
1 DATE 2008 Munich, GermanyRodric Rabbah, IBM

Liquid Metal

Blurring the Boundary between Software and
Hardware for Versatile Parallel Computing

Rodric Rabbah
IBM Research

T. J. Watson

rodric@gmail.com

2Rodric Rabbah, IBM DATE 2008 Munich, Germany

The Lure of Heterogeneous Architectures

● Transistors are free
Many custom cores on a single chip

● Custom IP and fixed function accelerators
Lower power and better performance

General
Purpose

GPU

Networking

Physics

Crypto

XML parser

3 DATE 2008 Munich, GermanyRodric Rabbah, IBM

A Look at the Cell Architecture

9-core Heterogeneous Architecture
for Streaming, Multimedia, and HPC

4Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Broadband Engine Architecture

BUS (up to 96B/cycle)

16B/cycle

16B/cycle

PPE

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

16B/cycle(2x)

5Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Broadband Engine Architecture

BUS (up to 96B/cycle)

16B/cycle

16B/cycle

L2

L1
PPU

32B/cycle

16B/cycle

64-bit Power Architecture with VMX

PPE

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

16B/cycle(2x)

6Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Broadband Engine Architecture

BUS (up to 96B/cycle)

16B/cycle

16B/cycle

L2

L1
PPU

32B/cycle

16B/cycle

PPE

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

SPU

MEM
(LS)

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

DMA DMA DMA DMA DMA DMA DMA DMA

16B/cycle(2x)

64-bit Power Architecture with VMX

SPU is a
dual issue
SIMD
Processor

LS is a
256KB
local mem
for code
and data

7Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Programming: The Art

intrinsics, data
alignment

SIMD
constant factor speedup to single “thread” performance

double buffering,
overflow

Local Store packing
SPE memory is finite, no HW virtualization

deadlock,
races

Synchronization
coordination between SPEs and PPE

compute-DMA
concurrency

Communication
SPE can only directly access its local memory…
data is DMA-ed in and out of local memory explicitly

explicit
parallelism,
locality, load
balancing

Mapping
partition an application to run on SPEs vs PPEs

8Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Programming: The Challenge

intrinsics, data
alignment

SIMD
constant factor speedup to single “thread” performance

double buffering,
overflow

Local Store packing
SPE memory is finite, no HW virtualization

deadlock,
races

Synchronization
coordination between SPEs and PPE

compute-DMA
concurrency

Communication
SPE can only directly access its local memory…
data is DMA-ed in and out of local memory explicitly

explicit
parallelism,
locality, load
balancing

Mapping
partition an application to run on SPEs vs PPEs

9Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Programming Basics

main()
{

}

10Rodric Rabbah, IBM DATE 2008 Munich, Germany

spe_main()
{

}

Cell Programming Basics

main()
{

}

co
de

● Two programs: one for PPE, another for SPEs

11Rodric Rabbah, IBM DATE 2008 Munich, Germany

spe_main()
{

}

Cell Programming Basics

main()
{

}

communication
and synchronization

● Two programs: one for PPE, another for SPEs

12Rodric Rabbah, IBM DATE 2008 Munich, Germany

A Simple Cell Program

#include <stdio.h>
#include <libspe.h>
extern spe_program_handle_t hello_spe;
int main() {

speid_t id[8];
// Create 8 SPU threads
for (int i = 0; i < 8; i++) {

id[i] = spe_create_thread(0,
&hello_spe,
NULL,
NULL,
-1,
0);

}
// Wait for all threads to exit
for (int i = 0; i < 8; i++) {

spe_wait(id[i], NULL, 0);
}
return 0;

}

#include <stdio.h>
int
main(unsigned long long speid,

unsigned long long argp,
unsigned long long envp)

{
printf("Hello world! (0x%x)\n", (unsigned int)speid);
return 0;

}

PPE (hello.c)

SPE (hello_spe.c)

13Rodric Rabbah, IBM DATE 2008 Munich, Germany

Cell Programming Basics

● Separate tool chains
including compilers and
debuggers

● Substantial fraction of the
code is for orchestration
communication and
synchronization

● In summary: not a
productive process

● Experience with Cell has
demonstrated that good
programming models are no
longer optional in the face of
ubiquitous parallelism

ppe-gcc

object
file

link

a.out

spe-gcc

object
file

14Rodric Rabbah, IBM DATE 2008 Munich, Germany

The Productivity Challenge

● Programmer controls every detail of parallelism

● Granularity decisions
If too small, lots of synchronization and thread creation
If too large, bad locality

● Load balancing decisions
Create balanced parallel sections (not data-parallel)
Profiling is a challenge

● Locality decisions
Code and data co-partitioning
Placement for sharing and optimized communication

● Synchronization decisions
Barriers, atomicity, critical sections, order, flushing, races, deadlocks

● Determinism nearly impossible
Debugging is heroic

15Rodric Rabbah, IBM DATE 2008 Munich, Germany

Parallelism Affects Every
Layer of the Stack

● Many layers of abstraction facilitated
evolution of computation for many years

Hide details at each layer
Enable componentization
Threat of interchanging components
in a layer creates healthy incentive
for improvements

● Now, the many layers of abstractions are
an increasing impediments to innovation

Trends to add more layers
(JVM, App server, OS virtualization)
Thin interfaces lead to poor synergy and
a lot of redundancy
(JVM, OS, Virtualization, HW all present a
thread abstraction)

Operating System

Tools

Multicore Hardware

Languages /
Programming Models

Libraries

Language Runtime

Virtualization

Compilers

Applications

Application Server /
Middleware

16Rodric Rabbah, IBM DATE 2008 Munich, Germany

Must Blur Boundaries
Between Layers

● Provide customization at every level

● Promote cooperation and synergy

● Lesson from BlueGene playbook:
BlueGene has its own stack with
large performance boost from
working across layers

Operating System

Tools

Multicore Hardware

Languages /
Programming Models

Libraries

Language Runtime

Virtualization

Compilers

Applications

Application Server /
Middleware

17 DATE 2008 Munich, GermanyRodric Rabbah, IBM

Toward Productive Programming
for Future Architectures

18Rodric Rabbah, IBM DATE 2008 Munich, Germany

A Hardware Designer’s Perspective

● How is computation coordinated over billions of transistors?

● Impose structure
● Specify behavioral
● Partition
● Place
● Route
● …

19Rodric Rabbah, IBM DATE 2008 Munich, Germany

“A parallel computer is a collection of processing elements that
cooperate and communicate to solve large problems fast.”

Today’s Architectures = Parallel Computers

The Basics of Programming Multicores

● Programming becomes an exercise in partitioning, placement,
routing and scheduling

Partition Place
(layout)

Route
and Schedule

Codegen

• Cell
• Multicore
• GPU
• FPGA
• SoC

20Rodric Rabbah, IBM DATE 2008 Munich, Germany

Toward Productive Programming for
Future Architectures

Programming Model Challenges
Encapsulate computation

– State updates are explicit
– No sharing of data except through

well defined interfaces
Make communication explicit

In a single unified semantically rich
programming model for general
purpose, streaming, real time, bit level…

21Rodric Rabbah, IBM DATE 2008 Munich, Germany

Toward Productive Programming for
Future Architectures

Programming Model Challenges
Encapsulate computation

– State updates are explicit
– No sharing of data except through

well defined interfaces
Make communication explicit

In a single unified semantically rich
programming model for general
purpose, streaming, real time, bit level…

Compiler Challenges
Automate the rest

22Rodric Rabbah, IBM DATE 2008 Munich, Germany

Toward Productive Programming for
Future Architectures

Programming Model Challenges
Encapsulate computation

– State updates are explicit
– No sharing of data except through

well defined interfaces
Make communication explicit

In a single unified semantically rich
programming model for general
purpose, streaming, real time, bit level…

Compiler Challenges
Automate the rest

Non trivial issues to solve related to
runtime system especially with
heterogeneous architectures

E.g., different clock domains

23Rodric Rabbah, IBM DATE 2008 Munich, Germany

Toward Productive Programming for
Future Architectures

Software
General Purpose

Hardware
Fully Custom

ASIC

Heterogeneous
Multicore

FPGA
Homogeneous
Multicore

Increasing Performance and Power Benefits

Productivity
of a C/Java

Programmer

low

high

Liquid Metal

C/Java

(SDF)

(SystemC)

(HDL)

24Rodric Rabbah, IBM DATE 2008 Munich, Germany

● Liquid Metal tackle challenges at the extremes
● Language, Compiler and Runtime for programming software

and hardware
● Raise level of abstraction for software/hardware co-design

Liquid Metal

● Program hardware (with new
functionality) at a level of
abstraction comparable to Java

● Object Oriented programming
across the software/hardware
boundary

Software
General Purpose

Hardware
Fully Custom

ASIC

Heterogeneous
Multicore

FPGA
Homogeneous
Multicore

25Rodric Rabbah, IBM DATE 2008 Munich, Germany

Liquid Metal (Lime)

Lime Application Java-based language for
programming software or hardware
Mode-less programming model
Dataflow driven, real time aware
Composable and malleable code
Portable, run anywhere with
equivalent semantics

26Rodric Rabbah, IBM DATE 2008 Munich, Germany

Liquid Metal Runtime

Configurable Fabric
(Xilinx Virtex)

Fixed-Function
Accelerator (e.g. Cell)

Software
e.g., JVM on x86

Lime Application

Run in a JVM or compile to hardware (FPGA)

27Rodric Rabbah, IBM DATE 2008 Munich, Germany

Liquid Metal Runtime

Configurable Fabric
(Xilinx Virtex)

Fixed-Function
Accelerator (e.g. Cell)

Software
e.g., JVM on x86

Lime Application

Run in a JVM or compile to hardware (FPGA)

28Rodric Rabbah, IBM DATE 2008 Munich, Germany

Liquid Metal Runtime

Configurable Fabric
(Xilinx Virtex)

Fixed-Function
Accelerator (e.g. Cell)

Software
e.g., JVM on x86

Lime Application

Fluidly move computation from hardware to software
(and vice versa)

29Rodric Rabbah, IBM DATE 2008 Munich, Germany

Language at Micro-scale:
Functional and Data-parallel Constructs

● Comprehensive value type system
All “primitive” types user-defined
Efficient, abstract, vectorizable, and synthesizable

● Atomic types
Simplified transactional memory

● Parallel Atomics
Deterministic, race-free data-parallel construct
Easy to express, understand, debug

30Rodric Rabbah, IBM DATE 2008 Munich, Germany

Macro-scale:
Isolated Classes with Timing

● Lime classes are special classes with actor-like semantics
Can not read/write non-final global state
– Functional in input and current state
Can be instantiated in controlled contexts
– Controlled aliasing allows precise scheduling
Mutation of class state is exposed and controlled

● Algorithmic and programmatic assembly
of classes into computational dataflow graphs

● Portable notion of time
Relative (producer/consumer ratio)
Absolute (external timing)
Well defined under composition

parallel computation

joinersplitter

joiner splitter

31Rodric Rabbah, IBM DATE 2008 Munich, Germany

The Case for High-Productivity Languages in
Embedded Systems: Advances in Real-Time Java

● MIDI synthesizer entirely in Java running on top of
IBM WebSphere RT

Human ear can
detect latencies
of few milliseconds
and jitter on even
shorter time scale

http://www.research.ibm.com/metronome

32Rodric Rabbah, IBM DATE 2008 Munich, Germany

The Case for High-Productivity Languages in
Embedded Systems: Advances in Real-Time Java

● Helicopter Flight Control System in Java running on GumStix

http://www.research.ibm.com/metronome

33Rodric Rabbah, IBM DATE 2008 Munich, Germany

Current Lime Toolchain

● Functional end-to-end toolchain
Demonstrated proof of concepts on
small kernels

● Lime compiler liquefies OO code
Efficiently support OO features in
FPGA
Provision code to run in software or
FPGA

● Compiler has several components
Frontend compiles to
– Standard Java bytecode
– Lime Spatial (Streaming) IR
Backend explores partitioning and
scheduling plans
Generates Verilog and/or C

● Output can run in
Software (standard JVM)
Hardware (FPGA)

[To appear ECOOP 2008]

34Rodric Rabbah, IBM DATE 2008 Munich, Germany

Preliminary Results

● Demonstrated the ability to support OO features in FPGA
Inheritance
Dynamic dispatch
“new”

● Demonstrated performance potential for small kernels with
varying properties

Data, pipeline parallelism
Stateful and stateless computation
Different communication to computation ratios
Easy to verify output

35Rodric Rabbah, IBM DATE 2008 Munich, Germany

The Liquid Metal Vision: “JIT the Hardware”

● Lime: high-level Java-based parallel programming model for
programming software and hardware

Accessible to skilled Java programmers
Modular, composable, and malleable components

● Crucible: Lime-to-Hardware JIT compiler
Blur existing abstraction layers
Allow for application-specific customization throughout

● Lime VM: introspective and pluggable runtime system
Fluidly move computation between hardware and software
Instantiate on conventional CPUs, FPGA, heterogeneous systems, ...

36Rodric Rabbah, IBM DATE 2008 Munich, Germany

Liquid Metal-heads

● David Bacon and Rodric Rabbah, IBM Research

● Summer 2007 Interns
Amir Hormati, University of Michigan
Shan Shan Huang, Georgia Tech

