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The effective use of the memory hierarchy is crucial for achieving good performance in all modern processors. In many applications, however, a very
small number of delinquent memory operations are responsible for the bulk of the cache misses incurred by an application. In this paper, we propose an
innovative, lightweight, and effective compiler framework that deals with delinquent loads by leveraging architectural features that exist in the class of
Explicitly Parallel Instruction Computing (EPIC) processors – of which the Intel Itanium is an important representative. We will introduce the concept
of a Load Dependence Graph and show how we can effectively make use of it to insert prefetching code in an application such that(i) the prefetch is
highly precise,(ii) the technique is applicable to both numerical and pointer-intensive applications,(iii ) we require no new hardware support, and(iv)
the overhead is negligible. Our results show that when implemented in theTRIMARAN EPIC research infrastructure, we achieve a speedup of 26% on
average. Experiments conducted on an Itanium processor demonstrate a 11.67% reduction in total execution time. Similar experiments performed on
an ItaniumII processor showed an average performance improvement of 7.14%. Our application test bed is drawn from the well-knownOLDEN and
SPEC2000suites of integer and floating point benchmarks.
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1. INTRODUCTION

In a 1946 preliminary discussion on the logical design of an electronic computing instrument, Burks, Goldstine, and
von Neumann [3] first remarked on the importance of a storage or memory as a critical component in the design of
a “satisfactory general-purpose computing architecture”. Furthermore, they “recognized the possibility of constructing
a hierarchy of memories, each of which has greater capacity than the preceding but which is less quickly accessible”.
Today, roughly fifty five years later, the memory hierarchy is a ubiquitous component available in almost all computing
platforms; contemporary memory hierarchies are mainly comprised of several storage elements calledcaches. For ex-
ample, the Intel Itanium processor consists of a three-level cache hierarchy: a 32 Kb primary cache, a 96 Kb secondary
cache, and a tertiary cache as large as 4 Mb [13], with access latencies ranging from 14 to 30 cycles. Such long access
latencies dramatically decrease processor throughput and hence magnify the need for latency masking techniques. This
is especially true in the context of the explicitly parallel instruction computing (EPIC) platforms which afford significant
and often massive instruction level parallelism (ILP).

Explicitly parallel processors are largely derived from the very long instruction word (VLIW) architecture paradigm1.
They continue to gain wider acceptance and play a significant role in various aspects of today’s computer industry,
ranging from high end server platforms such as the Itanium Processor Family (IPF) [13], to digital signal processing
engines such as the TI-C6x processors [31], to custom computing systems such as the Trimedia VLIW products [33]

1EPIC will be used to implicitly to include VLIW.
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Figure 1. Examples of control speculation.

and the HP-STMicroelectronics Lx processors [10]. Unlike high performance superscalar processors which hide many
architectural details from the compiler, EPIC processors advocate a new paradigm whereby the architecture is exposed
to the compiler via extensions to the instruction set architecture (ISA). Thus, the compiler is capable of communicating
memory management hints to the processor through special operations, and hence direct the movement of data across
the memory hierarchy [13].

This paper proposes a novelcompileralgorithm to effectively manage the memory hierarchy of an EPIC processor
such as the Intel Itanium (it is also useful in the context of the wide range of simpler VLIW processors mentioned eariler).
In particular, we shall describe a methodology which utilizes the ISA tospeculativelyprecompute the addresses of future
memory references and initiate their delivery to lower levels of the hierarchy, ahead of actual processor requests. To the
best of the authors’ knowledge, this is the first such successful technique for EPIC architectures. In Section 5, we shall
provide detailed results and analysis in the context of the experimental HPL-PD [16] microarchitecture, a precursor to the
IPF. Such results offer significant insight and allow for fine grained investigation of the proposed methodology. However,
we recognize the importance of concrete evidence in support of the proposed schema, and hence we shall also present
some results gathered using actual Itanium processors (Section 6). Briefly, the performance speedup for an Itanium-
like HPL-PD processor is 26% on average for seven well-known OLDEN and SPEC2000 benchmarks. Preliminary
experiments conducted on an Itanium machine produced an average speedup of 11.67%. Similar experiments carried out
on an ItaniumII showed an average reduction of 7.14% in execution time.

While the technique proposed in this paper may be generally classified as aprefetchingschema, it differs from tradi-
tional prefetching methodologies in four significant ways:

— Precomputation based prefetching.Unlike traditional pre-fetching techniques which attempt to predict future mem-
ory references [11, 6, 30], the proposed precomputes future memory references using the program itself. Hence, the
number of useless prefetch instructions due to mispredictions is drastically reduced.

— Simultaneously applicable to array and pointer based applications.Because conventional prefetching techniques
are predictive in nature, they are generally vulnerable and do not perform well in the context of irregular memory
access patterns (MAPs) intrinsic to real-world, pointer-centric dynamic applications. In other words, the strategies
that work so well with regular, array based applications waste bandwidth and pollute caches when data is unneces-
sarily prefetched. By contrast, the proposed optimization is simultaneously applicable to array and pointer intensive
applications. Furthermore, we will demonstrate the technique is robust in the presence of loop control structures such
asfor andwhile loops.

— Leverages existing architectural features.Whereas previously proposed prefetching schemes [4, 5, 14, 15, 28, 30,
18] require additional, and often complex, architectural support, the methodology proposed in this paper leverages
existing architectural features that are visible to the compiler via the instruction set architecture (ISA). In particular,
our innovative technique effectively utilizes control and data speculation to assure very high degrees of prefetching
accuracy. Speculation is a feature of modern optimizing compilers introduced to improve ILP and overcome legacy
performance limitations such as long branch. When an instruction iscontrol speculated, it is moved above a branch
and is now unconditionally executed, whereas previously it was executed conditionally (Figures 1(a) and 1(b)). Since
speculation may not always be safe and hence may cause traps or exceptions during execution, the technique requires
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hardware support for error recovery. To this end, both HPL-PD and Itanium provide light-weight support to enable
speculative execution.

— Incurs little instruction overhead. The proposed also differs from past methodologies in that it incurs negligible
instruction overhead while delivering significant performance benefits. Thus, the optimization serves to ameliorate
the speed gap which exists between processors and memories, and helps deliver the promise of Moore’s Law to the
end-user.

We begin with an overview of our methodology, and then we detail the algorithm and some heuristic variants in
Section 3. Section 4 describes our evaluation framework and Section 5 provides an in-depth analysis of our main results
using the experimental HPL-PD architecture. In Section 6 we report results obtained directly using an Itanium processor.
Finally, Section 7 discusses related works, and Section 8 summarizes and concludes the paper.

2. OVERVIEW OF OUR METHODOLOGY

A successful compiler based approach to prefetching requires a schema that(i) carefully identifies load instructions
likely to benefit from prefetching,(ii) assures the timely availability of the data address to be prefetched, and(iii ) issues
a prefetch instruction with negligible resource contention or overhead. A naive prefetching strategy which excessively
prefetches data poorly utilizes resources and is likely to degrade performance. In other words, load addresses that are
usually cached (hit) at lower levels of the hierarchy experience short turnaround latencies, and thus obviate the need for
prefetching. On the other hand, load operations whose target addresses typicallymissthe cache require dramatically
longer delivery times, and hence ought to be prefetched; we shall refer to such loads asdelinquentloads.

2.1 Identifying Delinquent Loads

Our framework identifies delinquent load instructions in a given programP via applicationprofiling, an increasingly
popular technique in the context of feedback driven optimizations [6, 35, 18]. For the purposes of this paper, we identify
loads with miss ratios greater than a chosen threshold as delinquent and hence isolate them for prefetching.

2.2 Early Address Generation

Given a framework that properly identifies delinquent loads, it is also necessary for the target data address to be available
far in advance of the actual load, so as to maximize the masking of a long access latency. Unfortunately, it is often the
case that the address computation immediately precedes the load operation and thus there are very few opportunities
for prefetching. A comprehensive study of previous work reveals several hardware based approaches for the advanced
generation of a load address [1, 25]. To a large extent, such techniques often require extensive architectural modifications.
By contrast, we achieve the same stated goal of early address generation using(i) existing microarchitectural features
and(ii) a light-weight compiler algorithm, with a running time linear in the size of the data dependence graph of the
program.

2.3 Prefetch Initiation

Although several compiler based prefetching strategies have been proposed in the past [17, 19, 20, 22, 26], most suffer
from three main limitations. Specifically, they may(i) increase the instruction overhead,(ii) increase register pressure
and(iii ) mispredict data usage and hence unnecessarily issue prefetch instructions. In contrast, the algorithm proposed
here is precomputation-based and is therefore less prone to mispredictions. It also exploits available ILP and to avoid
other undesirable effects such as increased schedule length.

2.4 The Algorithm

The general algorithm first identifies delinquent load operations. Subsequently, for each delinquent loadi, we construct
its data dependence graph of at mostN vertices or operations. We shall refer to the graph as theload dependence graph
or LDG. The LDG is aprogram slice[2] of the set of instruction that contribute to the computation of the address for
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Figure 2. LDG generation and scheduling.

the delinquent load. In Fig. 2(a), we illustrated an example LDG. Next, we insert the operations from the slice into the
programP such that the last LDG instruction completes at leastLi cycles prior to the delinquent load, whereLi is the
average miss latency for loadi. In essence, we statically insert a set of speculative operations along various control paths
in the program to precompute the address of a particular load, thereby creating enough slack for inserting an effective
prefetch instruction. Fig. 2(b) shows how an LDG may be statically scheduled in a program.

It is evidently important that the speculation must be carefully throttled so as not to increase resource contention.
In other words, the extent to which speculative prefetching is effective is sensitive to the available resources, namely
registers and functional units. In Section 4 we demonstrate that our methodology successfully exploits available ILP and
does not adversely impact the computation time. More importantly, we demonstrate that the trend is consistent across
the benchmarks used in this paper.

3. LDG FRAMEWORK

Throughout this section, we assume the reader is familiar with standard control and data flow analysis techniques [23].
We also assume that for each load operationi occurring inF , the miss ratioRi and average latencyLi are available.
We perform the LDG optimization after pre-pass scheduling. The impact of compiler phase ordering on the current
optimization is the subject of ongoing research and is well beyond the scope of this paper. As we assume scheduling has
already taken place, we note the following:

— Each function consists of a set of blocks or regions.

— Each operationi in a block is a member of a unique instruction word or bundlewi . The bundled operations will be
issued in parallel.

— The schedule time of a bundlew is tw, and hence the schedule time of an operationi ∈ w is ti = tw.

We present the algorithm in three parts. First, we describe the algorithm driver. Next, we describe the LDG generator,
and finally we outline the LDG scheduler.
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Input: profile-annotated and scheduled functionF
Output: functionF with incorporated LDGs

01. for each loadi in F do
02. if Ri ≥miss thresholdthen
03. inserti into it a new LDG
04. mark all blocks inF asnot visited
05. Generate-and-Schedule-LDG (F , LDG, i)
06. end if
07. end for

Figure 3. Top level driver for generating and scheduling LDGs.

3.1 LDG Driver

The driver algorithm for generating and scheduling LDGs is outlined in Fig. 3. To build the LDG for a loadi occurring
in a functionF , we process the data dependence graph for the function bottom-up and starting with operationi (Fig. 2).
Since we are only interested in delinquent loads, we first check if therelativemiss ratioRi is greater than a predefined
miss threshold. We defineRi as the number of cache misses fori divided by the total number of cache misses incurred in
F . When the miss ratio exceeds the threshold, we begin generating an LDG fori. The miss threshold serves mainly to
throttle the amount of prefetching the framework achieves. In this paper, we use an aggressive threshold of 5%.

3.2 LDG Generator

The algorithm for generating LDGs is as follows. For each operationj occurring in the bundles preceding the current
instruction word, it checks for the existence of a data-flow path fromj to i. If a dependence exists, a speculative version
of j is added to the LDG. As our goal is the early generation of a load address, it is likely that the operations of interest
are either simple arithmetic operations, or in some pointer-intensive applications, load operations. Both the HPL-PD
and the Itanium processors offer speculative versions of these instructions. The load dependence graph is maintained as
a queue, and operations are inserted at the head of the queue to preserve data dependencies. While building the LDG,
the algorithm may need to cross a block boundary, and hence, for each predecessor block it builds a path-specific LDG.
Evidently, without path profiling or some form of path pruning, the strategy may lead to an excessive number of LDGs.
To this end, we performed branch profiling and selected various branch-frequency thresholds to exclude certain control
paths from the LDG generation. The results in this paper are based on a 20% control edge frequency, meaning a branch
edge must have been taken at least 20% of the time in order to be considered during LDG generation. The algorithm
terminates when any of the followingconditionsare satisfied:

— Condition 1: Desired prefetching distance reached.When the total data-flow path distance from the current bundle to
wi is equal toLi + |LDG|, the algorithm has reached the desired prefetch insertion point. Recall thatLi is the average
miss latency of the delinquent load. However, since the prefetch requires the timely availability of the target address,
we require at least|LDG| additional cycles to compute it. Hence, the algorithm must continue its upward traversal of
the program graph for an additional|LDG| cycles, and incorporating additional operations along the way as necessary.
When this condition is satisfied, LDG generation is terminated and scheduling begins.

— Condition 2: Out of budget.This condition enforces a budget which prevents code explosion and minimizes resource
contention. When the number of instruction words (|LDG|) in the graph has reached a predefined limit, LDG gener-
ation is terminated and scheduling begins. The results in this paper are based on a budget size of seven instruction
bundles.

— Condition 3: A branch and link (BRL) is encountered.We do not yet consider inter-procedural optimizations. Hence
when a BRL (i.e., function call site) is encountered, LDG generation is terminated and scheduling is initiated, ensuring
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Input: function F , LDG, and the operationc where scheduling is to
begin
Output: functionF with LDGs

01. perform register live range analysis
02. create amapand initialize to be empty
03. process each operationj in the LDG from head to tail
04. find the earliest available scheduling slot occurring

at timet ≥ tc along thevisitedblocks
05. d← destination operand ofj
06. find an available registerr
07. user as the new destination register forj
08. for each source operands of j do
09. if s∈mapthen replaces with map(s)
10. map(d)← r
11. end for

Figure 4. Algorithm for scheduling and register allocation LDGs.

the prefetch instruction is scheduled after the BRL. This is to avoid the working set of the callee evicting the prefetched
data from the cache.

— Condition 4: All paths exhausted.When either all predecessor blocks are visited or the current block is the first region
in a function, LDG generation is terminated, and scheduling performed. As noted earlier, we do not yet consider
inter-procedural analysis, and we anticipate significant benefits from such analysis (elaborated in Section 5).

The four conditions above trade-off higher degrees of prefetching for reduced timeliness. In Section 5 we quantify
how often each of the above conditions is encountered for the set of benchmarks used in this paper.

3.3 LDG Scheduling

The algorithm for scheduling the LDG is outlined in Fig. 4. Note that as part of the LDG scheduling, it may be necessary
to perform simple register allocation and renaming as shown in Figure 5. In almost all cases, we successfully scheduled
and register allocated the LDG instructions without(i) increasing the static schedule length of a block or(ii) increasing
register pressure; should the resource allocator run out of register, then it will insert register spill and restore operations
as a traditional register allocator would do. Results that support these claims will be presented in later sections. Also note
that it may be necessary to cross region boundaries when scheduling the LDG. The extent to which this occurs depends
on the size of the load dependence graph and the size of each candidate block along a marked control flow path. The
reason for crossing region boundaries is to avoid unnecessarily lengthening the static schedule length of a block since
there may be available resources in adjacent regions (and the LDG is mostly comprised of straight-line code).

3.4 LDGs and Compiler Optimizations

So far we have describe a schema for identifying delinquent loads, generating their load dependence graph and specula-
tively scheduling them in the original program. Many loads in an application may be, and indeed are, characterized as
delinquent loads. Hence, the rate of early load generation and prefetching must be carefully managed so as not to increase
resource contention and lengthen computation time. We have found however that the proposed methodology successfully
schedules many LDGs without compromising computation time (to be detailed in Section 5). We have also observed that
classic compiler optimizations can often be applied when several LDGs overlap. Additionally, we do not consider all
LDGs to be of equal weight. That is, we prioritize the candidate LDGs based on several criteria, such as the miss profile
of a delinquent load, its average latency, as well as the resource requirements and expected payoffs – as is elaborated
in the following section. Thus, we may prune the set of candidate LDGs when resource contention becomes unacceptable.
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Figure 5. Register renaming to support LDG scheduling.

3.5 Pruning The List of LDGs

In order to curb the total number of LDGs that are incorporated into a function – and hence limit resource contention
and the possibility of lengthening the computation time of a function – the proposed framework relies on the following
heuristic to eliminate non-profitable LDGs or LDGs with substantial resource requirements. For a given delinquent load
i, the heuristic computes its LDG benefit factorγi as follows:

γi =
di×available resources

|LDG|
(1)

wheredi equals the data-flow distance from the site where the LDG generation algorithm terminated to the delinquent
load. Intuitively, the algorithm gives higher priority to LDGs which mask longer access latencies, since the payoff may
be exceptionally great. Thus, under certain circumstances, the algorithm will lengthen the static schedule length of a
function in exchange for significant latency masking capabilities. Furthermore, if there are many resources available –
that is the intrinsic instruction level parallelism of the function is low – the LDG scheduling algorithm will likely succeed
in finding all the resources required to schedule an LDG. The heuristic also considers the LDG size in making its pruning
decisions; the LDG size is the number of instruction bundles currently in the specified slice. If the number of operations
required to precompute the prefetch address is high, then it is necessary to balance the resource requirements of the LDG
against its expected returns. Currently, the algorithm generates a list of all LDGs for a given function and considers each
as a candidate for scheduling. Next, the listed is sorted using the respective benefit factor of each LDG. The list is then
pruned to remove some of the lowest ranking LDGs (Section 5 quantifies the number of pruned LDGs per benchmark).
Finally, the scheduling of each remaining LDGs is initiated.

3.6 Induction Unrolling

In this section, we introduce a technique for prefetching data across multiple loop iterations. We call this technique
induction unrolling.An example of how this is done is shown in Fig. 6. In the baseline LDG technique, the LDG for the
load instruction of the original loop in Fig. 6(a) is used to produce the additional two instructions in Fig. 6(b) (the LDG
operations are shown in bold font). The additional instruction initiate prefetches one iteration ahead of the actual loop.
In induction unrolling, the LDG consisting of the induction variable is unrolled2 (see Fig. 6(c)). When constant folding
is applied to the induction unrolled loop, we end up with just two more instructions being added to the loop that will
prefetch data four iterations ahead of its use (Fig. 6(d)). In general, however, it is possible that too many instructions will

2Unlike standard loop unrolling, we do not unroll the entire loop.
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loop bb:
add r2 = r1, 4
load r1 = [r2]
br loop bb

a) Original code

loop bb:
add r2 = r1, 4
load r1 = [r2]
add r3 = r2, 4
prefetch r3
br loop bb

b) Baseline LDG

loop bb:
add r2 = r1, 4
load r1 = [r2]
add r3 = r2, 4
add r4 = r3, 4
add r5 = r4, 4
add r6 = r5, 4
prefetch r6
br loop bb

c) Induction unrolled LDG

loop bb:
add r2 = r1, 4
load r1 = [r2]
add r3 = r2, 16
prefetch r3
br loop bb

d) Optimized induction unrolled LDG

Figure 6. Optimized induction unrolling of LDGs.

Name Profile Input
EM3D 2000 2 50 25000 2 50

HEALTH 5 50 1 5 500 1
MST 1024 1 3407 1

PERIMETER 11 12
179.ART Test Train
181.MCF Test Train

183.EQUAKE Test Train

Table 1. Benchmarks and input workloads.

be introduced. To solve this problem, we constrained LDG generation such that it will only generate one LDG for each
loop nest.

Induction unrolling is applied only to loop nests that are executed very frequently. However, in such loop nests, a
degenerate situation can arise. Take an example of a doubly-nested loop. Suppose on the average, every iteration of the
outer loop involves executing two iterations of the inner loop. It may be that the outer loop is executed a great many
number of times. However, especially when the inner loop is small, it is still unprofitable to perform induction unrolling
on the inner loop because the distance by which one can prefetch in the inner loop is very small. Induction unrolling
the inner loop aggressively will only result in incorrect prefetches and extra overheads. In order to avoid this situation,
we consider thenormalized iteration countfor the innermost loop when deciding whether or not to perform induction
unrolling. The normalized iteration count of the inner loop is the average number of times the innermost loop is executed
per iteration of the outer loops. For an innermost loop that has only a small normalized iteration count, only the baseline
LDG generation will be used.

4. EVALUATION FRAMEWORK

For the evaluation of our proposed technique, memory intensive benchmarks from the OLDEN and SPEC2000 bench-
mark suites were used. The benchmarks (as well as the processor parameters) also provides a common frame of reference
relative to the work of Liao et al. [18] and Collins et al. [7]. Of the applications, 179.ART and 183.EQUAKE are array
based applications, whereas the others are pointer-intensive. The reason we include the former is to demonstrate that our
methodology is simultaneously applicable to both array and pointer based programs. All of the benchmarks are com-
prised of various loop kernels, and contain delinquent loads within counted for-loops and do-while loops. We summarize
the benchmarks and the input workloads in Table 1. Note that in the case of the SPEC benchmarks, we use the provided
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Functional 4 INT units, 2FP units,
Units 3 branch units, 2 memory units
Register 128 INT registers, 128FP registers,
Files 64 predicate registers, 8 branch registers

128 control registers
Cache L1 (separate I & D) : 16 Kb each cache

4-way, 2 cycle latency
L2 (unified) : 128 Kb cache
4-way, 14 cycle latency
L3 (unified) : 4096 Kb cache
12-way 30 cycle latency
Fill buffer: 16 entries
All caches have 64 byte lines

Memory 230 cycle latency

Table 2. Modeled research Itanium processor.

test input workload for profiling and the training input workload for reporting purposes; simulating the provided refer-
ence input workload was simply not practical as these benchmarks execute billions of instructions even using the training
input set.

The proposed algorithms were implemented in TRIMARAN [32], a publicly available infrastructure for compiler re-
search. It includes an optimizing compiler and a parametric EPIC processor simulator. We use the Dinero IV [9] cache
simulator to simulate the cache hierarchy. The benchmarks were compiled using classic and high level optimizations
which include loop unrolling, copy propagation, common subexpression elimination, dead code elimination, and aggres-
sive register allocation. In addition, the compiler is capable of advanced region formation, including superblock [12]
and hyperblock [21] optimizations. The former uses control speculation to increase program parallelism. The latter uses
predication to remove branches and increase ILP. We compare the LDG performance in the context of both region forma-
tion optimizations. We also consider the interactions between LDGs and software pipelined loops [27] in the context of
the Itanium processor. We found that with the exception ofEM3D, the OLDEN benchmarks can not be software pipelined;
this is because they are pointer intensive and perform significant pointer chasing. The SPEC benchmarks on the other
hand are all candidates for software pipelining, especially since some of them are numerical applications.

In this study, we did not consider out-of-order (OOO) execution. It was recently shown that even using a long range
prefetching framework which utilizes Simultaneous Multi-Threading (SMT), a negligible (5%) performance improve-
ment is obtained (compared to an OOO Itanium processor) [18]. In large part, by scheduling instructions dynamically,
OOO execution can effectively mask a substantial portion of the cache miss latency. By contrast, EPIC architectures such
as the Itanium processors are in-order, and strongly warrant the need for latency masking techniques lest the memory
bottleneck hinders their expected performance. Therefore, optimizations such the LDG schema proposed here are of
special significance.

The results reported in this section were obtained by simulating an in-order HPL-PD processor of the configuration
shown in Table 2; we assume a perfectTLB and branch predictor. The architecture parameters correspond to an Itanium
processor with minor differences arising from simulation constraints. We should note that we modified the simulation
environment to implement astall-on-usemodel: suppose a load instruction is issued at cycle timeti , and the first use of
the delivered data occurs at cycle timet j . In the stall-on-use model, we do not stall the processor unless the data is still
not available in the required register at timet j . When this happens, the processor will be stalled byL− (t j − ti) cycles
whereL is the latency of the memory hierarchy in which the data is found. During a stall, no further instructions are
issued until the data is available for the processor to continue.

We also varied the various thresholds and algorithm parameters – miss threshold (5–20%), budget size (7–10) and
branch frequencies (10–30%) – and found little changes in overall performance.



10 CREST Technical Report, No. GIT-CC-02-57, November 2003

0

0.2

0.4

0.6

0.8

1

1.2

em
3d

 +l
dg

hea
lth

 +l
dg

mst
 +l

dg

peri
mete

r
 +l

dg

17
9.a

rt
 +l

dg

18
1.m

cf
 +l

dg

18
3.e

quak
e

 +l
dg

av
era

ge
 +l

dg

CC SC LDG-SC

Figure 7. Summary of the total execution cycles before and after LDGs.

5. EXPERIMENTAL RESULTS

The results of the LDG optimization are highly program dependent. The measured performance speedups varied from
none to more than a factor of two, with an average performance speedup of 26%. In Fig. 7, we summarize the total
execution time in cycles for the benchmarks. For each benchmark, two bars are shown. The first corresponds to the
TRIMARAN optimized program, and the second corresponds to the same optimized program augmented with LDGs.
Each bar is divided into three parts to show the contributions of each of three factors to overall performance: namely
computation cycles (CC), stall cycles incurred by the LDG itself (LDG-SC), and stall cycles incurred by the other
load operations of the program (SC). In addition, we normalize the graph such that the baseline execution time is one
and the execution time for the LDG augmented benchmark is relative to the baseline; hence, a number lower than one
indicates performance improvement, and a number greater than one indicates degradation. By inspecting the number
of computation cycles for each benchmark, before and after the LDG optimization, we observe that they are relatively
the same, with LDGs incurring a 1.52% increase in computation cycles on average. This suggests that the algorithms
presented earlier effectively prune and schedule LDGs. We should point out that the average IPC (instructions per cycles,
assuming a perfect memory hierarchy with a two cycle latency) for the selected benchmarks ranges from 1.28 to 1.82
with an average of 1.54; this is in the context of hyperblock optimizations where the highest level of ILP is expected.
Thus it is not surprising that the LDG scheduler succeeds in allocating resources for the prefetching operations.

Upon further detailed analysis and studies, we found that the efficacy of the LDG framework is restricted by the
following two limitations:

(1) Premature LDG termination due to control flow restrictions.Most affected by this restriction arePERIMETERand
MST. We observed that LDGs were often terminated prematurely because LDG generation algorithm quickly ex-
hausted all available control flow path and reached the function boundary. While we have not yet considered inter-
procedural optimizations in this context, we believe they may alleviate the issue. We intend to investigate this
possibility in our future work.

(2) Stall cycles incurred by the LDG itself.During the execution of the LDG operations, it is possible that the precompu-
tation itself includes a load operation which may result in a cache miss. This will force the application to stall until
the data is fetched. This is a disadvantage of the proposed scheme not seen in prefetching by means of a SMT thread
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Figure 8. Load hit distribution before and after LDGs.

since a cache miss incurred by the speculative thread will not stall the main thread. Benchmarks such as 181.MCF,
183.EQUAKE, HEALTH andMST may benefit further from the LDG optimization if such stalls can be eliminated or
reduced.

In Fig. 8, we report the hit distribution for the benchmarks in the absence and presence of LDGs. In this graph, we
only report the hit profiles for the load instructions intrinsic to the program and did not include any hits generated from
the execution of the LDGs. Each bar in the graph represents the percentage of cache hits relative to the total number of
load requests initiated by the application (i.e., we do not consider loads that are initiated by a LDG in this computation).
The graph shows that a substantial number of cache hits occur at lower levels of the memory hierarchy when LDGs
are used to prefetch data: 80% of the loads hit in the primary cache, and the bulk of the rest in the second and third
level caches. By contrast, in the absence of LDGs, a substantial amount of data is found either in main memory or in
the tertiary cache; nearly 30% of loads hit in the tertiary cache. Thus, we conclude that LDGs successfully moved data
closer to the processor thereby ameliorating the memory bottleneck.

5.1 Limitations of LDG

In Table 5.1 we report the relevant LDG characteristics of the various benchmarks. Of the large number of load instruc-
tions in a program, only a small number are classified as delinquent. In all, there are 31,955 loads of which only 140
(0.53%) are considered delinquent; the criteria for identifying delinquent loads was presented in Section 3.1. For each of
the delinquent loads, an average of 1.6 LDGs were generated, and of which 30% were pruned using the heurisitc from
Section 3.5. The table also reports the number of times each of the four conditions for termination of the LDG generation
were encountered (Section 3.2). The first condition labeledideal is shown in column six. This is the frequency with the
LDG algorithm terminated under ideal circumstances and will likely mask the full delinquent load penalty. The second
condition is labeledbudgetand it is shown in column seven. It lists the number of times LDG generation terminated
because the LDG grew too large. An example of a benchmark adversely affected in this context is 183.EQUAKE. The
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Benchmark Total Delinquent Candidate Pruned Ideal Budget BRL CF Desired Static Achieved Static
Loads Loads LDGs LDGs Latency Masking Latency Masked

EM3D 1,534 12 21 1 0 0 1 20 987 308
HEALTH 1,129 17 35 15 2 0 9 24 1,475 363
MST 1,713 11 13 5 3 0 0 10 1,428 348
PERIMETER 1,257 7 13 8 0 0 0 13 780 41
179.ART 5,678 33 30 5 8 2 0 20 1,856 1,202
183.EQUAKE 16,378 21 30 6 1 3 0 26 1,995 992
181.MCF 4,266 39 83 2 4 0 3 76 3,014 1,558

Table 3. Benchmark characteristics and LDG algorithm analysis.

application uses a three dimensional data structure which requires numerous instructions for address generation. Column
eight which is labeledBRL reports the number of times an intervening function call inhibited further LDG generation.
And in column nine, labeledCF, we report the number of times the program control flow restricted the generation algo-
rithm. This last condition comprised 84% of the total conditions encountered for the set of benchmarks shown. The last
two columns report the desired static latency masking distance and the actual latency masking achieved via LDGs. The
desired static latency masking is the sum of the average latencies for the delinquent loads of an application. The achieved
static latency masking is the sum of the average distance between the prefetch operation and the delinquent load. From
the data, we conclude that the LDGs statically mask 41.7% of the desired latency which translates to 39.54% savings in
dynamic stall cycles on average.

5.2 ILP Optimizations and LDGs

The suite of optimizations included in TRIMARAN includes advanced region formation techniques such as superblocks
and hyperblocks. Fig. 9 shows how the choice of the region formation affects the LDG performance: for the most
part, there are little significant differences. Stall cycles reductions in the case for superblocks and hyperblocks is often
less than the gains in the basic blocks mainly because the former increase instruction level parallelism and yield more
compact schedules. Furthermore, a detailed breakdown of the execution time for each of the benchmarks in the presence
of either super- or hyper- blocks showed negligible improvements in the total number of stall cycles compared to the
baseline basic block case. By contrast, the LDG is specifically geared at reducing stall cycles and often the payoff is far
better than ILP optimizations alone. This is particularly true since ILP enhancements are in vain if the processor is often
waiting for data to be fetched from higher levels of the memory hierarchy.

6. PRELIMINARY ITANIUM RESULTS

Using the HPL-PD simulation environment gave us insights into the working of the LDGs and allowed us to implement,
test and fine-tune our algorithms in TRIMARAN . However, it is rather desirable to validate the ideas on actual hardware.
To this end, we carried out several experiments using an Intel Itanium processor. Our test platform is a Hewlett-Packard
Itanium workstation with a 733 MHz Itanium processor with 1 Gb ofDRAM. We use theORCcompiler (version 1.1) [24]
to generate the IA-64 assembly code which we then instrument for memory profiling; we use the Dinero IV cache
simulator to gather the cache miss profiles of the applications. Next we identify a small number of delinquent loads as
described earlier and proceeded to generate and insert the corresponding LDGs into the assembly code. At this time,
the LDG insertion was manually performed as the available software tools for the Itanium are not robust enough for a
completely automated process. As a result, we only incorporate a few (1-4) LDGs for each of the benchmarks. It is
worthy to note that the modified version of the assembly code with LDGs is exactly the same as the original, except
that nop slots in a bundle and free registers are allocated to the LDG operations. When necessary, new bundles were
introduced. However, under no circumstances did we make any changes to the original code except to replace nops with
LDG operations. Furthermore, we repeat all of the experiments using an ItaniumII 900 MHz processor.
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Itanium Execution Time Itanium II Execution Time
Benchmark LDGs Before LDGs After LDGs Percentage Before LDGs After LDGs Percentage

Inserted (secs) (secs) Improvement (secs) (secs) Improvement
EM3D 1 10.22 8.99 12.03 5.107 4.164 18.5

EM3D-LI 1 10.22 8.2 19.77 5.107 4.935 3.3
EM3D-SWP 3 6.834 5.878 13.98 3.746 3.435 8.3

HEALTH 3 4.33 4.24 2.08 2.205 2.203 0.01
179.ART 3 942 834 11.46 640.71 588.62 9

179.ART-SWP 4 484.9 433 10.7 484.9 466.86 3.72
average – – – 11.67 – – 7.14

Table 4. Results of benchmarks executed on 733 MHz Itanium and 900 MHz ItaniumII .

In Table 6 we report the speedups obtained on each of the two Itanium processors. On the average, LDGs reduce
the Itanium execution time by 11.85% when compared to theORC optimized code. The benchmarks we selected here
areEM3D, HEALTH and 179.ART. The input arguments toEM3D are25000 10 50. We execute three variants of this
applications. The first is the baseline application. The second applies the LDG induction unrolling technique (labeled as
EM3D-LI in the table). The third enables software pipelining in theORC compiler (labeled asEM3D-SWP in the table,
ORC flag -O3). As it may be expected, the pipelined version of the program ran the fastest in the absence of LDGs.
Incorporating the LDGs to the pipelined version ofEM3D yields an additional execution time saving of 14%. The results
for the other benchmarks were also encouraging, especially since we incorporated so few LDGs (one forEM3D and
four for 179.ART-SWP). The input parameters toHEALTH are5 500 1 and for 179.ART, we use the SPEC reference
input set. Lastly, we enabled the automatic prefetching capabilities of theORC compiler but noticed little differences in
performance; the automatic prefetch insertion was done by specifying theLNO:prefetch=2 option to the compiler.

6.1 Software Pipelining and LDGs

The proposed LDG schema is compatible with software pipelining as our preliminary results suggest. While software
pipelining overlaps iterations of a loop, it does so assuming a typical latency for load operations; and usually an optimistic
assumption is used. While there may be some effect of one iteration prefetching data for a subsequent iteration as an
artifact of spatial locality, such is not its explicit goal. As currently described and in the context of software pipelined
loops, the LDGs do not cross loop boundaries and are well contained within a single iteration. Therefore, it does not
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interfere with the correctness of software pipelined loops provided the proper register assignment is carried out.
Although we have not implemented LDGs for software pipelined loops using the TRIMARAN compiler, we have

manually incorporated a small number of them into software pipelined loops generated byORC. Our initial results are
encouraging. It shows that when the LDG mechanism is used with prudence, taking special care only to use free registers
and instruction slots, it is possible for the LDG mechanism to improve the performance of software pipelining. This is
on our agenda for future work with LDGs.

7. RELATED WORK

Data prefetching is the focus of a large body of work aimed at tolerating increasingly long memory latencies. While
numerous prefetching strategies have been proposed, most can be classified as predictive in nature. Hence, they are
generally vulnerable to irregular memory access patterns. By contrast, the LDG framework is precomputation based and
thus effectively achieves better prefetching coverage. Due to the volume of research in the field, we briefly mention some
of the most recent and relevant work. In general, predictive prefetching scheme first analyze the application memory
access trace and subsequently make decisions based on the learned history. Some examples implemented in hardware
include stride [11] and Markovian [4, 14, 30] prefetchers. While effective, many of the hardware based techniques require
extensive architectural features. Examples of software based schemes include the work of Chilimbi and Hirzel who
describe a runtime framework for learning and predicting data sequences [6]. In their work, the profiling or analysis phase
introduces some overhead which must be overcome by the dynamic optimization to produce overall gains. On a similar
note, Wu [35] describes a profile based methodology for discovering regular stride patterns in irregular programs. The
LDG optimization described here extends beyond prefetching regular data streams and simultaneously targets irregular
memory access patterns. This is promising since a recent study [6] suggests that many data access patterns will not be
successfully prefetched using stride based techniques alone. However, it is conceivable that the LDG optimization may
be successfully combined with some of the recent works on compiler directed stride prefetching and further bridge the
speed gap between processor and memory system.

Also recently, several researchers have proposed the use of hardware based precomputation as a mean to conduct data
prefetching. An exampled is the work of Annavaram et al. who introduce dependence graph precomputation [1]. The
scope of such a strategy however is limited to short range prefetching as they perform dynamic program analysis and
hence require complex architectural support. Some other related work can be found in the context of multi-threaded
environments. For example, Luk [20] proposed software controlled pre-execution which leverages available threads to
execute prefetching operations. Roth and Sohi [29] proposed data driven multi-threading as a mechanism to prefetch
future memory requests. Collins et al. introduced dynamic speculative precomputation [7, 8], and Liao et al. [18]
demonstrate how to utilize idle threads to perform precomputation and prefetching using SMT. In these works, the
threads can reduce the memory latency of the main application by running ahead of the program and performing data
prefetching. An advantage of thread based prefetching versus LDGs is in the context of cache misses incurred by the
precomputation code. In the case of LDGs, data misses incurred by the precomputation slice will negatively impact
overall execution; albeit performance improvements are still achieved in the end. However, a main disadvantage of the
thread based techniques is that they require extensive hardware support and thus they may not be applicable in simpler
VLIW machines. By contrast, LDGs leverage simpler instruction set architectures which are quickly becoming more
common in microprocessor design.

In other related works, Zilles and Sohi [36] performed an initial characterization of backward slices as mechanisms
for predicting cache misses and branch mispredictions. They showed how speculative slices may be used to mainly
predict branch behaviors. The focus of the proposed optimization is an automated methodology for compiler directed
prefetching of load operations. Also, Vanderwiel and Lilja [34] propose a compiler-assisted hardware extension called
the data prefetch controller. The controller dispatches prefetch requests based on a compiler generated program which
enables the prediction of future memory requests. The LDG achieves much of the same effects without the additional
architecture investments.
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8. SUMMARY AND REMARKS

In this paper, we introduce the concept of a load dependence graph (LDG), a slice of the program dependence graph
that captures the computation of the address for a given load instruction. Using the LDG, we show how it may be
used to precompute load addresses for timely data prefetching. We also describe algorithms for generating the LDGs
and embedding the corresponding address precomputation and data prefetch into the instruction stream of application
compiled for an EPIC architecture. We study in detail the conditions affecting the effectiveness of the method, and
using these studies, we formulate several algorithm variants and heuristics that will maximize the efficacy of LDG as
a data prefetching mechanism. As a result, we have a data prefetching schema that is(i) highly precise,(ii) efficient
and robust in the context of a wide class of applications,(iii ) does not require any new hardware support, and(iv)
has a very low overhead. Simulation show that the method can reduce the execution time of some applications by as
much as half. Furthermore, to provide real evidence in support of the proposed methodology, we validate the algorithms
on two Intel Itanium processors. The lack of the complete compiler infrastructure forced us to manually apply our
algorithms to a limited number of benchmarks. However, even though we only incorporate a handful of LDGs into each
of the applications, we achieve a speedup of 11.67% and 7.14% on average for the Itanium and ItaniumII processors
respectively. We believe this is concrete evidence that the method is effective. While admittedly there is still much room
for improvement, we are certain that the technique can readily contribute to the performance of EPIC processors today.
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