown in equation 2 contains some fa-

4

miliar rank function components, such asheight(i) and f anOut(i)
which are found in the CPFS rank (Equation 1). In addition, this
function has other components, mainlyavgLatency(i) andpredLatency(i).
Our unique contribution is these two components and the way in
which they are incorporated. Our unique handling of these compo-
nents gives us the ability to balance ILP gains with the ill-effects of
poor memory utilization.

3.3 Formal Definition of Rank Factorst t
t t t t t

t

n1 n2

n3 n4 n5 n6 n7

n8

�
�

�
�

�=

�
�

�
�/

�
�
�
��

J
J

J
Ĵ

�

Q
Q

Q
Q

QQs

�

��
���

����

0
0 0 2 2

1 1 1

Figure 4: A Schedulable dependence DAG that represents basic
block, hyperblock, or a superblock within a program.

Using the example DAG in figure 4, we show how each compo-
nent of the rank function serves a purpose in either promoting or
demoting the priority of a given operation. Promoting the priority
of the operation will move the instruction earlier in the schedule,
while demoting the instruction will move it later in the schedule.
It is assumed that standard graph definitions for successors (succs)
and predecessors (preds) are understood by the reader:

1. height(i) refers to the relationship betweeni and the critical
path of the DAG. Ifheight(i) > height(j) then nodei is is
higher in the DAG than nodej, and will have a greater affect
on the critical path.

height(i)≡w+(j, i) , where j is the sink node of the DAG and
w+ defines a maximal weighted path

(3)

For example, consider nodesn1 andn2 in figure 4 and the
definition ofheight in equation 3. In this case,height(n2) =
3 > height(n1) = 1, thus theCSSrank(n2) would be greater
in theheight(i) component.

2. f anOut(i) refers to the number of operations that are depen-
dent oni. If f anOut(i) > f anOut(j) then operationi will
potentially enable the most operations to be scheduled.

f anOut(i) ≡ The number of outgoing edges ofi,
where(i, j) ∈ E∧ j ∈ succs(i).

(4)

Consider the nodesn1 andn2 in figure 4 and the definition of
FanOutin equation 4. Thef anOut(n1) = 3> f anOut(n2) =
2, thus theCSSrank(n1) would be greater in thef anOut(i)
component.

3. avgLatency(i) refers to the average latency experienced by
operationi during profiling. Our profile framework is able to
capture the latencies, hit/miss quantities, and hit/miss ratios
for individual load operations. The average latency gives a
more realistic latency experienced by the load than the opti-
mistic or pessimistic latency.

avgLatency(i) ≡

alat(i) if i is a memory op-

eration
de f ault
latency

if i is a non-memory
operation

(5)alat(i) = misslat(i) ∗ missratio(i) + hit latency(i) ∗
hit ratio(i)

where themisslat(i) and thehit latency(i) are the laten-
cies for individual load operations when a miss or hit oc-
cur respectively, which were found during our profile sim-
ulation. Likewise themissratio(i) and thehitratio(i) depict
the percentage of load that result in first-level cache misses
and hits respectively. Again, consider the nodesn1 andn2
in figure 4 along with the definition in equation 5. In this
case, theavgLatency(n2) = 2 > avgLatency(n1) = 0, thus
theCSSrank(n2) would be greater in the
avgLatency(i) component. Note that the latency information
is not used to alter the latencies on the edges of the nodes.
Instead, the latency information is only used to compute the
rank.

4. predLatency(i) for operationi refers to the maximumavgLatency(j),
where j ∈ preds(i). If i is dependent on longer latency op-
erations then its priority should be decreased to allow the
scheduling of operations that depend on operations with lower
latencies.

predLatency(i) = max{avgLatency(j) | j ∈ preds(i)} (6)

Finally, consider the nodes that depend on the nodesn1 and
n2 in figure 4. These nodes are relatively equivalent in all
components of theCSSrank(i) with the exception of thepredLatency(i)
component. In this case, since the nodesn6 andn7 depend on
long latency operations, it would be better to schedule nodes
n3, n4, andn5 first since they will most likely be able to ex-
ecute. Recall thatn2 is most likely a memory operation, and
hence theCSSrank(x), wherex ∈ {n6,n7} will be demoted
by thepredLatency(i) component.

The combination of theavgLatencyand thepredLatencyallow the
rank function to move load instructions earlier in schedule, while
moving instructions dependent on those loads to later in the sched-
ule.

There is a delimma that can occur where components will conflict.
For example, thef anOut(n1)> f anOut(n2), while theavgLatency(n2)>
avgLatency(n1). The delimma is in deciding which component
is more important; is theavgLatency(i) more important than the
f anOut(i). The answer to this question, and other similar ques-
tions will determine the values for theα,β,γ, and δ. We developed
an analysis to answer these questions and determine the values of
those four variables by analyzing the relationships between a finite
set of factors that we believe affect the program execution. Our
analysis is based on Multivariate Statistics [14], and will be de-
tailed in section 5.1.

4. EXPERIMENTAL RESULTS
The experimental results are simulation results using theTrimaran
Infrastructure.Trimaran is explained in more detail in the follow-
ing subsection. In the second subsection, we discuss the hardware
parameters, and workload for the experiments. Finally, the last sub-
section discusses the results of the experiments.

5

Cache Size Associativity
L1 L2 L1 L2

16K/16K 32K(U) 4 16
16K/16K 96K(U) 4 6
64K/64K 1.75M(U) 2 7
32K/64K 8M(U) 4 8
16K/16K 512K(U) 4 8
64K/64K 512K(U) 2 8
32K/32K 8M(U) 4 2

Table 2: Cache parameters used in simulation experiments

4.1 Implementation & Infrastructure
The CSS algorithm was implemented as a part of theTrimaran In-
frastructure [6], which is designed to investigate ILP in the con-
text of VLIW-like machines found in the HPL-PD [7] architectural
space.Trimaran uses the HMDES machine description language
to enable parameterization of the number of registers, number of
functional units, and operation latencies. The CSS algorithm is im-
plemented within the compiler’s back-end. In addition to the com-
piler, theTrimaraninfrastructure provides cycle-accurate processor
simulator. For this research the processor simulator was coupled
with the Dinero cache simulator [15] to provide a full simulation
of the processor and memory hierarchy. The processor simulator
emulates the execution of each operation; load operations invoke
the Dinero simulator. Dinero returns the number of cycles required
to satisfy the load operation, which is based on whether it was a hit
or a miss. The number of cycles returned by Dinero is used by the
processor simulator to compute stall cycles using the stall-on-use
model.

Our methodology utilized a profile-based framework [16]. We first
collected profile information for a specific program running on base
architecture; this is called thetraining stage. The training stage is
done using a smaller data set. This enables the training to be done
relatively quickly. Subsequently, The profile data is used by the
CSS scheduler to optimize the program. The cost of this frame-
work relies on the fact that the cost of training is amortized over
the number of times the optimized program can be executed, and
thus benefiting from the profile-driven compiler framework. This
framework is becoming more common with the increasing demand
for application specific embedded processors, which require appli-
cation specific compiler optimizations. Although this may seem ex-
pensive in traditional compilation environments, this is more than
justified within the embedded systems development environment.

4.2 Hardware Parameters and Workload
The processor model for the simulator was an EPIC processor model,
which is similar to the Intel Itanium processor. Its VLIW nature re-
sembles many state-of-the-art embedded microprocessors and micro-
controllers, such as DSP-based microprocessors. The processor
in our experiments contained 4 integer functional units, 2 float-
ing point units, 2 memory units, and 1 branch unit. Our machine
is equipped with various register files: general purpose, floating
point, predicate, branch target, and control. All of the files ex-
cept the branch target file have both static and rotating files. The
predicate registers support CSS in that they enable if-conversion
optimizations and hyperblock formation.

CSS is a scheduling algorithm that is designed to be sensitive to the
memory hierarchy, and as a result we chose a variety of cache con-

figurations for our experiments. The chosen parameters are sum-
marized in table 2.

We selected benchmarks from the Spec2000, Olden [17][18], and
DARPA-sponsored DIS Benchmarks and Stressmarks [19]. The
workload was consistent with our goal of optimizing programs that
have regular to irregular memory access patterns. The benchmarks
in our workload also exhibit various degrees of resource usage;
however, the vast majority suffer from performance degradation
due to undesirable data locality.

The chosen platforms and workload provides a rich experimental
environment for comparing the instruction scheduling strategies de-
scribed in the next section.

4.3 The Scheduling Algorithms
Name of
Scheduler

Rank Function Use of Profile Data

CPFS CPFSrank(i) No
CPFS-P CPFSrank(i) avg latencies for load instruc-

tions are used as edge laten-
cies

CSS CSSrank(i) avg latencies for load instruc-
tion are used rank computa-
tion

Table 4: Summary of Schedulers

We compared CSS with two other schedulers as summarized in ta-
ble 4. The CPFS scheduler was based on the CPFS rank function
(Equation 1). As mentioned earlier, this rank function expressed
the typical focus of many instruction schedulers. The CPFS sched-
uler was also the baseline for all of the experiments. The CPFS-P
scheduler was a variation of CPFS where we attempted to use pro-
file information within that scheduler, but not by making it part of
the rank function. Instead, the average latencies of the operations
were used as the latencies on the out-going edges of the load op-
erations within the data dependence DAG. This forced the sched-
uler to insert delays for load instructions that were consistent with
the profiled average latency experienced via the memory hierarchy.
Finally, CSS is the algorithm we propose, that indirectly incorpo-
rates load latency information for the rank function computation.
In this way, the longer latencies are balanced with the available
ILP.All CSS experiments used the same values to control the rank
function: α = 0.48,β = 0.11,γ = 0.23, andδ = 0.18. These values
were determined from the multivariate statistical analysis discussed
in section 5.1.

4.4 Results
The performance of the schedulers was based on 4 metrics: Com-
putation Time, Stall Time, Closeness toetime(i), and ILP Effi-
ciency. These metrics are explained below:

Computation Time: Measures the number of cycles required to
complete the computation.

Stall Time: Measures the number of cycles caused by stalls due to
memory access delays.

Closeness to etime(i): Captures how early operations are being
scheduled relative to the earliest possible schedule time. The

6

Bench Description Pointer Data Structures

Bisort Bitonic Sort Binary tree
Health Simulate Colombia Health SystemQuadtree & lists
MST Minimum Spanning Tree Array of lists
Power Power Pricing Quadtree
Treeadd Tree walking Binary tree
Update Pointer chasing w/ updates Updates small blocks at ran-

dom locations
Matrix Iterative conjugate gradient Dynamic indirect arrays
Neighborhood Calculate image texture measuresDynamic arrays of records
Transitive All-pairs-shortest-path Adjacency matrix
800 nodes/5000 edges
Data Management DBMS Processing Dynamic arrays of record
179.art Adaptive Resonance Dynamic array of records
164.gzip Gzip compression Dynamic array of records
181.mcf Combinatorial Optimization Dynamic arrays of records

Table 3: Benchmark Suites. Description/characteristics, and data input characteristics for the Olden, DIS, & SPEC benchmark
suites

Benchmark CPFS-Baseline Com-
putation (millions of
cycles)

CSS CPFS-P

Data Man 1,659 -10.51% 35.17%
Matrix 1,731 -22.77% 10.32
Update 731 -18.23% -0.98%
Neighborhood 1,256 -21.22% 56.34%
Bisort 2,970 -5.13% 50.59%
Health 109 -8.05% 166.78%
Mst 5,581 -3.82% 10.65%
Power 6,267 -10.59% 25.67%
Treeadd 23,383 -4.15% 98.57%
179.art 412,048 -5.49% 60.23%
164.gzip 296,710 -6.5% 87.34%
181.mcf 1,504 -5.65% 75.34%

Table 5: Changes to Computation Time

earliest possible schedule time is constrained by data depen-
dences, as well as block and branch boundaries. This met-
ric approaches 0 for schedulers that are producing compact
schedules (i.e. optimistic schedulers).

ILP Efficiency: Measures how the amount of ILP being extracted
by the scheduler during the execution of load operations. It
is a ratio of actual ILP to the available ILP given an infinite
resource machine.

Each of the following subsections focuses on one of the above met-
rics.

4.4.1 Computation & Stall Times
The data in the tables 5 and 6 was collected over several experi-
ments using the various memory hierarchy configurations. These
tables summarize the results of how the schedulers affect execu-
tion time of the program. The execution time is divided into two
components: The computation time and the stall time. The data

Benchmark CPFS-Baseline Stalls
(Millions of cycles)

CSS

Data Man 23,428 -25.63%
Matrix 25,331 -37.41%
Update 578,913 -81.62%
Neighborhood 80,074 -33.78%
Bisort 6,944 -3.32%
Health 97 -10.89%
Mst 4,469 -2.67%
Power 2,721 -2.02%
Treeadd 16,128 -2.68%
179.art 29,2450 -4.64%
164.gzip 144,178 -10.81%
181.mcf 743 -3.93%

Table 6: Changes to Stall Time

in table 5 shows that CSS reduced the computation time of pro-
grams in a significant way. The reduction in computation time is
due to the increase in the amount of ILP exploited by the CSS rank
function which will be supported by the ILP efficiency metric. The
CPFS-P algorithm shows an increase in computation time in every
instance. The CPFS-P algorithm will not uncover any more ILP
than the CPFS algorithm; however, adding longer latencies to the
edges of the DAG during scheduling will increase the length of the
schedule. This increase in computation time is the result of an in-
creased schedule length and no additional ILP to compensate for
for the increase. Consider the following example:

0: ld r1, r3 ; Loading value
1:
2: add r5, r1, r2 ; CPFS scheduled time
3:
4:
5: add r5, r1, r2 ; CPFS-P scheduled time

Figure 5: Using latencies in CPFS scheduler

7

The code fragment in figure 5 shows that the time between the load
and the use was increased to 5 cycles by CPFS-P from 2 cycles
used by CPFS. Now in order to not increase the execution time,
these 5 cycles must be filled with useful operations. Since the rank
function is the same with CPFS and CPFS-P, the order in which
operations are selected is not changed. Therefore, the ordering of
the operations generated by the CPFS and CPFS-P schedulers will
be identical with the exception of the increased latencies of load
operations in the CPFS-P schedule. The result is an increase in the
schedule length and execution time.

The data in table 6 summarizes the effect of the schedulers on stall
cycles, which is the second component of the execution time. CSS
heavily impacts the stall cycles, with reductions as high as 81%
with an average of 40%. The reduction in stall cycles is a direct
result of the enhanced placement of the load operations.

A subset of the olden benchmarks did not exhibit the performance
gains found in the DIS and Spec benchmarks. CSS was designed
to exploit ILP, and it properly moved load instructions to provide
more slack between the load and its use. However, when CSS was
not able to extract ILP from the benchmark, the slack could not be
made available without lengthening the schedule. We found that
many of Olden and SPEC benchmarks have less available ILP as
seen with the ILP Efficiency metric.

4.4.2 E-Time Closeness
Benchmark E-time-

Closeness
(CPFS)

E-time-
Closeness
(CSS)

Difference
(# of cy-
cles)

Data Management 1.11 1.56 0.45
Matrix 0.62 0.88 0.26
Update 0.61 0.7 0.09
Neighborhood 1.52 1.75 0.23
Bisort 0.18 0.18 0
Health 0.09 0.14 0.05
Mst 0.09 0.14 0.05
Perimeter 0.09 0.14 0.05
Treeadd 0.09 0.14 0.05

Table 7: This table summarizes etime(i) closeness metric to de-
termine if load operations are being scheduled as early as possi-
ble within data dependence, block/branch boundaries, and re-
source constraints

Table 7 contains the data for the E-Time Closeness metric. This
metric was developed to determine whether or not load operations
were being scheduled as early as possible. If load operations are
being scheduled as early as possible then they cannot be scheduled
earlier due to data dependences, block and branch boundaries, or
resource constraints. The exact nature is beyond the scope of this
paper. As values approach 0, then it can be concluded that oper-
ations are being scheduled as early as possible without violating
any of the above constraints. In comparing CPFS and CSS, it is
apparent that both schedulers schedule instructions very close to
the e-time. If it were the case that CPFS was scheduling opera-
tions further from their e-time, then it could be argued that if CPFS
simply scheduled operations earlier within the slack time, then it
would compete with CSS. However, the data suggest that the oper-
ations need to be reordered in a way to balance the masking of load
latencies and ILP.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

ILP Efficiency

N
um

be
r

of
 L

oa
ds

Figure 6: ILP Efficiency for SPEC. Compares the CPFS algo-
rithm(light) with the CSS algorithm(dark).

4.4.3 ILP Efficiency
The graphs in figures6, 8 and 7 compare the ILP Efficiency of CPFS
and CSS for each of the benchmark suites. The y-axis is the quan-
tity of load operations, and the y-axis is the percentage of func-
tional units used by the schedule while load operations are execut-
ing. The trend in all of the benchmark suites is that CSS is able
to extract more ILP on average during the execution of load opera-
tions. Overall there is an average of 11.5% improvement.

5. CORRELATION STUDY AND PROFILE
STABILITY

The rank function proposed here has 4 components, and each com-
ponent is accompanied by a scaling factor. The scaling factors rep-
resent the relative weight the 4 components should have in influenc-
ing the priorities of operations during scheduling. We wanted to use
a systematic methodology for determining the values of these scal-
ing factors and settled on multivariate statistics as the basis. Upon
using statistics for determining weights, we discovered its useful-
ness in determining the reliability of the profiled data. The next
few subsections address the use multivariate analysis, and the use
of linear regression techniques for profile stability.

5.1 Background: Multivariate Analysis
The unknowns in theCSSrank(i) andCPFSrank(i) are theα,β,γ, andδ
factors. Originally these factors were chosen by hand optimiza-
tion based on several experiments. However, this is an impractical
method of determining the values of these factors. Therefore; it is
necessary to use our profile stability methodology to improve the
reliability of using these factors across a range of inputs and pro-
grams.

5.1.1 Multivariate Analysis Formulation
Multivariate statistics are an extension of univariate and bivariate
statistics, where correlations are found between variables repre-
senting a complex data set. The set of variables may contain nde-
pendent variables (IVs) and/or dependent variables (DVs). Inde-

8

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

ILP Efficiency

N
um

be
r

of
 L

oa
ds

Figure 7: ILP Efficiency for DIS. Compares the CPFS algo-
rithm(light) with the CSS algorithm(dark).

pendent variables (IVs) are variables that are used to predict de-
pendent variables (DVs); therefore, IVs are oftentimes considered
predictors and DVs are oftentimes considered predicted variables.

The multivariate analysis we have chosen is based on the following
formulation. We are given a set of IVs,X1,X2, X3, ...,Xk that are
linearly combined to predict the DV,Y′:

Y′ = A+B1 X1 +B2 X2 + ...+Bk Xk (7)

TheBi are the regression coefficients. These are a measure of the
strength of the association betweenXi andY′. We can represent this
entire linear equation as a vector~z. Now instead of points x and y,
we will consider vectors~z and~w. The covariance relationship is
now:

Szw = ∑(~zi −~z)(~wi −~w)
n−1

(8)

Similarly, the correlation can be computed as follows:

rzw =
Szw√
Sz

2Sw
2

(9)

The rzw correlation is a matrix of correlations between all x and y
pairs. The column of the matrix corresponding to the DV dictates
the strength of the relationship of IVs to the DV.

5.2 Using Multivariate Analysis to Support
CSS

We build on this formulation and introduce matrices to find the
relationship between the individual IVs. The relationship between
the individual IVs is particularly important because it will unveil

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

40

50

60

ILP Efficiency

N
um

be
r

of
 L

oa
ds

Figure 8: ILP Efficiency for Olden. Compares the CPFS algo-
rithm(light) with the CSS algorithm(dark).

the alues that should be assigned to theα,β,γ andδ CSS scaling
factors.

For CSS we decided to use the following variables:

• Latency: This is a continuous IV that represents the average
latency of all load instructions within the program

• Fan−Out: This is a continuous IV that represents the aver-
age fan-out for instructions within the program.

• Height: This is a continuous IV that represents the average
length or height across all regions in the program.

• PredecessorLatency: This is a continuous IV that represents
the average latency of predecessor nodes in the program.

• Time: this is the DV, and it represents the actual execution
time.

These variables directly relate to the factors needed by the CSS rank
function. We collected data on over 2000 simulations spanning the
collection of benchmarks and varying architectural parameters. We
then used SAS to analyze the data, and generate the correlation ma-
trix in table 8. The correlation matrix reveals the relative strength
of the effect of each of the factors.

The actual scaling factors for CSS can be computed directly from
the ast column of the correlation matrix. The last column of the
matrix eveals how each of the independent variables affects the de-
pendendent variable,Time. By normalizing the values in this col-
umn to fall between 0 and 1, and to sum to 1, we can obtain the
relative importance of each independent variable. In this case, the
result shows thatα = .48,β = .11,γ = .23, andδ = .18.

5.3 Profile Stability
Stability of profile data is a concern for compiler designers that
use program execution profile data to drive compiler optimizations.

9

none latency fanout height PredLat log(Time)
latency 1.0 0.54583 0.24990 0.93812 0.19096
fanout – 1.0 0.33410 0.50981 0.09290
height – – 1.0 0.13475 0.40680

predLat – – – 1.0 0.14960
log(Time) – – – – 1.0

Table 8: correlation matrix for CSS

Profile data stability is the ability to rely on data collected from a set
of profiled program executions to correlate with other non-profiled
program executions. This is needed because it is impossible to col-
lect profile data for all possible data inputs of a given program, and
it is impossible to execute all programs. Therefore, the data col-
lected during a set of profiled executions needs to be applicable to
some superset of data input and program combinations.

For this paper, a linear regression analysis was performed on a data
collected from experiments using the Transitive benchmark from
the DIS suite. The Transitive benchmark performs the transitive
closure on a graph. We chose this benchmark because there were 6
supported input data sets that vary the data input size. The follow-
ing are the details to this experiment:

inputs number of vertices number of edges
input1 800 5000
input2 800 500,000
input3 1000 5000
input4 1250 5000
input5 1250 500,000
input6 1250 900,000

Table 9: Input sets used for DIS Transitive benchmark

1. The benchmark was executed using 6 different input sets.
The input sets are detailed in table 9. The table shows that
the total size of data being processed is significantly diverse.

2. Two cache configurations were chosen from table 2. The
cache configuration of the first and third rows were chosen
because of the increase in L1 and L2.

3. The CPFS and CSS schedulers were used.

4. The detailed profile information includes the miss and hit ra-
tios in respect to L1, the number of misses and hits in respect
to L1, and the average latency for each unique load operation.
This data created a table of over 6000 entries. A snippet of
this table is shown in table 10. As you can see, a load opera-
tion executing on the same memory heirarchy is only slightly
affected by the size of the input data.

An examination of the distribution of the miss ratios for the load
operations, found that the distribution was sparse containing spikes
at the very high miss rates and at the very low miss rates. Very
few load operations fell in between. Due to this data skewing, we
partitioned the space and performed the regression using the recom-
puted means as least square means for each partition. Performing
the linear regression in these partitions shows that statistically, load

inputs least squares means
input1 0.7166
input2 0.7166
input3 0.6626
input4 0.6539
input5 0.6540
input6 0.6540

Table 11: Least squares means for load operations considered
to have high miss rates over the various input sets.

inputs least squares means
input1 0.0004
input2 0.0004
input3 0.0000
input4 0.0004
input5 0.0004
input6 0.0004

Table 12: Least squares means for load operations considered
to have low miss rates over the various input sets.

operations are affeted very little by the data inputs when the cache
remains constant. These results are shown in tables 11 12.

The results of this experiment is representative of the other DIS
benchmarks used in this research. We anticipate the same effect
from the other suites based on a coarse grain profile analysis pre-
sented in [20]. The furher breakdown and discussion of this topic
is for future work.

6. CONCLUSIONS
We have presented a new scheduling algorithm called Cache Sensi-
tive Scheduling (CSS). CSS is a scheduling algorithm that is based
on the rank function framework. This enables CSS to be easily ex-
tended and integrated with generic compilers. The need for CSS is
due to the increased responsibities given to the compiler by emerg-
ing EPIC COTS technologies. These processors are accompanied
by ISAs that allow the compiler to build instruction schedules as
well as move data within the memory hierarchy. The CSS algo-
rithm takes advantage of the latency and predication features of
VLIW/EPIC processors to generate schedules that are sensitive to
the latency requirements of the load instructions. Contrary to con-
ventional schedulers, CSS is able to find the best load-to-use gap in
the schedule, and avoid the problems associated with data arriving
either earlier or later than it is needed.

The CSS algorithm can be used as an enhancing optimization in
conjunction with high-level loop optimizations and data reorgani-

10

input cache config op hits hit rate misses miss rate avg. latency
1 0 2 1248084 0.020016 61105017 0.979984 48.570461
2 0 2 1211738 0.020023 59305630 0.979977 31.326433
3 0 2 1957596 0.01598 120545616 0.98402 48.404846
4 0 2 3070749 0.012767 237443609 0.987233 48.72382
5 0 2 3003985 0.012829 231147464 0.987171 32.710495
6 0 2 2986222 0.01276 231043018 0.98724 48.735279

Table 10: fragment of profile data collected on the Transitive benchmark for a single load operation on the same cache, but varying
input.

zation techniques. In this framework, CSS would be able to address
locality issues that are not addressed by high-level with loop and
data optimizations.

To accompany the CSS algorithm, we have presented a multivariate
statistics framework that is used as a stability technique to ensure
that the rank function accounts for all of the factors that can affect
the execution time of the program at the scheduling level. In this
context, the statistical analysis is used to determine the values of the
scaling factors,α,β,γ, andδ. In addition, we used regression anal-
ysis to determine the stability of the profile information in respect
to input data. Our experiments found that the behavior of individ-
ual load operations is largely unaffected by the input data set size
or complexity. Further investigation will be performed to further
encourage and support profile-based compilation in the context of
memory focused compiler optimizations.

Acknowledgements
We thank Felicia P. Hardnett, Biostatistician with Centers for Dis-
ease Control for assisting us in formulating and implementing the
multivariate analysis.

7. REFERENCES
[1] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.

Bringmann, “Effective compiler support for predicated
execution using the hyperblock,” in25th Annual
International Symposium on Microarchitecture, 1992.
[Online]. Available:
citeseer.nj.nec.com/mahlke92effective.html

[2] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. mei W. Hwu, “Superblock formation
using static program analysis,” in26th International
Symposium on Microarchitecture, 1993, pp. 247–255.

[3] D. R. Kerns and S. J. Eggers, “Balanced scheduling:
instruction scheduling when memory latency is uncertain,”
ACM SIGPLAN Notices, vol. 28, no. 6, pp. 278–289, 1993.

[4] K. V. Palem and B. B. Simons, “Scheduling time-critical
instructions on RISC machines,”ACM Transactions on
Programming Languages and Systems, vol. 15, no. 4, pp.
632–658, September 1993.

[5] T. Johnson and S. Abraham, “Load sensitive scheduling,” hP
Labs.

[6] T. Consortium, “Trimaran project homepage,”
www.trimaran.org.

[7] V. Kathail, M. Schlansker, and B. Rau, “Hpl-pd architecture
specification: Version 1.1,” Hewlett Packard, Palo Alto,CA,
Tech. Rep., 2000.

[8] F. J. Śanchez and A. González, “Cache sensitive modulo
scheduling,” inInternational Conference on Parallel
Architectures and Compilation Techniques, 1997, pp.
338–348. [Online]. Available:
citeseer.nj.nec.com/191954.html

[9] E. H. Gornish, E. D. Granston, and A. V. Veidenbaum,
“Compiler-directed data prefetching in multiprocessors with
memory hierarchies,” inProceedings 1990 International
Conference on Supercomputing, ACM SIGARCH Computer
Architecture News, vol. 18, 1990, pp. 354–368. [Online].
Available: citeseer.nj.nec.com/42264.html

[10] A. Klaiber and H. Levy, “An architecture for
software-controlled data prefetching,” inProceedings of 18th
ISCA, 1991, pp. 43–55.

[11] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
evaluation of a compiler algorithm for prefetching,” inFifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1992, pp.
62–73.

[12] D. Callahan, K. Kennedy, and A. Porterfield, “Software
prefetching,” inArchitectural Support for Programming
Languages and Operating Systems, 1991, pp. 40–52.

[13] T. Ozawa and et. al, “Cache miss heuristics an preloading
techniques for general-purpose programs,” inProceedings of
28th Annual International Symposium on Microarchitecture,
1995, pp. 243–248.

[14] Using Multivariate Statistics. Harper Collins College
Publishers, 1996.

[15] J. Edler and M. Hill, “Dinero iv trace-driven uniprocessor
cache simulator,” 1998.

[16] W. Y. Chen, S. A. Mahike, N. J. Warter, S. Anik, and W. W.
Hwu, “Profile-assisted instruction scheduling,”International
Journal for Parallel Programming, vol. 22, no. 2, pp.
151–181, April 1994.

[17] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren,
“Supporting dynamic data structures on distributed-memory
machines,”ACM Transactions on Programming Languages
and Systems, vol. 17, no. 2, pp. 233–263, March 1995.
[Online]. Available:
citeseer.nj.nec.com/rogers95supporting.html

[18] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,”ACM SIGPLAN
Notices, vol. 33, no. 11, pp. 115–126, 1998. [Online].
Available: citeseer.nj.nec.com/roth98dependence.html

11

[19] DARPA, “Data intensive systems benchmark suite,”
www.aaec.com/projectweb/dis/.

[20] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe,
“Convergent scheduling.” [Online]. Available:
citeseer.ist.psu.edu/lee02convergent.html

12

