
Design Space Optimization of Embedded Memory Systems
via Data Remapping

RODRIC M. RABBAH, KRISHNA V. PALEM

VINCENT J. MOONEY III, PINAR KORKMAZ and KIRAN PUTTASWAMY

Georgia Institute of Technology

In this paper, we provide a novel compile-timedata remappingalgorithm that runs in linear time. This remapping algorithm is the first fully automatic
approach applicable to pointer-intensive dynamic applications. We show that data remapping can be used to significantly reduce theenergy consumed
as well as thememory sizeneeded to meet a user-specified performance goal (i.e., execution time) – relative to the same application executing without
being remapped. These twin advantages afforded by a remapped program – reduced cache size and energy needs – constitute a key step in a framework
for design space exploration: for any given performance goal, remapping allows the user to reduce the primary and secondary cache size by 50%,
yielding a concomitant energy savings of 57%. Additionally, viewed as a compiler optimization for a fixed processor, we show that remapping
improves the energy consumed by the cache subsystem by 25%. All of the above savings are in the context of the cache subsystem in isolation. We
also show that remapping yields an average 20% energy saving for an ARM-like processor and cache subsystem. All of our improvements are achieved
in the context of DIS, OLDEN and SPEC2000 pointer-centric benchmarks.

Categories and Subject Descriptors: B.3 [Hardware]: Memory Structures; D.2 [Software]: Software Engineering; D.2.2 [Software Engineering]:
Design Tools and Techniques

General Terms: Algorithms, measurements, performance, design

Additional Key Words and Phrases: Design space exploration, power aware, data remapping

1. INTRODUCTION

In the embedded systems domain, the memory is not only a valuable resource in terms of its available size, but also
a significantpower or energy sink, often consuming as much as 45% of the total chip power [19]. Architects have
primarily relied on hardware innovations to reduce the memory needs of a program, particularly since lower memory
requirements translate to lower commercial costs. The latter is of particular importance in the embedded domain where
profit margins are usually quite low. More significantly however, the impact on the system power and energy needs is
often dramatic. While the cache component of the memory hierarchy offers a significant opportunity for optimizing
a program’s memory needs [6], it poses a significant challenge. Traditionally, compiler optimizations have played an
important role in improving the static memory footprint of a program [17, 18, 20]. These include various control and
data transformations for achieving some of the same goals [4, 10, 15].

The focus of this paper is on a compile-timedata reorganization or remapping transformation [22] that achieves the
above goals in the context of a processor with two levels of cache.We are able to show that our technique allows a
program to achieve the same overall running time with just half the cache resources, when compared to a program that
has not been reorganized. Intuitively, and as detailed in the sequel, when the cache memory is halved, the corresponding
power and energy requirements are also halved.

Rodric M. Rabbah, Krishna V. Palem, Vincent J. Mooney III, Pinar Korkmaz and Kiran Puttaswamy
Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering
Georgia Institute of Technology
777 Atlantic Drive, Atlanta, GA 30332
{rabbah, palem, mooney, korkmazp, kiranp}@ece.gatech.edu

This work is supported in part by DARPA contracts F33615-99-1499 and F30602-00-2-0564.

CREST Technical Report, No. GIT-CC-02-011, March 2002, Pages 1–15.

2 CREST Technical Report, No. GIT-CC-02-011, March 2002

0

5

10

15

20

25

30

35

Time

A
m

o
u

n
t

o
f

D
at

a
F

et
ch

ed
 (

in
 3

2K
b

) Before Data
Remapping
After Data
Remapping

Figure 1. Amount of data fetched before and after data remapping.

The implications of this result are two-fold. First, our reorganization technique will allow embedded systems designers
to pick a system whose cache memory and concomitant power needs are half of those achieved without our technique!
In this sense, data reorganization can be viewed as an important component of a tool fordesign-space exploration, which
can help lower the memory cost and power needs significantly, without compromising execution time. Second, when
viewed as a conventional compiler optimization for a fixed target processor, it can be used to improve the performance of
an application in the context of execution time as well as energy consumption. All of our work reported here is based on
hardware models and an instruction set architecture (ISA) for the ARM family of processors, using floating point1 and
integer benchmarks.

Stated in simple terms, the proposed is an efficient remapping of the application’s data layout in memory, such that
data elements that are accessed contemporaneously are placed together in memory. Hence, remapping improves the
spatial locality of data items that also share temporal locality. Specifically, in the absence of remapping, much of the data
delivered to the cache is often needlessly fetched because of a lack of locality. In Figure 1, we plot the amount of data that
is delivered to the cache for successive time slices throughout the execution of a representative benchmark. As a result
of our remapping, the application’s working-set size is effectively reduced – that is, the amount of data that is fetched
is reduced by 30%. Consequently, the remapping transformation achieves its impressive improvement by ensuring that
the ratio of the number of items found in cache (cache-hits) to those that are fetched from main memory (cache-misses)
remain the same, with half the memory size, without compromising the application execution time.

Traditionally, data reorganization has been used to improve the execution time of applications for a fixed target pro-
cessor [3, 9, 13, 18, 28]. To a large extent, previous work in this area has been a semi-automated process, and in the
context of pointer-based programs – ubiquitous to the C programming language used extensively in the embedded sys-
tems domain – it has been mainly restricted to memory that is statically allocated. Our algorithm is(i) the first that is
fully automated,(ii) applicable in the context of pointer-based programming languages with dynamic memory allocation
support and(iii) is light weight with a running time linear in the size of the program.

In the next section, we will summarize the impact of data remapping on design space exploration. The remapping
algorithm will be detailed in Section 3. Our evaluation framework and results follow in Sections 4 and 5 respectively.
Section 6 summarizes and concludes the paper.

1Our simulation environment models an ARM-like processor but also includes floating point support.

3 CREST Technical Report, No. GIT-CC-02-011, March 2002

Input
Data

Fixed
Program

Locality Enhancing Algorithm
• Loop transformations
• Data reorganization

Software
Pipelining and

Scheduling
Register

Allocation

Range of Customized
Micro-Architectures

User Specified
Design Constraints
• Power
• Performance
• Timing

Exploration
Tool

Select Design
With Lowest

Cost

Compiler Optimizations

Figure 2. The concept of design space exploration.

Table 1. The impact of data remapping on power and cost during design space exploration.
Benchmark Performance Goal Processor Processor Before Remapping After Remapping

(106 cycles) Type Cost L2 Size L2 Cost Total Cost L2 Size L2 Cost Total Cost
179.ART 12,464 SMJ320C6701 $0.85 1MB $19.38 $20.23 0MB $0 $0.85

PERIMETER 516 SA 110 $66.03 2MB $48.00 $114.03 1MB $19.38 $85.41
TREEADD 877 SA 110 $66.03 1MB $19.38 $85.41 .5MB $17.80 $83.83

2. DATA REMAPPING AND DESIGN SPACE EXPLORATION

Broadly, our results and contributions fall into two categories. The first, and perhaps more important, category from the
embedded systems perspective is in the context of design space exploration. In this sense, data remapping is an important
step in exploring the design space when a system is assembled. This novel and interesting application of data remapping
is self-evident and will be detailed next. However, data reorganization is often presented as a compiler optimization for a
fixed target processor. To this end, the impact of data remapping in a more traditional role shall be discussed in Section 5.

The goal of design exploration, illustrated in Figure 2, is to fix the program under consideration and to vary its
performance via optimizations, in search of the best hardware configuration. In our case, we shall focus on the cache
subsystem and seek to optimize its energy and cost requirements. To this end, data remapping has proven to be a powerful
tool. As shown in Table 1, remapping preserves the application’s performance with half the cache size for three example
benchmarks. Specifically, given a fixed execution time goal of 600 million cycles for the application PERIMETER,
remapping allows us to use a 1MB secondary cache instead of 2MB for a total saving of $28.62 which is 25% of the
cost2. More generally, we have demonstrated that this improvement is consistent in the context of several applications
including floating-point and integer applications such as neural network simulation, large database management, image
matching, and scientific computation from the Data Intensive Systems (DIS) [11], OLDEN [16] and SPEC2000 [23]
benchmark suites. These results are summarized in Table 2. For each program, we show the reduction in overall energy
consumed in the cache subsystem as well as the accompanying performance change where a negative number implies

2We use a StrongARM 110 processor from Intel for the TREEADD and PERIMETER integer benchmarks. We use a Texas Instruments processor for
179.ART, a floating point benchmark. The price quoted for the latter processor assumes that a quantity of at least 1,000 is purchased, while the price
for the former is for a quantity of one. For the 2MB L2 cache, we use two 1MB Toshiba TC55W800FT-55 chips, each at a cost of $24. For the 1MB L2
cache, we use two 0.5MB Toshiba TC55V400AFT7, each at a cost of $9.19. For the 0.5MB L2 cache, we use four 128KB Cypress CY62128VL-70SC
chips, each at a cost of $4.425.

4 CREST Technical Report, No. GIT-CC-02-011, March 2002

Table 2. Halving power consumption through cache size re-
ductions using remapping.

Benchmark % L1+L2 Energy % Execution
Reduction (J) Cycles Reduction

164.GZIP 40.60 -0.66
179.ART 84.65 64.36
FIELD 38.05 -0.2

HEALTH 62.63 14.31
PERIMETER 58.45 22.80
TREEADD 58.56 10.46

TSP 57.05 21.77
Average 57.14 19.00

degradation, versus a positive number implying improvement. As seen in the last row of the table, the average energy
improvement is 57.14%.

All of the energy estimates were derived from the well-known and widely used models due to Kamble and Ghose [12].
The memory behavior is measured using a processor simulator that supports an ARM ISA [7]. In Section 4 we will detail
the structure, accuracy and other validation issues related to the evaluation framework. Our modeling of the processor
power dissipation is based on an industry-standard power estimation tool and thus is fairly accurate [14].

3. DATA REMAPPING ALGORITHM

Locality enhancing optimizations amortize the cost of expensive memory accesses by improving data reuse and spatial
locality. The latter is a notion of address adjacency in a memory reference stream. It is exploited in hardware by fetching
a set of neighboring data items rather than delivering one element of the set at time. Since memory references are time
consuming, loading and storing a set (cache block) of data items in a lower level of the hierarchy amortizes the cost of a
memory access. However, if a reference stream does not exhibit address adjacency, valuable resources are wasted as data
is unnecessarily fetched and cached. The proposed is a remapping of the elements into new sets, such that data items
that are likely to be used together belong to the same cache block. Consequently, a greater percentage of the data that is
fetched and stored in the cache will in fact be used (Figure 1). Furthermore, since the number of unnecessary data items
that are cached is significantly reduced, the total required cache size is also reduced. As a result, remapping will often
satisfy the design constraints with less hardware investments and hence, less energy dissipation (Section 2).

In order for the remapping to be effective – from a performance and especially power perspective – it must be achieved
without actual data movement. Otherwise, the cost of online data relocation shadows any gains. To this end, our schema
relies on a compiler coordinated placement of data, and introduces new offset computation functions to calculate the
location of a data field relative to a known address. The remapping is customized such that the new layout exhibits (on
average) a better correlation with the application reference sequence. This is in contrast to control optimizations where
the access pattern is tailored to the memory layout. Such optimizations are often restricted in pointer-centric applications
where data dependencies may not be readily resolved by a compiler.

3.1 Overview of Algorithm

The targets of our optimization are record data types ubiquitous to real-world, pointer-heavy applications. A record is a
set of diverse data types grouped within a unique declaration; we shall refer to elements of the set asfields and instances
of a record asobjects. The specific focus on data records is self-evident. Consider for example a function that searches
through a linked list of records and replaces a certain data item matching a search key. Each record consists of akey
field, adatum field and anext field pointing to the next record in the list. Here, thekey andnext fields will be accessed in
succession and more frequently (hot fields) than the datum field (cold field). Therefore, it would prove beneficial to fetch
and cache as many hot fields as possible with each block access. To this end, a remapping strategy that collocates the

5 CREST Technical Report, No. GIT-CC-02-011, March 2002

O1 . f1 O1 . f2 O1 . f3 O2 . f1 O2 . f2 O2 . f3 O3 . f1 O3 . f2 O3 . f3

O1 . f1 O2 . f1 O3 . f1 O1 . f2 O2 . f2 O3 . f2

(a)

(b) O1 . f3 O2 . f3O2 . f3

Figure 3. Two example memory access patterns(|T|= 9) for three objectsO1,
O2 andO2 of record typeR with fields f1, f2 and f3. O j . fk represents thekth

field of the jth instance of a recordR. ForB = 3, NAP(R) equals7
9 for (a) and

0 for (b).

key andnext fields of various objects in the same cache block, and allocates all the ofdatum fields to a separate block,
will improve the program spatial locality which in-turn favorably impacts memory system behavior. Note that packing
field-pairs in the same block (i.e., a block containingkey andnext fields) does not offer an advantage over individual
field packing (i.e., a block containing onlykey fields) since the same number of blocks will eventually be fetched from
memory.

Our schema is an innovative combination of field reordering and customized placement such that the new data layouts
exhibit better spatial locality.The remapping optimization consists of three phases.

(1) Gathering Phase. An analysis of the application memory access patterns is performed to identify record types that
will benefit from remapping.

(2) Remapping of Global Data Objects. We first present the remapping strategy in the context of global data objects
since they are often encountered in large applications. Next, we generalize the technique to dynamically allocated
objects. We do not consider stack-allocated objects for remapping as they are often small and exhibit good locality.

(3) Remapping of Dynamic Data Objects. The key technical features of this work are geared toward pointer-centric
applications and aim to preserve program semantics in the presence of pointer variables; a pointer variable is a
variable whose value is the memory location (address) of another variable. Our optimization applies to programming
languages such asC which associate physical meaning with the syntactic declaration of a record.

3.2 Gathering Phase

An arbitrary application of the remapping strategy to all data objects in a program does not necessarily increase spatial
locality. Some data structures may not exhibit the requisite reference behavior to justify remapping. Although it is desir-
able to reorder data in memory to match all reference sequences, it is not computationally tractable [21]. To this extent,
we analyze memory access patterns along program hot-spots [1] and select candidates for data remapping accordingly.
The analysis is geared to characterize how well a traditional data layout is suited for various program memory access
patterns or MAPs.

Consider the example memory access patterns shown in Figure 3 and let us assume a cache may accommodate three
fields at a time, and that a block of the same size is used to deliver data from memory. In case (a), the reference pattern
is such that the best data layout would assign the fields of objectO1 to one block, those ofO2 to another and similarly
for O3. This leads to a total of three cache misses, occurring on the access toO1. f1, O2. f1 andO3. f1. In case (b), the
reference pattern warrants either an alternate layout or a larger cache. Otherwise, a total of nine misses will occur, one
for each reference. That is, the access toO1. f1 will lead to the delivery ofO1. f2 andO1. f3, which fills our cache. The
next access however is toO2. f1 which will lead to a cache miss and the eviction of the currently cached data (and so one
for the other references). In order to avoid redundant memory accesses, a larger cache is necessary, and in this case, one
that is three times the current capacity. However, as noted earlier, larger caches incur greater investments. Hence, it is
more desirable to modify the data layout such that data items in the block to be fetched are replaced with those that are
more likely to be used.

6 CREST Technical Report, No. GIT-CC-02-011, March 2002

Input: ProgramP, Cache Block SizeB and TraceTR = (k, f)∗ is a
memory trace of all accesses to objects of record typeR. The trace
consists of a list of tuples(k, f), such thatT[i] for 0< i represents the
ith tuple occurring inT, and it is an access to thef th field of the kth

instance of recordR.
Output: NAP for record typeRoccurring in ProgramP.

01. for j := B to |T| do
02. for i := B−1 downto 1 do
03. (kc, fc)← T[j]
04. (kp, fp)← T[j− i]
05. if (kc 6= kp) then
06. if fc and fp belong to the same physical

memory block then incrementNAP(R)
07. end if
08. end for
09. end for

10. NAP(R)← NAP(R)
B(|T|−B)

Figure 4. Algorithm to compute the NAP for records in a program.

Although what is described is a pathological example, it illustrates the need for a proper characterization of the mis-
match between traditional data layouts and the application memory access patterns. Our proposed analysis characterizes
the mismatch as theneighbor affinity probability or NAP. The measured value may range from zero to one, where the
latter indicates that the data layout is well suited for the analyzed reference pattern (i.e., high probability of a block
containing successive data accesses). The other extreme indicates that the data layout does not exhibit any correlation to
the memory access pattern (i.e., low probability of a block containing successive data accesses) and strongly warrants an
alternate arrangement. The algorithm for computing the neighbor affinity probability is shown in Figure 4. For a fixed
cache block sizeB, it analyzes an object reference trace(T) and computes the NAP for record types encountered in the
program with anO(|T|) running time. The block size enables a window-based analysis that searches for any occurrence
of an access pattern resembling the one shown in Figure 3(a). Specifically, field references to different objects of the
same record type are counted, but only if the fields reside in the same physical memory block (line 6). If this does not
occur often enough, then it may prove worthwhile to collocate fields of different objects to increase the likelihood of a
cache hit. If, on the other hand, the MAPs indicate that successive memory references already reside in the same cache
block, then the traditional data layout is effective and may not benefit from a reorganization. The analysis need not
distinguish between access patterns matching the desired template (i.e., the relative order of fields in an access pattern
is not captured). This is in contrast to previous work where the temporal behavior of data fields is tracked [8]. We have
found that although the latter may supplement our analysis, it leads to marginal enhancements. Finally, the computed
NAP is normalized (line 10) and may be combined with affinity information gathered using a different memory profile.
Data types with an affinity lower than some threshold aremarked for remapping. All other record types are left unaltered
and are organized usingtraditional memory layout strategies specified by the programming language.

3.3 Remapping of Global Data Objects

Once candidate record types have been identified, the global program variables are filtered to isolate arrays of records.
Each such object is traditionally allocated in a contiguous memory segment (cluster) with a statically known starting
location (base) and size (rank). The location of a field within a cluster is computed using anoffset computation function
(OCF) which determines the offset to the target relative to the base. For example, consider a record with fieldsf1, f2, f3,

7 CREST Technical Report, No. GIT-CC-02-011, March 2002

List layout if the
traditional offset
computation is used

List layout if the
remap offset

computation is used

Distance between
two successive
fields of a Node is
proportional to N

. . .
struct Node {

int f1;
int f2;
int f3;

};

Node List [N];

Example C-style code.
Node is a record with
three fields.

List is an array of Nodes
with rank N.

f1 f2 f3 f1 f2 f3 f1 f2 f3

f1 f1 f1 . . . f2 f2 f2 f3 f3 f3.

Contiguous memory segment reserved for variable List

fields are
collocated

(a) Layout of fields in a reserved memory segment using thetradi-
tional andremapped layout strategies for a sample source code.

Input: NAP-annotated ProgramP.
Output: Data remappedP.

01. for each global variableV in P do
02. if V is an array of recordsR then
03. if R is marked for remapping then
04. AttributeV with GDRemap
05. else
06. AttributeV with GDNomap
07. end if
08. end if
09. end for
10. perform code generation

(b) Algorithm for remapping global data ob-
jects.

Figure 5. Schema for remapping global data objects.

and a cluster of such records with a rank of one. The offset to fieldf1 relative to the base is zero – the base location of
the cluster is the same as the location of fieldf1 for the first record of the array. The offset to fieldf2 is equal to the size
of field f1. Similarly, the offset to fieldf3 is equal to the size of fieldsf1 and f2. This can be generalized to clusters of
any rank as shown in Equation 1.

In order to improve spatial locality within a cluster, our data remapping strategy manipulates the offset computation
function to yield a desired object and field layout. To this end, we introduce theremap offset computation function shown
in Equation 2 and illustrate the data layouts that result from the traditional and remap offset expressions in Figure 5(a).

The remapping transformation is desirable for record types with low NAP, as the respective fields of various objects
in the cluster are now adjacent – that is, the remapped data layout correlates well with the reference patterns shown in
Figure 3b. In effect, if the NAP for a record type is low, then it follows that successive data references will likely not
access fields of the same object.

The algorithm for remapping global data arrays is outlined in Figure 5(b). First, we attribute arrays of records in a
program with either the traditional or remap offset expressions. Subsequently, during code generation, the associated
expression is evaluated to compute the memory location of a referenced data item. Since the remapping is completely
automated and performed by the compiler, expensive data relocation at run-time is not necessary. The two offset compu-
tation functions used for the purposes of this paper are

GDNomap(Rk. f) = (k−1)×RecordSize(R)+
f−1

∑
i=1

FieldSize(R.i) (1)

GDRemap(Rk. f) = (k−1)×FieldSize(R. f)+N×
f−1

∑
i=1

FieldSize(R.i) (2)

whereRk. f represents thef th field of thekth instance of a recordR. We defineFieldSize(R. f) as the number of con-
secutive addressable units required to store fieldf , andRecordSize(R) as the sum ofFieldSize(R. f) for all fields f in a
recordR.

8 CREST Technical Report, No. GIT-CC-02-011, March 2002

Object layout after one, two and three
traditional allocations of Node

Object layout after one, two and three
remapped (wrapper) allocations of Node

f1 f2 f3

f1 f2 f3 f1 f2 f3

f1 f2 f3 f1 f2 f3 f1 f2 f3

f1 f1 f1 f2 f2 f2 f3 f3 f3

f1 f1 f2 f2 f3 f3

f1 f2 f3

(a) Layout of fields in a reserved memory segment for the
traditional and remapped dynamic layout strategies.

Input: NAP-annotated ProgramP.
Output: Data remappedP.

01. for each statementS in P do
02. if S is of the formx← Allocate(RecordSize(R)) then
03. if R is marked for remapping then
04. replaceSwith x←Wrapper(R)
05. generateWrapper(R) if necessary
06. end if
07. end if
08. end for
09. for each recordtypeR in P do
10. if R is marked for remapping then
11. reorder the fields ofRsuch that the most frequently

used field has field index equal to 1
12. end if
13. end for
14. perform code generation

(b) Algorithm for remapping dynamic data objects.

Figure 6. Schema for remapping dynamic data objects.

The essential difference between the two OCF is the last term. The latter staggers any two fields of a single object by
a distance proportional to the size (N) of the cluster – we shall refer toN as thestagger constant and the term as a whole
shall be called thestagger distance. However, since the remapping strategy is strictly applied to global data objects, the
rank is readily available to the compiler and hence the stagger distance is statically computed. Therefore, the traditional
and remapping strategies contribute the same run-time overhead.

3.4 Remapping of Dynamic Data Objects

The need for cache-conscious data placement is ever more important as applications increasingly rely on dynamically
allocated objects [3, 8]. It is common for traditional allocation strategies to ignore the underlying memory hierarchy in
favor of low run-time overhead. Unfortunately, such a scenario often results in poor interactions between data layout
and program access patterns. Our methodology is to leverage the NAP analysis to identify suitable data types that would
benefit from a controlled placement of newly allocated objects. The goal is to produce a field collocation layout as
illustrated in Figure 6(a) and introduced previously for arrays of records. To this end, we use automatically generated
light-weightwrappersaround traditional memory allocation requests in the program – much like customized memory
management mechanisms used in many applications where a large memory pool is allocated, and smaller portions within
the pool are reassigned with successive allocation requests. However, unlike traditional custom memory management
modules which tend to be complex [3, 9, 28] the generated wrappers are simple and efficient. Furthermore, the innovative
combination of a custom memory allocator and new OCF allows for fine-grain control of field placement as opposed to
object placement alone.

The algorithm for remapping dynamic data objects is shown in Figure 6(b). The first steps of the algorithm intercepts
memory allocation requests and substitute custom allocation requests viz. a wrapper (lines 1-8). An example wrapper
function is illustrated in Figure 7. The automatic generation of such wrappers is trivial and not discussed here. Note
that the algorithm targets repeated single object allocations rather than dynamic allocations of arrays of record. The

9 CREST Technical Report, No. GIT-CC-02-011, March 2002

Input: Record TypeR and Stagger ConstantN.
Output: Valid heap address whereR is allocated.

/* Cluster, Base and Limit are persistent variables */
Initialize Cluster, BaseandLimit to 0
if Base= Limit then

Cluster← reserve heap segment of sizeN×RecordSize(R)
Base← base address ofCluster
Limit← Base+N×FieldSize(R. f1)

end if
Address← Base
Base← Base+FieldSize(R. f1)
returnAddress

Figure 7. An example wrapper function.

void Foo () {
struct Node {

int f1;
int f2;
int f3;

};
Node List [100];
Node ∗P;
…
if (select) P = wrapper (Node);
else P = address of List [k];
Print (P→ f2);

}

R1 = [P] + DDNomap (P→ f2);

R2 = [P] + DDRemap (P→ f2);

P0 = [P] > Stack Pointer Register

R1 = R2 if P0

R3 = Load R1

(a) (b)

(note [P] represents the contents of P)

Figure 8. In (a) the value ofselect may not be statically known.P may
alias a remapped record or a static record. The code generated for the
expressionP→ f2 is shown in (b) and the dynamic disambiguation code
is highlighted.

remapping strategy used for global arrays may be applied to dynamic ones. In this case however, the size of a dynamically
allocated array may not be available to the compiler. Furthermore, an application may allocate several such arrays, each
of a different size. To this extent, the optimization will incur some run-time overhead as the stagger distance is computed
online. A special scenario arises when the compiler is able to determine that all dynamic arrays of a given record type
are of the same size, or alternatively, that a suitable maximum size can be used. In such a case, the stagger distance is
statically fixed and the wrapper adjusted accordingly.

Once all wrapper allocations are in place, the code generator calculates the field offset for a given pointer access.
If it can be determined that a pointer aliases a dynamically allocated record, the compiler evaluates a remapping OCF
expression (Equation 4). Similarly, the code generator uses the traditional offset calculation (Equation 3) for pointer
variables that alias static records. When the compiler is unable to disambiguate a data alias, we evaluate both expressions
and rely on a run-time comparison of the pointer value against thestack pointer register to determine the proper offset
(Figure 8). This is possible since the remapping is restricted to heap objects and does not alter the layout of stack objects.
We used a variation of Steensgaard points-to analysis [24] to statically disambiguate an application’s pointer references.
The simple run-time disambiguation, supplementing the compiler analysis, was found to be highly effective, contributing
less than a 5% increase to the total dynamic instruction count of an application [22].

The offset computation expressions used for dynamically allocated objects are

DDNomap(P→ f) =
f−1

∑
i=1

FieldSize(∗P.i) (3)

DDRemap(P→ f) =
f−1

∑
i=1

StaggerConstant×MaxFieldSize(∗P) (4)

whereP is a pointer to a record of typeR= ∗P andMaxFieldSizeis the maximumFieldSizeof all fields f in a record
R. The stagger constant is a compiler defined value that is equivalent to the rank of an array used earlier to remap global
data objects. Note that a run-time disambiguation is not necessary for the first field of a record (i.e., whenf = 1) since
DDNomapandDDRemapevaluate to zero. Hence, the remapping algorithm modifies the record layout such that the
most frequently used field has an index of one (lines 9-13 in Figure 6(b)).

10 CREST Technical Report, No. GIT-CC-02-011, March 2002

Table 3. Execution time, power and energy results for PERIMETER.
Execution Cycles Execution Time (ms) Power Energy

(106 of cycles) (100 Mhz Clock) (W) (J)

0.53 53 0.99 0.052
1.29 129 0.97 0.125
6.17 617 0.96 0.592

Table 4. Execution time, power and energy results for TREEADD.
Execution Cycles Execution Time (ms) Power Energy

(106 of cycles) (100 Mhz Clock) (W) (J)

0.16 16 0.99 0.0158
0.56 56 0.99 0.0554
1.44 144 1.01 0.1454

4. EXPERIMENTAL METHODOLOGY

In the following, we shall detail the power models and simulation environments used to evaluate data remapping in a
design space exploration context.

4.1 The Target Processor

To estimate power/energy consumption of an ARM-like processor core, we use a semi-custom VLSI design methodology.
We obtained a Verilog model of an ARM-like processor core from the University of Michigan [25]. We synthesized the
core using Synopsys Design Compiler targeted toward a TSMC 0.25µ library from LEDA Systems, Inc. We used a
clock cycle time of 10ns (100MHz clock). The processor is a straightforward 5-stage RISC design able to execute the
ARM ISA. The synthesized area of the processor core is approximately 250,000 NAND gate equivalents in the LEDA
TSMC 0.25µ standard cell library. This approach to processor design, while not the industry standard, is becoming more
common with companies like Tensilica whose product is a synthesizable processor core with a customizable ISA.

Given our synthesized core, we use the Synopsys Power Compiler to estimate power/energy consumption. Briefly,
the Synopsys Power Compiler works as follows. First, we compile each benchmark to generate instruction and data
in a format that the Verilog processor model can use to run the benchmark. Next, a Verilog simulation of the Register-
Transfer Level (RTL) processor description in the Synopsys VCS simulator collects the switching activity (toggle rate) on
each wire in the processor design. This simulation is very time-consuming (typically one million assembly instructions
take three hours on a Sun Ultra 80 with four 450MHz Sparc processors and 4GB of memory). Finally, the switching
activity is used together in conjunction with technology parameters to estimate dynamic and static power dissipation for
the particular technology chosen (in our case, TSMC 0.25µ CMOS Technology). Thus, while typically used for ASIC
design, we use the Synopsys Power Compiler to estimate power consumption of an ARM-like processor.

We show some results in Tables 3 and 4. Note that the power consumption is constant. This is likely due to the fact
that in a simple RISC processor with one ALU, the datapath is always busy, and thus the power variation is minimal.
More details about our modeling of the processor core are contained in a technical report [14].

4.2 The Compilation Environment

Benchmarks from the DIS, OLDEN and SPEC2000 suites were selected for detailed analysis. The OLDEN benchmarks
provide a common frame of reference with previous work on data reorganization [9, 13, 28]. The others provide insight
into larger programs. The benchmarks were executed using large input sets, whereas profile information was gathered
using much smaller workloads (e.g. a trace size of few million memory instructions sampled along program hot spots).
Table 5 summarizes the benchmarks and input workloads used for our experiments.

A short description of each benchmark is as follows. 164.GZIP is an integer SPEC benchmark. It utilizes a dynami-
cally allocated array of records during decompression. 179.ART is a floating point benchmark from the SPEC suite. It
dynamically allocates an array of records at startup, which is heavily used throughout execution. FIELD is a benchmark
from the DIS suite. It uses a statically allocated array of records that is repeatedly searched and modified at random.
The remaining benchmarks are memory intensive and allocate substantial amounts of heap objects. The primary data
structure used in HEALTH is a linked list to which elements are added and removed. PERIMETERand TREEADD respec-
tively allocate quad and binary trees at program start-up and do not subsequently modify them. TSP creates a quad-tree
at program startup that is repeatedly updated.

11 CREST Technical Report, No. GIT-CC-02-011, March 2002

Table 5. Benchmarks, workloads and main memory footprints.
Name Workload Memory Footprint

164.GZIP test 15Mb
179.ART test small
FIELD 11654 Tokens small

HEALTH 8 Levels, 100 Units 100 41Mb
PERIMETER 11Kx11K 146Mb
TREEADD 22 Levels, 20 Iteration 64Mb

TSP 1M Cities 40Mb

The remapping algorithms were implemented in TRICEPS [27], a publicly available infrastructure for compiler re-
search based on TRIMARAN . It provides a common and uniform platform for verification and validation of results. It
also includes an ARM code generator, an ARM-like processor simulator, and a smart memory and cache hierarchy simu-
lator (SMACHS). The algorithms were implemented in the compiler front-end, where type information is available. The
benchmarks were compiled using classic and high-level optimizations which include loop unrolling, copy propagation,
common subexpression elimination, dead code elimination, and aggressive register allocation. The ARM-like simulator
was configured as a single issue processor with stall on-use semantics. Various memory primary and secondary cache
organizations and bus width were used and are reported throughout the paper where appropriate. The memory hierarchy
includes streaming support and uses read/write-allocate semantics.

4.3 Model of Cache Power Consumption

To model energy consumed by the primary and secondary caches, which we assume to be SRAM, we use the approach
of Kamble and Ghose [12]. In order to use their analytical model, we collect run-time statistics such as hit/miss counts
and the ratio of read/write requests. These numbers are generated using SMACHS. Together with cache organization
parameters such as cache capacity, line size and tag size, the model derives memory signal transition counts. One
drawback to the model is that it does not model I/O pads. A more important drawback is that the model only accounts
for dynamic power dissipation, which makes the model inaccurate for upcoming smaller geometries (such as 0.09µ
technology) with relatively large static (leakage) power dissipation. However, for the 0.25µ technology which we assume
in our examples, dynamic power dissipation is still approximately two orders of magnitude greater than static power
dissipation [26] and thus the model is still valid.

The model requires capacitance parameters, such as the metal wire capacitances as well as the gate and drain capac-
itances of the transistors in different parts of an SRAM circuit. We followed the example of Wilton and Jouppi [29] in
calculating these values. For our purposes, we used the TSMC 0.25µ technology parameters to simulate the correspond-
ing components of an SRAM circuit in HSpice. Further details are contained in a technical report [14].

5. RESULTS

We highlight here two different kinds of results. First, we detail the energy savings in the memory subsystem due to
remapping. Next, we demonstrate savings in an architecture consisting of an ARM-like processor, an on-chip primary
cache, and an off-chip secondary cache. Earlier, we summarized a third kind of a result. Namely, Table 1 of Sec-
tion 1 illustrates how data remapping may be used to enable the substitution of less expensive COTS components during
embedded system assembly.

5.1 Memory Subsystem Savings

Tables 6, 7, 8 and 9 show a subset of the L1 and L2 cache design space we explored for the benchmarks. Table 6 summa-
rizes the energy and performance results for our baseline cache configuration, prior to remapping. Table 7 demonstrates
the impact of remapping with respect to energy and performance using the original hardware configuration. In Table 8,
we report the energy and performance results after remapping but for a secondary cache of half the original capacity. Fi-

12 CREST Technical Report, No. GIT-CC-02-011, March 2002

Table 6. Execution time and energy results before remapping.
(L1=32KB, L1 line size=16 bytes, L2=1MB, L2 line size=32 bytes)

Execution L1 Cache L2 Cache L1+L2
Benchmark Cycles Energy (J) Energy (J) Energy (J)

164.GZIP 1106079932 0.0311 0.085 0.116
179.ART 704713706 0.465 9.437 9.938
FIELD 1047393960 3.838 0.922 4.76

HEALTH 2616712073 1.293 21.489 22.782
PERIMETER 813958394 1.4189 7.151 8.5699
TREEADD 877485849 1.243 4.497 5.731

TSP 1077624556 1.868 8.676 10.544

Table 7. Execution time and energy results after remapping.
(L1=32KB, L1 line size=16 bytes, L2=1MB, L2 line size=32 bytes)

Execution L1 Cache L2 Cache L1+L2 % Reduction in E % Reduction in Execution
Benchmark Cycles Energy (J) Energy (J) Energy (J) from Table 6 Cycles from Table 6

164.GZIP 1083997353 0.0312 0.0848 0.116 0.000 2.00
179.ART 216812141 0.17 2.702 2.873 71.090 69.23
FIELD 1047626423 3.838 0.9219 4.7602 -0.004 0.00

HEALTH 2044289648 1.263 14.81 16.072 29.337 21.88
PERIMETER 628221147 1.4178 5.139 6.557 23.488 22.82
TREEADD 785358662 1.0344 3.3129 4.347 24.149 10.50

TSP 926038088 2.245 4.985 7.23 31.430 14.07
Average – – – – 25.640 20.07

Table 8. Execution time and energy results after remapping.
(L1=32KB, L1 line size=16 bytes, L2=512KB, L2 line size=32 bytes)

Execution L1 Cache L2 Cache L1+L2 % Reduction in E % Reduction in Execution
Benchmark Cycles Energy (J) Energy (J) Energy (J) from Table 6 Cycles from Table 6

164.GZIP 1083997353 0.0312 0.0439 0.0751 35.258 2.00
179.ART 250995040 0.17 1.418 1.588 84.021 64.38
FIELD 1047626423 3.838 0.475 4.313 9.391 -0.02

HEALTH 2044289648 1.26 7.625 8.888 60.987 21.88
PERIMETER 628311657 1.4178 2.6489 4.0667 52.547 22.81
TREEADD 785407236 1.0344 1.7059 2.74 52.189 10.49

TSP 956363728 2.245 2.6103 4.855 53.955 11.25
Average – – – – 49.764 18.97

nally, in Table 9, we demonstrate the impact of remapping on energy and execution time when the primary and secondary
caches are half their original size.

Some results worth highlighting are that the largest energy reduction always occurs in the smallest cache configuration
(Table 9). The largest execution time reduction, however, most often occurs using the original cache configurations with
remapping enabled (Table 7). Intuitively, this makes sense. Clearly, the larger the caches, the faster the benchmark
completes. With half sized caches, on the other hand, the number of cache entries is halved, thus halving the capacitance
seen on any particular bit line. Since power is proportional to the capacitance and voltage(CV2), halving the former(C)
halves the power consumed. Also note that after remapping, the primary cache energy tends to increase. This is due to
more L1 cache hits. However, the overall energy of both L1 and L2 is significantly reduced, due to the greatly decreased
number of cache lines exchanged between L1 and L2.

13 CREST Technical Report, No. GIT-CC-02-011, March 2002

Table 9. Execution time and energy results after remapping.
(L1=16KB, L1 line size=16 bytes, L2=512KB, L2 line size=32 bytes)

Execution L1 Cache L2 Cache L1+L2 % Reduction in E % Reduction in Execution
Benchmark Cycles Energy (J) Energy (J) Energy (J) from Table 6 Cycles from Table 6

164.GZIP 1113402555 0.02 0.0488 0.0689 40.603 -0.66
179.ART 251159762 0.1078 1.4177 1.525 84.654 64.34
FIELD 1047626417 2.474 0.474 2.949 38.046 -0.02

HEALTH 2046953548 0.8014 7.7112 8.513 62.633 21.77
PERIMETER 628440207 0.9088 2.6526 3.561 58.448 22.80
TREEADD 785670341 0.6623 1.713 2.375 58.559 10.46

TSP 975110313 1.446 3.083 4.529 57.046 14.31
Average – – – – 57.141 19.00

processor
core
datapath
32 Kb L1
cache

1 Mb L2
cache

8.139 J7.151 J

Etot = 16.709 J1.419 J

(a) Baseline energy consumption be-
fore remapping.

processor
core
datapath
32 Kb L1
cache

1 Mb L2
cache

6.282 J

1.4178 J

5.139 J

Etot = 12.839 J
23.16 % savings in energy
22.82 % savings in execution time

(b) Energy savings after remapping.

processor
core
datapath
16 Kb L1
cache

512 Kb L2
cache

6.28 J

0.9088 J

2.6526 J

Etot = 9.8414 J41.10 % savings in energy
22.79 % savings in execution time

(c) Energy savings after remapping with
smaller caches.

Figure 9. Design-space exploration for PERIMETER.

5.2 Energy Savings for an ARM-like Core

Whereas the previous section detailed the energy and related improvements achieved by data remapping in the context of
the cache subsystem in isolation, it is important to understand its impact in the context of the entire microprocessor. To
this end, we calculate the energy consumed by our ARM-like processor using the power measurement approach described
in Section 4.1. We take the average power (J/s) of the largest simulation (e.g., 6.17 million cycles for PERIMETER, see
Table 3) and multiply the average power by the execution time (J/s× s = J) for our 100MHz ARM-like model. Note that
the average power consumed in the core varied very little (less than 3%), so we believe that the extrapolation is fairly
accurate.

First, we show that remapping speeds up the overall application such that its completion time is faster on the target
microprocessor. Therefore, by executing faster, the energy consumed by the processor after remapping is lower. This
is illustrated in Figure 9(b) for PERIMETER, where the reduction in execution cycles is 22.82% relative to the baseline
shown in Figure 9(a). The accompanying improvement in the energy consumed is 23.16%. The improvement is achieved
by keeping the cache size fixed.Second, if we allow the cache size to change – in particular halving the L1 and L2 caches
in the ARM-like processor – we show in Figure 9(c) that an energy savings of 41.10% can be achieved over the same
baseline (Figure 9(a)). Note that, for the same reason noted in the previous section, the lowest energy configuration is
not the same as the lowest execution time configuration.

14 CREST Technical Report, No. GIT-CC-02-011, March 2002

6. RELATED WORK AND REMARKS

In the context of design space exploration, there has been excellent work reported for custom memory management and
optimizations. For example, Catthoor et al. [5] perform an extensive exploration of memory organization for embedded
system design, with an emphasis on storage and bandwidth optimization. In addition, Panda et al. [17] recently published
a thorough survey of data and memory optimization techniques for embedded systems. Notably, researchers [18, 2] have
explored a coordinated data and computation reordering for array-based data structures in Multi-Media applications. Our
optimization extends current state-of-the-art design space exploration and custom memory management methodology to
pointer-centric applications ubiquitous in embedded systems.

Other related work in data reorganization [8, 13] propose automated field-ordering algorithms that assign temporally
related fields of a record to adjacent memory locations. The optimizations however offer only partial solutions, as they
do not consider the interaction of fields among various instances of a record. Chilimbi et al. [9] and Truong et al. [28]
described a data placement scheme to specifically address this issue. However, the proposed strategies are focused on
optimizing performance with respect to execution time. Furthermore, the optimizations are(i) not completely transparent
to the programmer,(ii) require some manual re-tooling of the application,(iii) incur significant run-time overhead as
objects are dynamically relocated in memory, and(iv) may violate program correctness. By contrast, our approach is(i)
targeted to reduce power and energy consumption in real systems,(ii) is completely automated,(iii) does not perform
any run-time data movements,(iv) and preserves correctness for a much larger scope of applications. The ability of
data remapping to significantly enhance locality without run-time data movements is key, especially from an embedded
systems perspective. The cost of dynamic data relocation is often prohibitive from a performance point of view, and
certainly from a power perspective.

There has been much previous work in power modeling of processors and memory. Generally, the reported techniques
for processor modeling trade off slightly reduced accuracy (compared to gate-level simulation) for significantly faster
simulation speed. Our simulation methodology falls in the more accurate but slow category. However, our models will
need to evolve to account for leakage power and the plethora of low-power approaches to memory design.

REFERENCES

[1] T. Ball and J. Larus. Efficient path profiling. InProceedings of the 29th Annual International Symposium on Microarchitecture, Dec. 1996.
[2] H. M. C. Kulkarni, F. Catthoor. Advanced data layout organization for multi-media applications. InProceedings of the Workshop on Parallel

and Distributed Computing in Image Processing, Video Processing, and Multimedia, May 2000.
[3] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement. InProceedings of the Eighth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 139–149, Oct. 1998.
[4] J. Carter, W. Hsieh, M. Swanson, L. Zhang, A. Davis, M. Parker, L. Schaelicke, L. Stoller, and T. Tateyama. Memory system support for irregular

applications. InWorkshop on Languages, Compilers, and Runtime Systems for Scalable Computers, May 1998.
[5] F. Catthoor, S. Wuytack, E. DeGreef, F. Balasa, L. Nachtergaele, and A. Vandecappelle.Custom Memory Management Methodology. Exploration

of Memory Organization for Embedded Multimedia System Design. Kluwer Academic Publishers, 1998.
[6] L. Chakrapani, P. Korkmaz, V. Mooney, K. Palem, K. Puttaswamy, and W. Wong. The emerging power crisis in embedded processors: What can

a poor compiler do? InProceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pages
176–180, Nov. 2001.

[7] L. Chakrapani, K. Palem, and W. Wong. TRICEPS: Enhancing theTRIMARAN compiler infrastructure forStrongARM code generation. Technical
Report CREST-TR-01-001, Georgia Institute of Technology, May 2001.

[8] T. Chilimbi, B. Davidson, and J. Larus. Cache-conscious structure definition. InProceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13–24, May 1999.

[9] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious structure layout. InProceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, May 1999.

[10] C. Ding and K. Kennedy. Improving cache performance of dynamic applications with computation and data layout transformations. InProceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 229–241, May 1999.

[11] DATA -INTENSIVE SYSTEMS benchmark suite. www.aaec.com/projectweb/dis/.
[12] M. Kamble and K. Ghose. Analytical energy dissipation models for low power caches. InProceedings of the International Symposium on Low

Power Electronics and Design, pages 143–148, Aug. 1997.

15 CREST Technical Report, No. GIT-CC-02-011, March 2002

[13] T. Kistler and M. Franz. Automated data-member layout of heap objects to improve memory-hierarchy performance.ACM Transactions on
Programming Languages and Systems, 22(3):490–505, May 2000.

[14] P. Korkmaz, K. Puttaswamy, and V. Mooney. Energy modeling of a processor core using synopsys and of the memory hierarchy using the kamble
and ghose model. Technical Report CREST-TR-02-002, Georgia Institute of Technology, Feb. 2002.

[15] M. Lam, E. Rothberg, and M. Wolf. The cache performance of blocked algorithms. InProceedings of the Fourth International Conference in
Architectural Support for Programming Languages and Operations Systems, pages 63–74, Apr. 1991.

[16] OLDEN benchmark suite. www.cs.princeton.edu/ mcc/olden.html.
[17] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkrani, A. Vandercappelle, and P. Kjeldsberg. Data and memory optimization

techniques for embedded systems.ACM Transactions on Design Automation of Electronic Systems, 6(2):149–206, Apr. 2001.
[18] P. Panda, N. Dutt, and A. Nicolau. Memory data organization for improved cache performance in embedded processor applications.ACM

Transactions on Design Automation of Electronic Systems, 2(4):384–409, 1997.
[19] P. Panda, N. Dutt, and A. Nicolau.Memory Issues In Embedded Systems-On-Chip, Optimizations and Exploration. Kluwer Academic Publishers,

1999.
[20] P. Panda, N. Dutt, and A. Nicolau. On-chip vs. off-chip memory: The data partitioning problem in embedded processor-based systems.ACM

Transactions on Design Automation of Electronic Systems, 5(3):682–704, July 2000.
[21] E. Petrank and D. Rawitz. The hardness of cache conscious data placement. InProceedings of the 29th Annual ACM Symposium on Principles

of Programming Languages, Jan. 2002.
[22] R. Rabbah and K. Palem. Data remapping for design space optimization of embedded cache systems. Technical Report GIT-CC-02-10, Georgia

Institute of Technology, Mar. 2002.
[23] STANDARD PERFORMANCEEVALUATION CORPORATIONCPU2000 benchmark suite. www.spec.org.
[24] B. Steensgaard. Points-to analysis in almost linear time. InProceedings of the 23rd ACM Symposium on Principles of Programming Languages,

pages 32–41, Jan. 1996.
[25] TheSimpleScalar-ARM power modeling project. www.eecs.umich.edu/˜jringenb/power/.
[26] S. Thompson, P. Packan, and M. Bohr. Mos scaling: Transistor challenges for the 21st century. Technical Report Q3, Intel Technology Journal,

July 1994.
[27] TRICEPS: A TRIMARAN -basedARM code generator. www.trimaran.org/triceps.shtml.
[28] D. Truong, F. Bodin, and A. Seznec. Improving cache behavior of dynamically allocated data structures. InInternational Conference on Parallel

Architectures and Compilation Techniques, pages 322–329, Oct. 1998.
[29] S. Wilton and N. Jouppi. An enhanced access and cycle time model for on-chip caches. Technical Report 93.5, WRL Research Report, July

1994.

