
Exploiting Vector Parallelism in Software Pipelined Loops

Samuel Larsen, Rodric Rabbah and Saman Amarasinghe
MIT Computer Science and Artificial Intelligence Laboratory

{slarsen,rabbah,saman}@mit.edu

Abstract

An emerging trend in processor design is the addition
of short vector instructions to general-purpose and embed-
ded ISAs. Frequently, these extensions are employed us-
ing traditional vectorization technology first developed for
supercomputers. In contrast, scalar hardware is typically
targeted using ILP techniques such as software pipelin-
ing. This paper presents a novel approach for exploiting
vector parallelism in software pipelined loops. The pro-
posed methodology (i) lowers the burden on the scalar re-
sources by offloading computation to the vector functional
units, (ii) explicitly manages communication of operands
between scalar and vector instructions, (iii) naturally han-
dles misaligned vector memory operations, and (iv) par-
tially (or fully) inhibits the optimization when vectorization
will decrease performance.

Our approach results in better resource utilization and
allows for software pipelining with shorter initiation inter-
vals. The proposed optimization is applied in the compiler
backend, where vectorization decisions are more amenable
to cost analysis. This is unique in that traditional vectoriza-
tion optimizations are usually carried out at the statement
level. Although our technique most naturally complements
statically scheduled machines, we believe it is applicable to
any architecture that tightly integrates support for instruc-
tion and data level parallelism. We evaluate our method-
ology using nine SPEC FP benchmarks. In comparison
to software pipelining, our approach achieves a maximum
speedup of 1.38×, with an average of 1.11×.

1. Introduction

Increasingly, modern general-purpose and embedded
processors provide short vector instructions that operate on
elements of packed data [11, 14, 23, 24, 29, 37]. Vec-
tor instructions are desirable because the vector functional
units operate on multiple operands in parallel. Thus, vec-
tor instructions increase the amount of concurrent execution
while maintaining a compact instruction encoding. In addi-

tion, the performance advantage is realized with moderate
architectural complexity and cost.

Short vector instructions are predominantly geared to-
ward improving the performance of multimedia and DSP
codes. However, today’s vector extensions also afford a sig-
nificant performance potential for a large class of data par-
allel applications, such as floating-point and scientific com-
putations. In these applications, as in multimedia and DSP
codes, a large extent of the processing is embedded within
loops that vary from fully parallel to fully sequential.

Loop-intensive programs with an abundance of data par-
allelism can be software pipelined, essentially converting
the available parallelism to ILP. Software pipelining over-
laps instructions from different loop iterations and derives
a schedule that attempts to maximize resource utilization.
Without explicit instruction selection that vectorizes opera-
tions, a machine’s vector resources are unused and software
pipelining cannot fully exploit the potential of a multimedia
architecture.

Compilers that target short vector extensions typically
employ technology previously pioneered for vector su-
percomputers. However, traditional vectorization is not
ideal for today’s microprocessors since it tends to dimin-
ish ILP. When loops contain a mix of vectorizable and non-
vectorizable operations, the conventional approach gener-
ates separate loops for the vector and scalar operations. In
the vectorized loops, scalar resources are not well used, and
in the scalar loops, vector resources remain idle. In mod-
ern processors, a reduction in ILP may significantly degrade
performance. This is especially problematic for VLIW pro-
cessors (e.g., Itanium) because they do not dynamically re-
order instructions to rediscover parallelism.

In this paper, we show that targeting both scalar and vec-
tor resources presents novel problems, leading to a new al-
gorithm for automatic vectorization. We formulate these
problems in the context of software pipelining, with an em-
phasis on VLIW processors. Better utilization of both scalar
and vector resources leads to greater overlap among itera-
tions, thus improving performance. Our approach remains
cognizant of the loop’s overall resource requirements and
selectively vectorizes only the most profitable data parallel



computations. As a result, the algorithm effectively bal-
ances computation across all machine resources.

The goal of selective vectorization is to divide operations
between scalar and vector resources in a way that max-
imizes performance when the loop is software pipelined.
Conventional strategies vectorize all data parallel opera-
tions. In loops with a large number of vector operations,
this can leave scalar resources idle. Moving some opera-
tions to the scalar units can provide a more compact sched-
ule. In other situations, full vectorization may be appropri-
ate. This could occur when the overhead of transferring data
between vector and scalar resources negates the benefit of
vectorization. Alternatively, it may be advantageous to omit
vectorization altogether in loops with little data parallelism.
The most efficient choice depends on the underlying archi-
tectural resources, the number and type of operations in the
loop, and the dependences between them.

Selective vectorization is further complicated when the
compiler is responsible for satisfying complex scheduling
requirements. Most architectures provide a set of heteroge-
neous functional units. It is not unusual for these units to
support overlapping subsets of the ISA. Furthermore, the
compiler may be responsible for multiplexing shared re-
sources such as register file ports and operand networks.
Also, scalar and vector operations may compete for the
same resources. This is usually the case for memory op-
erations since the same resources execute vector and scalar
versions.

In this paper, we describe a union of ILP via software
pipelining and DLP (data level parallelism) via short vec-
tor instructions (Section 3). We demonstrate that even fully
vectorizable loops benefit from selective vectorization (Sec-
tion 4). Our algorithm operates on a low-level IR. This
approach is more suitable for emerging complex architec-
tures since the impact of the optimization is measured with
respect to actual machine resources. A backend approach
also allows us to examine the interaction between vector-
ization and other backend optimizations, specifically soft-
ware pipelining. This leads to a natural combination of two
techniques that are generally considered alternatives. To our
knowledge, no literature exists that proposes the partial vec-
torization we advocate in this paper.

We have implemented selective vectorization in Tri-
maran, a compilation and simulation infrastructure for
VLIW architectures. Trimaran includes a large suite of op-
timizations geared toward improving ILP. It also includes
a parametric cycle-accurate simulation environment. Our
approach offers significant performance gains on the vari-
ous architectural configurations we simulated. Compared to
Trimaran’s optimizations, which include software pipelin-
ing using modulo scheduling [31], our optimization yields
a 1.11× speedup on a set of SPEC FP benchmarks.

2. Motivating Example

We use the dot product in Figure 1(a) to illustrate the
potential of selective vectorization. The data dependence
graph is shown in part (b). For clarity, we omit address
calculations. Consider a target architecture with three is-
sue slots as the only compiler-visible resources, and single-
cycle latencies for all operations. A modulo schedule for
the loop is shown in part (c). In a modulo schedule, the ini-
tiation interval (II) measures the constant throughput of the
software pipeline. In the schedule of part (c), two cycles are
needed to execute four instructions, resulting in an II of 2.0.

Often, reductions similar to that shown in Figure 1
are vectorizable using multiple partial summations that are
combined when the loop completes. Since this scheme re-
orders the additions, it is not valid in all cases (e.g., with
floating point data). For this example, assume paralleliza-
tion of the reduction is illegal, preventing vectorization of
the add.

Now consider an extension to the example architecture
that allows for the execution of one vector instruction each
cycle, including vector memory operations. Assume vector
instructions operate on vectors of length two. In the face
of loop carried dependences, a traditional vectorizing com-
piler distributes a loop into vector and scalar portions, as
shown in part (d). Scalar expansion is used to communicate
intermediate values through memory.

Since the processor can issue only one vector operation
each cycle, modulo scheduling cannot discover additional
parallelism in the vector loop. Four cycles are needed to
execute four vector operations (two loads, one multiply, and
one store). This amounts to an initiation interval of 2.0,
since one iteration of the vector loop actually completes two
iterations of the original loop. The operations in the scalar
loop can be overlapped so that an iteration completes each
cycle. Overall, this results in an initiation interval of 2 +
1 = 3, which is inferior to the performance gained from
modulo scheduling alone. Even if the overhead of scalar
expansion is overlooked, vectorization cannot recover from
the degradation of ILP due to loop distribution.

A more effective approach is to leave the loop intact
so vector and scalar operations can execute concurrently.
This strategy is illustrated in Figure 1(e). Here, an II of
1.5 is achieved since the kernel completes two iterations ev-
ery three cycles. Note that two scalar additions are needed
to match the work output of the vector operations. In
this example, we assume explicit operations are not re-
quired to communicate between scalar and vector instruc-
tions (namely, between the vector multiply and the scalar
add). In reality, the cost of communicating operands must
be considered. For many machines, communication incurs
a large overhead as data must be transmitted through mem-
ory using a series of loads and stores.



for (i=0; i<N; i += 2) {
T[i:i+1] = X[i:i+1] * Y[i:i+1];

}

for (i=0; i<N; i++) {
s = s + T[i];

}

(d)

…

LOAD (2)

LOAD (1)

Slot 2

MUL (1)2

LOAD (1)1

Slot 3Slot 1Cycle

MUL (2)4

ADD (1)LOAD (2)3

………

(c)

…

ADD (2)

ADD (1)

Slot 2

VLOAD (1-2)2

VLOAD (1-2)1

Slot 3Slot 1Cycle

VMUL (3-4)6

VLOAD (3-4)5

VLOAD (3-4)4

VMUL (1-2)3

………

(e)

…

LOAD (6)

LOAD (5)

LOAD (4)

LOAD (3)

LOAD (2)

LOAD (1)

Slot 2

2

VLOAD (1-2)1

Slot 3Slot 1Cycle

ADD (2)VMUL (3-4)6

ADD (1)VLOAD (5-6)5

VMUL (1-2)4

VLOAD (3-4)3

………

(f)

for (i=0; i<N; i++) {
s = s + X[i] * Y[i];

}

(a)

(b)

LOAD LOAD

MUL

ADD

Figure 1. (a) Dot product and (b) its data dependence graph. (c) Modulo schedule with an II of 2.0. Numbers in parentheses
specify the original iterations to which each operation belongs. The kernel is highlighted. (d) Loop distribution into vector and
scalar loops. (e) Modulo schedule for full vectorization without distribution gives an II of 1.5. (f) Modulo schedule with selective
vectorization gives an II of 1.0.

Figure 1(f) illustrates that it is possible to outperform the
other techniques if vectorization decisions are carried out
judiciously. In the example, the selective vectorization of
only one load operation leads to better resource utilization.
In part (f), all issue slots are filled in the kernel, and in each
cycle the maximum of one vector operation is issued. This
results in an initiation interval of 1.0.

3. Selective Vectorization

The goal of selective vectorization is to divide vectoriz-
able operations between scalar and vector resources in order
to maximize loop performance. At this stage, we are con-
cerned only with the decision of whether or not to vectorize
each operation. Software pipelining, in the form of mod-
ulo scheduling [31], and register allocation are performed
in subsequent phases of the compilation. In Section 4, we
describe our compilation flow in more detail.

The fact that modulo scheduling follows our optimiza-
tion has strong implications for our algorithm design.
Specifically, the algorithm is solely concerned with balanc-
ing resource utilization, and ignores the latency of all oper-
ations. The underlying assumption is that vector operations
rarely lie on dependence cycles. An exception is when the
dependence distance is greater than or equal to the vector
length. For example, a loop statement a[i + 4] = a[i] has a
dependence cycle but can be vectorized for vector lengths
of four or less. In practice, these situations are uncom-

mon and dependence cycles typically prevent vectorization
altogether. When an operation does not lie on a depen-
dence cycle, its latency is of minor concern since dependent
operations can be separated by pipeline stages. Although
long-latency operations tend to increase the length of the
pipeline’s prologue and epilogue, this has little impact on
performance as long as the iteration count is relatively high.

3.1. Algorithm Overview

We base our selective vectorization algorithm on
Kernighan and Lin’s two-cluster partitioning heuristic [16].
The algorithm is outlined in Figure 2. It divides instruc-
tions between a vector and a scalar partition. Operations are
moved one at a time between the partitions, searching for a
division that minimizes a cost function (described below).
The algorithm is iterative. In Figure 2, lines 7-19 represent
a complete iteration. All operations are originally placed
in the scalar partition. Every iteration repositions each vec-
torizable operation exactly once (lines 10-15). With each
move, the algorithm computes the cost of the resulting con-
figuration, noting the minimum cost encountered (lines 16-
18). Once each operation has been repartitioned, the config-
uration with the lowest cost is used as the starting point for
the next iteration (line 19). The process terminates when
an iteration fails to improve on its starting configuration.
Ultimately, operations remaining in the vector partition are
vectorized.



PARTITION-OPS ()
01 foreach op ∈ OPS

02 currPartition[op]← SCALAR

03 bins← BIN-PACK (currPartition)
04 bestPartition← currPartition
05 bestCost← HIGH-WATER-MARK (bins)
06 lastCost←∞
07 while lastCost �= bestCost
08 lastCost← bestCost
09 locked←∅
10 foreach vectorizable op
11 bestOp← FIND-OP-TO-SWITCH (bins, currPartition, locked)
12 currPartition← SWITCH-OP (bestOp, currPartition)
13 locked← locked ∪ bestOp
14 bins← BIN-PACK (currPartition)
15 cost← HIGH-WATER-MARK (bins)
16 if cost < bestCost
17 bestCost← cost
18 bestPartition← currPartition
19 currPartition← bestPartition
20 return bestPartition

FIND-OP-TO-SWITCH (bins, currPartition, locked)
21 bestCost←∞
22 foreach op ∈ OPS

23 if op is vectorizable ∧ op /∈ locked
24 cost← TEST-REPARTITION (op, bins, currPartition)
25 if cost < bestCost
26 bestCost← cost
27 bestOp← op
28 return bestOp

TEST-REPARTITION (op, bins, currPartition)
29 currPartition← SWITCH-OP (op, currPartition)

// release resources including communication overhead as necessary
30 bins← RELEASE-RESOURCES (op, bins, currPartition)
31 bins← RESERVE-RESOURCES (op, bins, currPartition)
32 return HIGH-WATER-MARK (bins)

BIN-PACK (currPartition)
33 foreach r ∈ RESOURCES

34 bins[r]← 0
35 foreach op ∈ OPS

36 bins← RESERVE-RESOURCES (op, bins, currPartition)
37 return bins

RESERVE-RESOURCES (op, bins, currPartition)
38 if currPartition[op] = SCALAR

39 opcode← SCALAR-OPCODE (op)
40 num← VECTOR-LENGTH

41 else
42 opcode← VECTOR-OPCODE (op)
43 num← 1
44 for i← 1 to num
45 bins← RESERVE-LEAST-USED (opcode, bins)

// reserve resources for transfering operands, as needed
46 if COMMUNICATION-NEEDED (op, currPartition)
47 foreach c ∈ COMMUNICATION-OPS (op, currPartition)
48 bins← RESERVE-LEAST-USED (c, bins)
49 return bins

RESERVE-LEAST-USED (opcode, bins)
50 foreach r ∈ RESOURCES-REQUIRED (opcode)
51 minHigh←∞
52 minCost←∞
53 foreach a ∈ ALTERNATIVES (r)
54 temp← bins

// reserve resource for appropriate number of cycles
55 temp[a]← temp[a] + CYCLES (opcode, a)
56 high← 0
57 cost← 0
58 foreach r ∈ RESOURCES

59 high← max(high, temp[r])
60 cost← cost + temp[r]2

61 if (high < minHigh) ∨ (high = minHigh ∧ cost < minCost)
62 minHigh← high
63 minCost← cost
64 best← a
65 bins[best]← bins[best] + CYCLES (opcode, best)
66 return bins

HIGH-WATER-MARK (bins)
67 high← 0
68 foreach r ∈ RESOURCES

69 high← max(high, bins[r])
70 return high

SWITCH-OP (op, currPartition)
71 if currPartition[op] = SCALAR

72 currPartition[op]← VECTOR

73 else
74 currPartition[op]← SCALAR

75 return currPartition

Figure 2. Partitioner pseudo code.

3.2. Cost Calculation

Operations are selected for repartitioning based on a cost
function. We define the cost of a configuration to be the
weight of the most heavily used resource (lines 67-70),
where the weight is the number of machine cycles the re-
source is reserved. In modulo scheduling terminology, this
corresponds to the resource-constrained minimum initiation
interval (ResMII). In the absence of dependence cycles, the
ResMII represents a lower bound on the II of the modulo
schedule.

We compute the cost of a configuration using a bin-
packing approach (lines 33-37) akin to the original formu-
lation in modulo scheduling [31]. Namely, a bin (with zero
initial weight) is associated with each compiler-visible re-
source. Operations are selected one at a time and assigned

to the bin that minimizes the weight of the most heavily-
used resource. Each placement of an operation in a bin in-
creases the weight of that bin. If an operation reserves a re-
source for more than one cycle, the bin’s weight is adjusted
accordingly (line 55). In addition, each scalar operation is
binned k times to match the work output of a single k-wide
vector operation (lines 38-40).

Since communication of operands between scalar and
vector operations usually requires explicit instructions, the
partitioning algorithm accounts for these operations as a re-
sult of its decisions (lines 46-48). Specifically, when an op-
eration is placed in a partition different from operations on
which it is dataflow-dependent, the appropriate communi-
cation instructions are also binned. Note that a particular
operand is transferred at most once since all consumers can
reuse the transmitted data.



Loop Dependence
Analysis

Induction Variable
Optimization IR LoweringSUIF FrontendC or Fortran

Source

Dataflow
Optimization

SUIF to Trimaran
Translation

Selective
Vectorization

Software
Pipelining

Register
Allocation

Simulation
Binary

Figure 3. Compiler flow.

In the original bin-packing formulation [31], operations
are selected for placement in order of their scheduling al-
ternatives such that those with little freedom are placed
first. This heuristic produces better results than unordered
insertion. We make one further optimization: when two
scheduling alternatives do not increase the weight of the
most heavily-used resource, we select the option that min-
imizes the sum of the square of the bin weights (lines 53-
65). This strategy tends to balance operations across bins
even when these operations do not immediately affect the
total cost. It also allows the partitioner to quickly compare
alternatives during operation selection.

When choosing the best operation for repositioning, the
algorithm does not perform a complete bin-packing for ev-
ery possible move. Such an approach is prohibitively ex-
pensive since it requires n bin-packing passes before an op-
eration is selected. Instead, the algorithm checkpoints the
current state of the bins, releases the resources for the oper-
ation under consideration, and reserves the set of resources
needed in the other partition (lines 29-32). For example,
if an operation is moved to the vector partition, its scalar
resources are released and its vector resources reserved. If
necessary, we also account for any transfer operations added
or eliminated in the new configuration. The cost is then
recorded, the bins are restored to their original state, and
the process repeats until all operations are considered. Only
after an operation is finally selected for repositioning are
the bins rebalanced with a fresh bin-packing (line 14). In
order for this scheme to work well, it is important that all
bins are balanced as much as possible during bin-packing.
Otherwise, the removal of an operation tends to lead to an
inaccurate cost estimate. The optimization described above
provides this functionality.

Note that when an operation is moved from one parti-
tion to another, the cost of the new configuration may in-
crease. This occurs, for example, when the producers and
consumers of an operation remain in the other partition, ne-
cessitating explicit transfer instructions. Thus, while each
iteration of the algorithm improves the overall cost, some
steps (lines 11-12) within an iteration may increase the cost.

In the worst case, the algorithm requires n total itera-
tions for a loop containing n vectorizable operations. Ev-
ery iteration repartitions each operation once and bin-packs

each new partition. Since our greedy bin-packing requires
n steps, this results in an O(n3) algorithm. In practice we
observe that a solution is found after only a few iterations,
making the algorithm very practical. In fact, for our bench-
marks, the time spent during selective vectorization is far
less than the time spent modulo scheduling. If a faster exe-
cution of the algorithm is desirable, we can artificially limit
the number of iterations carried out.

3.3. Loop Transformation

If partitioning selects operations for vectorization, we
next construct the transformed loop. Operations in the vec-
tor partition are replaced with their corresponding vector
opcodes. Scalar operations are emitted k times, where k
is the vector length. When explicit communication is re-
quired, the appropriate transfer operations are also gener-
ated. To satisfy dependences, it is important to emit opera-
tions in a specific order. Strongly connected components
are sorted topologically, with operations in each compo-
nent emitted in original program order. This is analogous
to the loop distribution performed in traditional vectoriza-
tion [6, 39]. Finally, the loop increment and upper bound
are adjusted according to the vector length, and a cleanup
loop is constructed for cases where the upper bound is un-
known or is not a multiple of the vector length.

4. Evaluation

Figure 3 illustrates our compiler flow. We use SUIF [38]
as the compiler frontend. SUIF provides accurate mem-
ory dependence information that is crucial for identifying
data parallelism. Additionally, it provides a suite of ex-
isting dataflow optimizations. Our compiler backend and
simulation environment are provided by Trimaran [3]. Tri-
maran provides a modulo scheduler and all necessary back-
end functionality, such as register allocation. In order to
connect these two infrastructures, we implemented a SUIF-
to-Trimaran IR translator. In addition, we added support for
vector operations throughout the compiler.

For all benchmarks, we applied a suite of standard opti-
mizations before vectorization. These include register pro-
motion, common subexpression elimination, copy propaga-



Processor Parameter Value

Issue width 6
Integer units 4
Floating-point units 2
Load/store units 2
Branch units 1
Vector units (shared int/fp) 1
Vector merge units 1
Vector length (64-bit elements) 2
Scalar integer registers 128
Scalar floating point registers 128
Vector integer registers 64
Vector floating point registers 64
Predicate registers 64

Op Type Latency Op Type Latency

Int ALU 1 Fp ALU 4
Int Multiply 3 Fp Multiply 4
Int Divide 36 Fp Divide 32
Load 3 Branch 1

Table 1. Processor configuration.

tion, constant propagation, dead code elimination, induc-
tion variable optimization, and loop-invariant code motion.
Aside from scalar privatization [6], we did not use any opti-
mizations specifically designed to expose data parallelism.
Advanced loop transformations would likely improve the
performance of our system. However, the focus of this pa-
per is not the identification of data parallelism, but how it
can be exploited to create highly efficient schedules.

We identify vectorizable operations using the approach
first developed for vector supercomputers [6, 39]. This
method requires loop dependence analysis to identify de-
pendence cycles. Operations in a dependence cycle must
execute sequentially; the rest can be vectorized. The ma-
jor difficulty is to accurately identify dependences between
memory references. A simple approach that assumes de-
pendence between any load/store pair usually precludes any
vectorization. For array-based code, an extensive litera-
ture exists for computing dependences (see [6] for a re-
view). After building the dependence graph, cycles are
identified using Tarjan’s algorithm for strongly connected
components [36].

Dependence analysis is simplified by that fact that our
benchmarks are coded in Fortran. Our techniques are
equally applicable to languages such as C. However, further
methods are typically required to cope with pointer aliasing.
The simplest solution is to extend the language with direc-
tives that allow the user to convey dependence information
(e.g. the restrict keyword). Another approach is to use

a whole-program alias analysis. Perhaps the most practical
solution is to insert runtime dependence checks. This is the
strategy taken by the Intel compiler [7].

Selective vectorization and modulo scheduling are ap-
plied to do loops without control flow or function calls. In
general, these are the loops to which both software pipelin-
ing and vectorization are most applicable. Innovations such
as if-conversion [6] and hyperblock formation [22] have
made it possible to target a broader class of loops, but they
were not used in this study.

Details of the simulated architecture are shown in Ta-
ble 1. Since Trimaran is an infrastructure for VLIW archi-
tectures, the evaluation below focuses on statically sched-
uled processors. However, note that our technique is appli-
cable to any architecture that implements a combination of
instruction level and short vector parallelism.

Our simulated processor provides one vector unit for
both integer and floating point computation. Vector oper-
ations are assigned the same latency as their scalar coun-
terparts. A separate vector unit is available for merging
data from two vector registers. This is used to support mis-
aligned vector memory operations. In our evaluation, we as-
sume the target architecture does not allow unaligned mem-
ory operations. As a result, it is the responsibility of the
compiler to merge data from adjacent regions.

Support for merging is typically provided through spe-
cialized instructions1. An unaligned vector load is imple-
mented with two aligned loads followed by a merge to
extract the desired elements from two registers. An un-
aligned store is even more expensive as data must first be
loaded from memory, merged with data in registers, and
then written back to memory. Fortunately, much of the over-
head of misaligned memory operations can be eliminated in
vectorized loops by reusing data from the previous itera-
tion [13, 40]. This eliminates the extra memory operations
otherwise required by misaligned references.

The Trimaran modulo scheduler relies on rotating regis-
ters and predicated execution. Therefore, we have extended
the infrastructure with rotating vector registers and predi-
cated vector operations. If rotating registers are not avail-
able, a similar effect is achievable with modulo variable ex-
pansion [19, 32].

Our benchmarks consist of a number of scientific appli-
cations gathered from the SPEC 92, 95, and 2000 floating
point suites. These benchmarks represent the subset for
which our compiler detects some degree of data parallelism.
In keeping with contemporary processors, we assume vec-
tor operands comprise a total of 128 bits. Since our bench-
marks operate on 64-bit data, this leads to a vector length of
two. The Pentium 4 is an example of an existing architec-
ture that supports vectors of two double-precision elements.

1On AltiVec, for example, merging is performed with the vperm in-
struction.



In general, our technique is most applicable where short
vectors are used. As vector length increases, the processing
power of the vector units begins to overwhelm that of the
scalar units, and full vectorization becomes increasingly ad-
vantageous. The processor in Table 1 has a vector length of
two, and therefore the throughput of the scalar units equals
or exceeds that of the vector units. Selective vectorization
is most applicable in such situations.

We fully simulated our benchmarks using the training in-
put workloads to keep simulation times practical. Many of
benchmarks have large memory footprints that can heavily
burden the memory system. However, we have not imple-
mented any optimizations that specifically target the mem-
ory system. As a result, our evaluation does not take mem-
ory system performance into account.

4.1. Speedup

We now compare the selective vectorization algorithm
described in Section 3 to several different parallelization
techniques. We have implemented a traditional vector-
izer in SUIF based on the scheme described by Allen and
Kennedy [6]. When loops contain a mix of vectorizable
and non-vectorizable operations, they are distributed into
separate loops. Scalar expansion is used to communicate
data between loops. In a straightforward implementation,
vectorization tends to create a large number of distributed
loops. In order to mitigate this effect as much as possible,
we perform loop fusion in the vectorizer [9].

To study the effects of loop distribution, we also imple-
mented a second vectorizer in the backend. As in the tra-
ditional vectorizer, all data-parallel operations are vector-
ized. However, in this scheme the loop is left intact (i.e.,
not distributed) in order to expose ILP among vector and
scalar operations. Scalar operations are unrolled by the vec-
tor length in order to match the work output of the vector
operations. In the results that follow, we refer to this tech-
nique as full vectorization. In both vectorizers, all loops are
modulo scheduled.

Speedups are shown relative to modulo scheduling. For
this baseline, we unroll all loops k times (for vector length
k) in order to lower the loop overhead and reduce computa-
tion due to address arithmetic. In the absence of vectorized
operations, unrolling serves to match the benefit provided
by vectorized memory operations which use one address to
access multiple locations. With unrolling, the same effect is
realized using base + offset addressing.

The architecture in Table 1 does not provide specialized
support for communicating operands between scalar and
vector functional units. Communication is accomplished
through memory using a series of load and store operations.
Since the resulting cost is so high, we made one improve-
ment to the traditional and full vectorizers: an operation is

Benchmark Traditional Full Selective

093.nasa7 0.18 0.76 1.04
101.tomcatv 0.71 0.99 1.38
103.su2cor 0.63 0.94 1.15
104.hydro2d 0.94 1.00 1.03
125.turb3d 0.38 0.93 0.95
146.wave5 0.76 0.96 1.03
171.swim 1.01 1.00 1.17
172.mgrid 0.53 0.99 1.26
301.apsi 0.51 0.97 1.02

Table 2. Speedup compared to modulo scheduling.

not vectorized unless it has at least one vectorizable prede-
cessor or successor. Doing otherwise is clearly unfavorable.
With selective vectorization, such scenarios are detected au-
tomatically.

Our target processor only supports aligned vector mem-
ory operations. Therefore, the compiler inserts the proper
instructions to access misaligned data. We do not employ
any techniques that provide alignment information, mean-
ing that all vector memory operations are assumed to be
misaligned. However, most of the overhead is eliminated
using data from the previous iteration [13, 40].

Table 2 shows the speedup of each vectorization tech-
nique over modulo scheduling. Comparing traditional and
full vectorization, we see that performance degradation
from loop distribution is considerable. Much of this is due
to the fact that our simulated architecture does not support
an efficient scatter/gather mechanism. When memory op-
erations are not vectorizable, they are first aggregated into
contiguous memory so they can be used directly in vector-
ized computation.

In most cases, full vectorization (with modulo schedul-
ing) matches the performance of modulo scheduling alone.
An exception is nasa7 where vectorization significantly
underperforms modulo scheduling. In all cases but one,
selective vectorization yields the best performance. For
some benchmarks, the improvement is substantial. In the
case of tomcatv, selective vectorization achieves a 1.38x
speedup over modulo scheduling alone. For some bench-
marks performance improvements are small, and in the
case of turb3d, selective vectorization perfoms worse
than baseline modulo scheduling. In fact, our algorithm
does create more compact schedules for the critical loops
in this benchmark. However, tighter schedules tend to in-
crease the number of stages in a software pipeline, leading
to longer prologues and epilogues. Since the critical loops
in turb3d have low iteration counts, the prologue and
epilogue contribute significantly to the execution, thereby
negating the advantage of vectorization.



Number ResMII II
Benchmark of Loops Better Equal Worse Better Equal Worse

093.nasa7 30 9 (30.0%) 21 (70.0%) 0 (0.0%) 8 (26.7%) 21 (70.0%) 1 (3.3%)
101.tomcatv 6 5 (83.3%) 1 (16.7%) 0 (0.0%) 5 (83.3%) 1 (16.7%) 0 (0.0%)
103.su2cor 38 27 (71.1%) 11 (28.9%) 0 (0.0%) 27 (71.1%) 11 (28.9%) 0 (0.0%)
104.hydro2d 67 23 (34.3%) 44 (65.7%) 0 (0.0%) 23 (34.3%) 44 (65.7%) 0 (0.0%)
125.turb3d 12 4 (33.3%) 8 (66.7%) 0 (0.0%) 4 (33.3%) 7 (58.3%) 1 (8.3%)
146.wave5 133 57 (42.9%) 76 (57.1%) 0 (0.0%) 51 (38.3%) 73 (54.9%) 9 (6.8%)
171.swim 14 5 (35.7%) 9 (64.3%) 0 (0.0%) 5 (35.7%) 9 (64.3%) 0 (0.0%)
172.mgrid 16 9 (56.2%) 7 (43.8%) 0 (0.0%) 9 (56.2%) 7 (43.8%) 0 (0.0%)
301.apsi 61 18 (29.5%) 42 (68.9%) 1 (1.6%) 17 (27.9%) 39 (63.9%) 5 (8.2%)

Table 3. Number of loops for which selective vectorization finds an II better, equal to, or worse than competing techniques.

4.2. Opportunities for Selective Vectorization

Table 3 examines the degree to which selective vector-
ization is performed. For each benchmark, we show the
number of loops for which selective vectorization finds a
schedule better than, equal to, or worse than the competing
methods (i.e. modulo scheduling, traditional vectorization,
and full vectorization). Since no technique can improve the
II when it is constrained by recurrences, we only report
loops that are resource-limited. Table 3 separates results
into the resource-constrained II (ResMII) as computed by
the modulo scheduler and the final II. As shown, there are
a significant number of loops for which selective vectoriza-
tion provides an advantage. Furthermore, there is only one
loop across all benchmarks for which selective vectoriza-
tion produces a loop with higher resource requirements. In
the last column, we see that selective vectorization leads to
a small number of loops with an inferior II. This is due to
the fact that iterative modulo scheduling is a heuristic. Even
when we lower resource requirements, the algorithm is not
guaranteed to achieve a lower II in all cases.

Benchmark Considered Ignored

093.nasa7 1.04 0.78
101.tomcatv 1.38 1.22
103.su2cor 1.15 1.02
104.hydro2d 1.03 0.98
125.turb3d 0.95 0.81
146.wave5 1.03 0.99
171.swim 1.17 1.08
172.mgrid 1.26 1.14
301.apsi 1.02 0.97

Table 4. Speedup of selective vectorization compared to
modulo scheduling when communication overhead is con-
sidered vs. ignored.

4.3. Communication

In Table 4 we demonstrate the importance of commu-
nication considerations during selective vectorization. The
second column shows the speedup compared to modulo
scheduling when explicit transfer operations are taken into
account during cost analysis (replicated from Table 2). Re-
call that our simulated architecture requires a series of load
and store instructions to communicate operands between
vector and scalar resources. In the third column we show
the performance when communication overhead is ignored
during partitioning. Note that for correct operation, these
instructions are still inserted prior to modulo scheduling.
When communication is neglected, most benchmarks expe-
rience a severe performance degradation. It is clear that a
viable solution must track communication costs carefully if
selective vectorization is to be successful.

4.4. Alignment

Finally, Table 5 shows what is possible when memory
alignment information is available. In the second column,
we show the speedup of selective vectorization compared to
modulo scheduling. These numbers reproduce those shown
in Table 2, where the vector memory operations are as-
sumed to be misaligned. The third column shows speedup
when the overhead of merging misaligned regions is disre-
garded. Alignment overhead can be eliminated when oper-
ations are known at compile-time to be aligned. The results
in the last column of Table 5 represent a best-case scenario
since every reference is assumed to be aligned.

Static alignment information can be gathered using a
number of techniques. Our goal is not to advocate a par-
ticular approach. Rather, we point out that when static
alignment information is available, it is readily incorporated
into our system. Simply, explicit realignment operations are
considered during cost analysis. For many benchmarks, im-
provements are modest as software pipelining is able to hide



Benchmark Misaligned Aligned

093.nasa7 1.04 1.07
101.tomcatv 1.38 1.48
103.su2cor 1.15 1.16
104.hydro2d 1.03 1.05
125.turb3d 0.95 0.95
146.wave5 1.03 1.04
171.swim 1.17 1.21
172.mgrid 1.26 1.26
301.apsi 1.02 1.02

Table 5. Speedup of selective vectorization compared to
modulo scheduling when vector memory operations are as-
sumed to be misaligned vs. aligned.

the extra latency associated with explicit realignment. How-
ever, there are a few benchmarks (most notably tomcatv)
that benefit from the reduced resource contention.

5. Related Work

With the advent of short vector extensions, there is a
need to supply access to these instructions to the high-
level programmer. Early support came in the form of in-
line assembly, macro calls, and specialized library routines.
Some proposals for automatic parallelization advocate a ba-
sic block approach [20, 34, 33, 18]. Most approaches fol-
low classic techniques [6, 39] developed for vector super-
computers [7, 10, 13, 25, 26, 35, 41]. Commercial prod-
ucts targeting multimedia extensions include the Intel com-
piler [7], the IBM XL compiler [2], the VAST/AltiVec com-
piler [4], and VectorC [1].

Whether parallelism is identified within a basic block or
across loop iterations, existing techniques focus on extract-
ing as much DLP as possible. They do not attempt the par-
tial vectorization we advocate in this paper. We expect that
commercial vectorizers perform sophisticated cost analyses
to determine when vectorization is profitable and when it
should be excluded. We argue that cost analysis is more
accurate in the compiler backend where vectorization deci-
sions can be evaluated in terms of actual architectural re-
sources.

One of the primary difficulties facing automatic vector-
ization for short vector extensions is the alignment restric-
tion placed on vector memory operations. Our approach
readily copes with the alignment restrictions imposed by
many architectures. Some processors (e.g., AltiVec) require
that vector memory operations address locations that are
aligned on natural boundaries. As a result, the compiler
explicitly reorganizes the data using additional instructions.
Other processors (e.g., Pentium) support unaligned memory
operations, but incur a performance penalty if the data span

multiple cache lines. Many of the techniques for satisfy-
ing alignment constraints [7, 13, 17, 21, 28, 40, 43] can be
directly applied in our algorithm.

The software pipeliner in Trimaran is an implementa-
tion of Rau’s iterative modulo scheduling [30, 31]. Similar
methods were developed by Lam [19], who pioneered mod-
ulo variable expansion. Important extensions to the core
modulo scheduling algorithm include techniques to reduce
register pressure [12, 15] and the ability to schedule loops
with control flow [22]. To our knowledge, we are the first
to advocate vectorization as a method to improve resource
utilization in modulo scheduled loops.

Recently there has been interest in modulo scheduling
for clustered architectures [5, 8, 27, 42]. Explicit communi-
cation among clusters is similar to communication between
vector and scalar operations. In both cases, partitioning
can introduce transfer operations not present in the origi-
nal loop. Our approach to vectorization differs in two ways.
First, operands transfered between vector and scalar units
are typically done through memory, requiring load and store
operations that compete for resources with existing memory
operations. In contrast, a clustered architecture usually em-
ploys an operand network with dedicated resources devoted
to communication between clusters. Second, our algorithm
performs instruction selection while also tracking changes
in resource requirements. A vector opcode may have com-
pletely different resource requirements than its correspond-
ing scalar opcode. These requirements, and their competi-
tion with other instructions, are monitored closely in order
to accurately gauge the trade-offs of vectorization.

Our selective vectorization methodology implements the
partitioning heuristic developed by Kernighan and Lin [16].
We believe the algorithm provides an intuitive match for our
problem. It is possible that other partitioning heuristics are
also suitable. However, since our problem involves exactly
two partitions, more general partitioning heuristics may be
less applicable. Regardless of the algorithm used, we ar-
gue that resource utilization must be tracked carefully when
considering partitioning alternatives. Software pipelining
facilitates this by allowing us to neglect operation latency
during vectorization.

6. Future Work

The algorithm presented in this paper conceptually un-
rolls loops by a factor equal to the vector length. However, it
may be feasible to consider larger scheduling windows. For
example, assuming a vector length of two, we could vector-
ize across iterations 3i and 3i+1 and leave the operations in
iterations 3i+2 in scalar form. Here, we assign whole itera-
tions to one set of resources. In the absence of loop-carried
dependences, this approach requires no communication be-
tween scalar and vector operations. The drawback is that



alignment is adversely affected since aligned memory oper-
ations are only possible when the unroll factor is a multiple
of the vector length.

Another potential improvement relates to register pres-
sure. Most contemporary multimedia designs separate the
vector and scalar register files. For such architectures, se-
lective vectorization can reduce spilling by using both sets
of registers. More effective partitioning might be possible if
the algorithm can determine which decisions lead to fewer
spills.

Currently, our infrastructure only targets well-behaved
do loops. Further performance improvements are possible
if the scope is extended to handle while loops and loops
with early exits. Techniques for modulo scheduling such
loops already exist [32]. Much of the complexity lies in en-
suring the software pipeline is drained properly upon exit.
The task is more difficult in the presence of vector opera-
tions since some elements of a vector operation should not
execute. Draining a software pipeline with vector instruc-
tions could be accomplished if the architecture supports
vector masks. In the absence of special hardware support,
it might be possible to execute vector instructions normally,
as long as we ensure that vector stores only write intended
memory locations.

Finally, this work would readily benefit from any loop
transformations that expose data parallelism, in particular
loop interchange and reduction recognition [6]. The former
can create unit-stride memory references in the inner loop,
and the latter allows for the vectorization of reductions.

7. Conclusion

Short vector extensions have been integrated into the ISA
of many general-purpose and embedded microprocessors,
adding a data parallel component to ILP designs. In this
paper, we propose a new methodology for exploiting vector
parallelism in software pipelined loops. Our approach judi-
ciously vectorizes operations in important program loops to
improve overall resource utilization, allowing for software
pipelines with shorter initiation intervals. To our knowl-
edge, this is the first paper to show that a union of ILP and
DLP can lead to improved performance. Selective vector-
ization is applied in the backend, where the impact of vec-
torization is measured with respect to actual machine re-
sources. This allows the algorithm to accurately account for
any communication of operands between scalar and vector
operations. Finally, our approach provides a natural mech-
anism for managing the alignment restrictions enforced by
modern multimedia architectures.

We evaluate our methodology using nine SPEC FP
benchmarks. Compared to software pipelining, our selec-
tive vectorization approach achieves a maximum speedup
of 1.38×, with an average of 1.11×.

Acknowledgements

We gratefully acknowledge Charles Leiserson for bring-
ing the work of Kernighan and Lin to our attention.
We acknowledge Krste Asanović, Alexandre Eichenberger,
William Thies, and Peng Wu for many helpful discus-
sions. We also thank the anonymous referees for their
valuable suggestions on an earlier version of this paper.
This research was supported in part by NSF award EIA-
0071841, and DARPA contracts PCA-F29601-03-2-0065
and HPCA/PERCS-W0133890.

References

[1] Codeplay VectorC. http://www.codeplay.com.
[2] IBM XL C/C++ and Fortran compilers.

http://www-306.ibm.com/software/awdtools/xlcpp/.
[3] Trimaran Research Infrastructure. http://www.trimaran.org.
[4] VAST-C/AltiVec. http://www.crescentbaysoftware.com.
[5] A. Aletà, J. M. Codina, J. Sánchez, and A. González. Graph-

Partitioning Based Instruction Scheduling for Clustered Pro-
cessors. In Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 150–159, Austin,
TX, December 2001.

[6] R. Allen and K. Kennedy. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan
Kaufmann, San Francisco, California, 2001.

[7] A. J. Bik. The Software Vectorization Handbook: Apply-
ing Multimedia Extensions for Maximum Performance. Intel
Press, Hillsboro, OR, 2004.

[8] J. M. Codina, J. Sánchez, and A. González. A Unified Mod-
ulo Scheduling and Register Allocation Technique for Clus-
tered Processors. In Proceedings of the 10th International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 175–184, Barcelona, Spain, September 2001.

[9] A. Darte. On the complexity of loop fusion. In Proceedings
of the 1999 International Conference on Parallel Architec-
tures and Compilation Techniques, pages 149–157, Newport
Beach, CA, October 1999.

[10] D. J. DeVries. A Vectorizing SUIF Compiler: Imple-
mentation and Performance. Master’s thesis, University of
Toronto, June 1997.

[11] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales.
AltiVec Extension to PowerPC Accelerates Media Process-
ing. IEEE Micro, 20(2):85–95, March 2000.

[12] A. E. Eichenberger and E. S. Davidson. Stage Schedul-
ing: A Technique to Reduce the Register Requirements of a
Modulo Schedule. In Proceedings of the 28th Annual Inter-
national Symposium on Microarchitecture, pages 180–191,
Ann Arbor, MI, November 1995.

[13] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization
for SIMD Architectures with Alignment Constraints. In Pro-
ceedings of the SIGPLAN ’04 Conference on Programming
Language Design and Implementation, pages 82–93, Wash-
ington, DC, June 2004.

[14] J. Fridman and Z. Greenfield. The TigerSHARC DSP Ar-
chitecture. IEEE Micro, 20(1):66–76, January 2000.



[15] R. A. Huff. Lifetime-Sensitive Modulo Scheduling. In Pro-
ceedings of the SIGPLAN ’93 Conference on Programming
Language Design and Implementation, pages 258–267, Al-
buquerque, NM, June 1993.

[16] B. Kernighan and S. Lin. An Efficient Heuristic Proce-
dure for Partitioning Graphs. Bell System Technical Journal,
49:291–307, February 1970.

[17] A. Krall and S. Lelait. Compilation Techniques for Mul-
timedia Processors. International Journal of Parallel Pro-
gramming, 28(4):347–361, August 2000.

[18] A. Kudriavtsev and P. Kogge. Generation of Permutations
for SIMD Processors. In Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 147–156, Chicago, IL,
June 2005.

[19] M. Lam. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language De-
sign and Implementation, pages 318–328, Atlanta, GA, June
1988.

[20] S. Larsen and S. Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceed-
ings of the SIGPLAN ’00 Conference on Programming Lan-
guage Design and Implementation, pages 145–156, Vancou-
ver, BC, June 2000.

[21] S. Larsen, E. Witchel, and S. Amarasinghe. Increasing and
Detecting Memory Address Congruence. In Proceedings of
the 11th International Conference on Parallel Architectures
and Compilation Techniques, pages 18–29, Charlottesville,
VA, September 2002.

[22] D. M. Lavery and W. mei W. Hwu. Modulo Scheduling
of Loops in Control-Intensive Non-Numeric Programs. In
Proceedings of the 29th Annual International Symposium on
Microarchitecture, pages 126–137, Paris, France, December
1996.

[23] R. Lee. Subword Parallelism with MAX-2. IEEE Micro,
16(4):51–59, August 1996.

[24] C. McNairy and D. Soltis. Itanium 2 Processor Microarchi-
tecture. IEEE Micro, 23(2):44–55, March 2003.

[25] D. Naishlos. Autovectorization in GCC. In Proceedings of
the 2004 GCC Developers Summit, pages 105–118, 2004.

[26] D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks. Vec-
torizing for a SIMdD DSP Architecture. In Proceedings of
the 2003 International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems, pages 2–11, San
Jose, CA, October 2003.

[27] E. Nystrom and A. E. Eichenberger. Effective Cluster As-
signment for Modulo Scheduling. In Proceedings of the
31st Annual International Symposium on Microarchitecture,
pages 103–114, Dallas, TX, December 1998.

[28] I. Pryanishnikov, A. Krall, and N. Horspool. Pointer Align-
ment Analysis for Processors with SIMD Instructions. In
Proceedings of the 5th Workshop on Media and Streaming
Processors, pages 50–57, San Diego, CA, December 2003.

[29] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing
Streaming SIMD Extensions on the Pentium III Processor.
IEEE Micro, 20(4):47–57, July 2000.

[30] B. Rau, M. Lee, P. Tirumalai, and M. Schlansker. Register
Allocation for Software Pipelined Loops. In Proceedings of
the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 283–299, San Francisco,
CA, June 1992.

[31] B. R. Rau. Iterative Modulo Scheduling. Technical Report
HPL-94-115, Hewlett Packard Company, November 1995.

[32] B. R. Rau, M. S. Schlansker, and P. Tirumalai. Code Gener-
ation Schema for Modulo Scheduled Loops. In Proceedings
of the 25th Annual International Symposium on Microarchi-
tecture, pages 158–169, Portland, OR, December 1992.

[33] J. Shin, , M. Hall, and J. Chame. Superword-Level Paral-
lelism in the Presence of Control Flow. In Proceedings of
the International Symposium on Code Generation and Opti-
mization, pages 165–175, San Jose, CA, March 2005.

[34] J. Shin, J. Chame, and M. Hall. Compiler-Controlled
Caching in Superword Register Files for Multimedia Exten-
sion Architecture. In Proceedings of the 11th International
Conference on Parallel Architectures and Compilation Tech-
niques, pages 45–55, Charlottesville, VA, September 2002.

[35] N. Sreraman and R. Govindarajan. A Vectorizing Compiler
for Multimedia Extensions. International Journal of Paral-
lel Programming, 28(4):363–400, August 2000.

[36] R. E. Tarjan. Depth First Search and Linear Graph Algo-
rithms. SIAM Journal of Computing, 1(2):146–160, June
1972.

[37] M. Tremblay, M. O’Connor, V. Narayanan, and L. He. VIS
Speeds New Media Processing. IEEE Micro, 16(4):10–20,
August 1996.

[38] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng,
M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An Infras-
tructure for Research on Parallelizing and Optimizing Com-
pilers. ACM SIGPLAN Notices, 29(12):31–37, December
1994.

[39] M. J. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, Redwood City, California, 1996.

[40] P. Wu, A. E. Eichenberger, and A. Wang. Efficient SIMD
Code Generation for Runtime Alignment and Length Con-
version. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 153–164, San
Jose, CA, March 2005.

[41] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao. An
Integrated Simdization Framework Using Virtual Vectors.
In Proceedings of the 19th ACM International Conference
on Supercomputing, pages 169–178, Cambridge, MA, June
2005.

[42] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Modulo
Scheduling with Integrated Register Spilling for Clustered
VLIW Architectures. In Proceedings of the 34th Annual
International Symposium on Microarchitecture, pages 160–
169, Austin, TX, December 2001.

[43] Y. Zhao and K. Kennedy. Scalarization on Short Vector Ma-
chines. In IEEE International Symposium on Performance
Analysis of Systems and Software, pages 187–196, Austin,
TX, March 2005.


