
Data Remapping for Design Space Optimization
of Embedded Memory Systems

RODRIC M. RABBAH and KRISHNA V. PALEM

Georgia Institute of Technology, Atlanta

In this article, we present a novel linear time algorithm for data remapping, that is, (i) lightweight;
(ii) fully automated; and (iii) applicable in the context of pointer-centric programming languages

with dynamic memory allocation support. All previous work in this area lacks one or more of

these features. We proceed to demonstrate a novel application of this algorithm as a key step
in optimizing the design of an embedded memory system. Specifically, we show that by virtue

of locality enhancements via data remapping, we may reduce the memory subsystem needs of

an application by 50%, and hence concomitantly reduce the associated costs in terms of size,
power, and dollar-investment (61%). Such a reduction overcomes key hurdles in designing high-
performance embedded computing solutions. Namely, memory subsystems are very desirable

from a performance standpoint, but their costs have often limited their use in embedded systems.
Thus, our innovative approach offers the intriguing possibility of compilers playing a significant

role in exploring and optimizing the design space of a memory subsystem for an embedded de-
sign. To this end and in order to properly leverage the improvements afforded by a compiler
optimization, we identify a range of measures for quantifying the cost-impact of popular notions

of locality, prefetching, regularity of memory access and others. The proposed methodology will
become increasingly important, especially as the needs for application specific embedded archi-
tectures become prevalent. In addition, we demonstrate the wide applicability of data remapping

using several existing microprocessors, such as the Pentium and UltraSparc. Namely, we show
that remapping can achieve a performance improvement of 20% on the average. Similarly, for
a parametric research HPL-PD microprocessor, which characterizes the new Itanium machines,

we achieve a performance improvement of 28% on average. All of our results are achieved using
applications from the DIS, Olden and SPEC2000 suites of integer and floating point benchmarks.

Categories and Subject Descriptors: B.3 [Hardware]: Memory Structures; D.2 [Software]: Soft-
ware Engineering; D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Algorithms, Desgin, Performance

Additional Key Words and Phrases: Design space exploration, embedded systems, memory hier-
archy, memory subsystem, caches, data remapping, compiler optimization

This work was supported in part by DARPA contract F33615-99-1499, Hewlett-Packard Labora-

tories and Yamacraw.
Authors’ address: R. M. Rabbah and K. V. Palem, Center for Research on Embedded Systems

and Technology, School of Electrical and Computer Engineering, Georgia Institute of Technology,

777 Atlantic Drive, Atlanta, GA 30332; email: {rabbah, palem}@ece.gatech.edu
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0000-0000/2003/0000-0001 $5.00

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003, Pages 1–32.

2 · R. M. Rabbah and K. V. Palem

1. INTRODUCTION

The memory hierarchy has been a ubiquitous component in the design of computing
platforms since the introduction of the von Neumann machine [Burks et al. 1987;
Taub 1963]. It has widely served to bridge the performance gap between processor
and supporting memory subsystem, usually by employing deep cache hierarchies
where each level trades off capacity for access speed. As processors are increasingly
used in the context of embedded systems, the cost of this memory hierarchy is
increasingly becoming a limiting factor in its ability to play as central a role. Quite
often, this limitation is because of the physical size, as well as the implications to
the complexity of the processors used in the embedded domain. Thus, for example,
the StrongARM processor which is widely used in portable multimedia devices
is equipped with an 8-Kb primary data cache. By contrast, the emerging high-
performance EPIC (explicitly parallel instruction computing) Itanium processor—
targeted at enterprise and technical applications—is supported by a three-tiered
memory hierarchy comprised of a 32-Kb primary data cache, a 96-Kb secondary
cache, and a 2-4-Mb tertiary cache.

Although the Itanium is an example of a general-purpose, very long instruc-
tion word (VLIW) processor,1 the VLIW methodology has widely proliferated the
embedded computing market tiers. For example, Texas Instruments has shipped
large volumes of its TI-C6 VLIW processor; StarCore has announced a VLIW DSP
core; and Phillips is developing its TriMedia high-performance VLIW products.
The evolution of VLIW architectures into viable embedded computing solutions
is largely attributed to the simplicity of the design and the significant instruction
level parallelism (ILP) which it affords [Rau and Schlansker 2000]. Unfortunately,
the same reasons that make VLIW architectures appealing also magnify the needs
for an adequate memory subsystem capable of sustaining high rates of data de-
livery to the processing units. Hence, while VLIW processors offer opportunities
for performance enhancements via ILP, it is evident that when the available mem-
ory bandwidth is saturated, an additional increase in the processing speed will not
yield any benefits [Cragon 1996]. Thus, it is imperative to carefully manage the
movement of data across the memory hierarchy in order to deliver the promise of
Moore’s law to the end user. This is especially true in VLIW architectures where
significant losses in processing throughput are at stake when data is found at lower
levels of the hierarchy.

In addition to the above limitation posed by the physical size of the memory
subsystem—important to data-intensive programs—the problem is further exacer-
bated by pointer-intensive applications common to the embedded domain. In these
programs, the memory access patterns (MAPs) are quite often highly irregular, and
hence the typical prediction and replacement schemes tend to mispredict more of-
ten than in the case of array-based applications with regular MAPs. The inability
of these schemes to cope with unpredictability further increases the pressure on the
memory hierarchy. To understand this better, consider a kernel application that re-
peatedly processes the elements of an array in sequence. In such a case, the address
stream generated by the program is highly ordered. Most modern architectures are

1EPIC includes VLIW as a subset.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 3

Input
Data

Fixed
Program

Locality Enhancing Algorithm
• Loop transformations
• Data reorganization

Software
Pipelining and

Scheduling
Register

Allocation

Range of Customized
Micro-Architectures

User Specified
Design Constraints
• Power
• Performance
• Timing

Exploration
Tool

Select Design
With Lowest

Cost

Compiler Optimizations

Fig. 1. Design space exploration and compiler optimizations may be viewed as duals of each
others. Here, design space exploration is shown as the primal.

capable of accurately predicting and prefetching such regular MAPs ahead of their
actual demand [Chilimbi and Hirzel 2002; Wu 2002; Fu and Patel 1992]. By con-
trast, the same prediction strategies are generally vulnerable and do not perform
well in the context of irregular MAPs intrinsic to pointer-centric dynamic applica-
tions. Specifically, the strategies that work so well with regular applications waste
bandwidth and pollute the hierarchy when data is prefetched unnecessarily.

In this article, we present a novel data remapping scheme that helps overcome
the challenges stated above. Namely, remapping enables a more effective use of the
memory hierarchy in data-starved embedded systems, particularly in the context of
pointer-heavy applications. As an example, we are able to show that our technique
allows a program to achieve the same overall running time with just half the memory
resources, when compared to a program that has not been remapped.

1.1 Data Remapping and Design Space Exploration

The above result offers an intriguing possibility, which is a highlight of this arti-
cle: remapping, traditionally a compiler optimization, can play a significant role in
optimizing the memory subsystem design, and hence performance of an embedded
application. As shown in Figure 1, design space exploration involves exploring alter-
nate hardware or architectural solutions to meet a specified performance constraint
for a fixed program P. Thus, while the program is fixed, the optimization tech-
niques are applied to find a hardware solution, subject to the given performance
or execution time constraint. By contrast, and as shown in Figure 2, the dual
of this problem is the domain of a traditional compiler optimization, wherein the
applications or programs P1,P2 . . . ,Pk are optimized to achieve the best possible
performance on a fixed target processor whose memory subsystem consists of several
sophisticated cache memories.

From a design space exploration perspective, our technique may be regarded as a
tool which can help lower memory needs significantly without compromising execu-
tion time. In particular, given a “user-specified” performance goal, remapping can

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

4 · R. M. Rabbah and K. V. Palem

Input
Data

Program 1

Locality Enhancing Algorithm

Software
Pipelining and

Scheduling
Register

Allocation

Program 2

Program k

...
ISA Specific
Code Generation

Fixed
Target Processor

Compiler Optimizations

Fig. 2. Compiler optimizations for a fixed target, shown as the dual of design space exploration.

Table I. Example Impact of Data Remapping on Cost During Design Space Exploration
Goal Before Remapping After Remapping

Benchmark Suite 106 Cycles L2 Size L2 Cost L2 Size L2 Cost Saving

179.art SPEC 13,000 1.0-Mb $19.38 0.0-Mb $0.00 $19.38

TreeAdd Olden 880 1.0-Mb $19.38 0.5-Mb $17.80 $ 1.58

Perimeter Olden 520 2.0-Mb $48.00 1.0-Mb $19.38 $28.62

yield a system meeting this goal whose cost is significantly lower than that of a cor-
responding system meeting the same goal, but without the benefits of remapping.
As shown in Table I, remapping preserves the application’s performance with half
the cache size for the three example pointer-centric benchmarks. Namely, given an
execution time goal of 600 million cycles for the application Perimeter, remapping
allows us to use a secondary (L2) memory size of 1-Mb instead of 2-Mb for a total
saving of $28.62 which is 60% of the cost.2 In another example (179.art), data
remapping allows the use of a memory hierarchy that only consists of a primary
cache (L1). More generally, we have demonstrated that the improvement is consis-
tent for several applications, including floating-point and integer applications from
the DARPA DIS3 suit as well as the well-known Olden and SPEC2000 suites.

In order to use the savings afforded by data remapping as a crucial step in ex-
ploring the design space of an embedded cache system, it is important to quantify
the potentials for improvement using some fundamental variables over which the
exploration and optimization can proceed. In this article, we provide a novel char-
acterization of a set of such variables. For example, while prefetching is widely
accepted in memory systems, its efficacy is very dependent on its ability to match
its prediction and replacement policies with the actual needs of the program [Nys-
trom et al. 2001]. In this context, we quantify the degree of mismatch between

2For the 2-Mb L2 cache, we use two 1-Mb Toshiba TC55W800FT-55 SRAM chips, each at a cost
of $24. For the 1-Mb L2 cache, we use two 0.5-Mb Toshiba TC55V400AFT7 SRAM chips, each at

a cost of $9.19. For the 0.5-Mb L2 cache, we use four 128-Kb Cypress CY62128VL-70SC SRAM
chips, each at a cost of $4.425.
3The Data Intensive Systems (DIS) were developed at the Atlantic Aerospace Electronics Corpo-
ration, in conjunction with the Boeing Company and ERIM International.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 5

Table II. Summary of Average Results for Concrete Architectures After Remapping
Processor CPU Speed L2 Size % Speedup

Pentium III 750 MHz 256-Kb 26

Pentium II 400 MHz 512-Kb 24

UltraSparc II 400 MHz 2048-Kb 9

Itanium HPL-PD – 96-Kb 28

the prefetchers in the architecture and the memory access patterns of the program.
Furthermore, using our measures, we can quantify the improvements achieved by
our optimization along this dimension. More generally however, the measures can
serve as a rigorous foundation geared to facilitate the exploration and optimization
of the memory hierarchy design space with respect to power, performance, size, and
cost. While the processor industry paradigm is undergoing a fundamental change,
similar to the evolutionary patterns driven by customization that occurred in other
industries [Bass and Christensen 2002], the design of embedded memory systems
remains an ad hoc art. It often relies on intuition and extensive simulations to
choose the best match for a particular processing unit [Rau and Schlansker 2000;
Abraham and Mahlke 1999]. By contrast, the automatic exploration and synthesis
of application-specific processing cores and systolic accelerators is the focus of var-
ious systematic studies [Schreiber et al. ; Aditya et al. 1999; Lee and Kedem 1990].
Thus, it is our contention that memory organization is a major specialization di-
mension and warrants carefully consideration when application-specific computing
solutions are sought. A formal definition of the proposed measures and their ap-
plication to deduce the improvements offered by data remapping is the topic of
Section 5.

Our methodology extends the current state-of-the-art design-space exploration
and optimization techniques to pointer-centric applications ubiquitous to C-based
applications. By contrast, important related work has been reported that is relevant
in the context of array-based applications. For example, Catthoor et al. [1998]
perform an extensive exploration of memory organization for embedded systems,
with an emphasis on storage and bandwidth optimization. In addition, Panda
et al. [2001] recently published a thorough survey of data and memory optimization
techniques for embedded systems. Notably, researchers [Kulkarni et al. 2000; Panda
et al. 1997] have explored a coordinated data and computation reordering for array-
based data structures in multimedia applications.

1.2 Data Remapping as a Compiler Optimization for COTS Architectures

In addition to the focus on design space exploration of embedded memory systems,
we illustrate the utility of our technique in the context of a traditional compiler op-
timizations framework (Figure 2). Specifically, data remapping achieves speedups
in the context of existing commercial-off-the-shelf (COTS) processors such as Pen-
tium II, Pentium III and Sun UltraSparc II, as well as experimental EPIC processors
modeled as variations of the HPL-PD architecture [Kathail et al. 2000]. The results
are highlighted in Table II and subsequently detailed in Section 4. A noteworthy
result is the average speedup due to remapping for the fastest processor (750 MHz
Pentium III) which exceeds that of the slower 400 MHz UltraSparc by a factor of

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

6 · R. M. Rabbah and K. V. Palem

0

5

10

15

20

25

30

35

Time

A
m

o
u

n
t

o
f

D
at

a
F

et
ch

ed
 (

in
 3

2K
b

) Before Data
Remapping
After Data
Remapping

Fig. 3. Amount of data fetched before and after data remapping.

three. Such a result reiterates the importance of bridging the gap between pro-
cessor and memory speeds, particularly since the size of the secondary cache used
in the Pentium III is eight times smaller than the one used in the UltraSparc. In
addition to the concrete computing platforms, we model an Itanium processor us-
ing the HPL-PD architecture. As noted earlier, the Itanium memory hierarchy is
three-tiered, with a 32-Kb primary cache, 96-Kb secondary cache, and 2-Mb ter-
tiary cache. The performance improvements for an Itanium-like HPL-PD processor
are 28% on average.

1.3 Overview of Our Methodology

At the heart of our approach is a compile-time data-remapping algorithm to en-
hance locality for dynamic programs with irregular memory access patterns. Stated
in simple terms, remapping is a reorganization of the application’s data in mem-
ory, such that memory elements that are accessed contemporaneously are in fact
placed together in memory. Thus, remapping aims to improve the spatial locality
of memory elements that in fact also share temporal locality.

The simple remapping transformation achieves its impressive improvement by
ensuring that the ratio of the number of items found in cache (cache hits) to those
that are fetched from main memory (cache misses) remain the same, with half the
memory size—and hence the execution time of the application is not compromised.
Specifically, in the absence of remapping, much of the data delivered to the cache
is often needlessly fetched because of a lack of address locality. In Figure 3 we plot
the amount of data that is delivered to the cache for successive (nonoverlapping)
time slices throughout the execution of a representative benchmark (TSP from the
Olden benchmark suite) The graph demonstrates an average 30% reduction in the
amount of data delivered to the cache as a result of our locality enhancement.
Such an improvement is subsequently leveraged to vary the cache parameters (e.g.,
reduce the cache size) and achieve the same overall performance, but with less cache
investments.

Traditionally, a limited form of remapping known as data reorganization has
been applied in the context of improving the execution time of applications for a
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 7

fixed target processor. However, all previous techniques for the data reorganiza-
tion of pointer-centric applications [Kistler and Franz 2000; Chilimbi et al. 1999;
Calder et al. 1998; Truong et al. 1998; Panda et al. 1997] are characterized by
one or more of the following limitations. First, they are not completely trans-
parent to the programmer and require some manual retooling of the application.
Second, they incur significant runtime overhead as objects may be dynamically re-
located in memory—the cost of dynamic data relocation is often prohibitive from
a performance point of view, and certainly from an energy perspective which is
of great importance in the embedded systems domain [Palem et al. 2002]. Third,
they may violate program correctness in pointer-heavy applications. By contrast,
our approach is (i) completely automated; (ii) does not perform any runtime data
movements; (iii) preserves correctness for a much larger scope of applications in
the context of pointer-based programming languages; and (iv) is lightweight with
a running time linear in the size of the program. The details of our technique and
its engineering into a compiler are outlined in Sections 2 and 6, respectively.

2. DATA REMAPPING ALGORITHM

The targets of our optimization are record data types common to real-world, pointer-
heavy applications. A record is a set of diverse data types grouped within a unique
declaration; we refer to elements of the set as fields and instances of a record as
objects. The specific focus on data records is self-evident. Consider, for example, a
function that searches through a linked list of records and replaces a certain data
item matching a search key. Each record consists of a key field, a datum field, and
a next field pointing to the next record in the list. Here, the key and next fields
are accessed in succession, and more frequently (hot fields) than the datum field
(cold field). Therefore, it would prove beneficial to fetch and cache as many hot
fields as possible with each memory access. To this end, a remapping strategy that
collocates the key and next fields of various objects in the same memory block and
allocates all the of datum fields to a separate block will improve the program spa-
tial locality, which inturn favorably impacts memory system behavior. Note that
packing field-pairs in the same block (i.e., a block containing key and next fields)
does not offer an advantage over individual field packing (i.e., a block containing
only key fields) since the same number of blocks will eventually be fetched from
memory.

Our schema is an innovative combination of field reordering and customized place-
ment such that the new data layouts exhibit better spatial locality. The remapping
optimization consists of three phases.

(1) Gathering phase. An analysis of the application memory access patterns is
performed to identify record types that will benefit from remapping.

(2) Remapping of global data objects. We first present the remapping strategy in
the context of global data objects, since they are often encountered in large
applications. Next, we generalize the technique to dynamically allocated ob-
jects. We do not consider stack-allocated objects for remapping, as they are
often small and exhibit good locality.

(3) Remapping of dynamic data objects. The key technical features of this work are
geared toward pointer-centric applications and aim to preserve program seman-
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

8 · R. M. Rabbah and K. V. Palem

O1 . f1 O1 . f2 O1 . f3 O2 . f1 O2 . f2 O2 . f3 O3 . f1 O3 . f2 O3 . f3(a)

(b) O1 . f1 O2 . f1 O3 . f1 O1 . f2 O2 . f2 O3 . f2 O1 . f3 O2 . f3 O3 . f3

Fig. 4. Two example memory access patterns (|T | = 9) for three objects O1, O2, and O3 of record
type R with fields f1, f2, and f3. Oj .fk represents the kth field of the jth instance of a record R.

tics in the presence of pointer variables; a pointer variable is a variable whose
value is the memory location (address) of another variable. Our optimization
applies to programming languages such as C which associate physical meaning
with the syntactic declaration of a record.

2.1 Gathering Phase

An arbitrary application of the remapping strategy to all data objects in a program
does not necessarily increase spatial locality. Some data structures may not exhibit
the requisite reference behavior to justify remapping. Although it is desirable to
reorder data in memory to match all reference sequences, it is not computationally
tractable [Petrank and Rawitz 2002]. To this extent, we analyze memory access
patterns along program hot spots [Ball and Larus 1996] and select candidates for
data remapping accordingly. The analysis is geared to characterize how well a
traditional data layout is suited for various program memory access patterns or
MAPs.

Consider the example memory access patterns shown in Figure 4, and let us
assume that a cache may accommodate three fields at a time and that a block of
the same size is used to deliver data from memory. In case (a), the reference pattern
is such that the best data layout would assign the fields of object O1 to one block,
those of O2 to another, and similarly for O3. This leads to a total of three cache
misses, occurring on the access to O1.f1, O2.f1 and O3.f1. In case (b), the reference
pattern warrants either an alternate layout or a larger cache. Otherwise, a total of
nine misses will occur, one for each reference. That is, the access to O1.f1 will lead
to the delivery of O1.f2 and O1.f3, which fills our cache. The next access, however,
is to O2.f1, which will lead to a cache miss and the eviction of the currently cached
data (and so one for the other references). In order to avoid redundant memory
accesses, a larger cache is necessary, and in this case, one that is three times the
current capacity. However, as noted earlier, larger caches incur greater investments.
Hence, it is more desirable to modify the data layout, such that data items in the
block to be fetched are replaced with those that are more likely to be used.

Although what is described is a pathological example, it illustrates the need for
a proper characterization of the mismatch between traditional data layouts and
the application memory access patterns. Our proposed analysis characterizes the
mismatch as the neighbor affinity probability or NAP. The measured value may
range from zero to one, where the latter indicates that the data layout is well
suited for the analyzed reference pattern (i.e., high probability of a block containing
successive data accesses). The other extreme indicates that the data layout does
not exhibit any correlation to the memory access pattern (i.e., low probability of
a block containing successive data accesses) and strongly warrants an alternate
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 9

Input: Program P , Cache Block Size B and Trace TR = (k, f)∗ is a memory trace of all accesses
to objects of record type R. The trace consists of a list of tuples (k, f), such that T [i] for 0 < i

represents the ith tuple occurring in T , and it is an access to the f th field of the kth instance of
record R.
Output: NAP for record type R occurring in Program P .

01. for j := B to |T | do

02. for i := B − 1 downto 1 do
03. (kc, fc)← T [j]

04. (kp, fp)← T [j − i]

05. if (kc 6= kp) then
06. if address(kc, fc) and address(kp, fp) are

less than B addressable units apart then increment NAP (R)

07. end if
08. end for

09. end for

10. NAP (R)← NAP (R)
(B−1)(|T |−B+1)

Fig. 5. Algorithm to compute the NAP for records in a program.

arrangement. The algorithm for computing the neighbor affinity probability is
shown in Figure 5. For a fixed cache block size B, it analyzes an object reference
trace (T) and computes the NAP for record types encountered in the program
with an O(|T |) running time. The block size enables a window-based analysis
that searches for any occurrence of an access pattern resembling the one shown in
Figure 4(a). Specifically, field references to different objects of the same record type
are counted when the fields are within close proximity of each other (line 6). Thus
in Figure 4(a)—for a block size of three addressable units—the NAP equals 14/14,
which implies that successive memory references are located at nearby memory
locations. Hence, the traditional data layout is effective and may not benefit from a
reorganization. If, on the other hand, the MAP resembles that of Figure 4(b), where
the NAP equals 4/14, it may prove worthwhile to collocate the fields of different
objects to increase the likelihood of a cache hit. Once the NAP is computed, it is
normalized (line 10) and may be combined with affinity information gathered using
a different memory profile. Following the analysis, a simple processing step marks
all record data types with an affinity lower than some threshold for remapping.
All other record types are left unmarked and are subsequently organized using the
traditional memory layout strategies specified by the programming language.

Our analysis does not distinguish the relative order of fields in an access pattern.
This is in contrast to previous work where the temporal behavior of data fields is
tracked [Chilimbi et al. 1999]. Such extensions may enhance the proposed analysis.
In addition, since the NAP analysis is profile-driven, it is sensitive to the input
workload selected for training the optimization. Furthermore, we note that an ap-
plication may exhibit competing memory access patterns along different program
hot spots. Thus, in this context, the NAP analysis above is geared to discover the
most dominating pattern, and our framework performs the data remapping accord-

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

10 · R. M. Rabbah and K. V. Palem

List layout if the
traditional offset
computation is used

List layout if the
remap offset

computation is used

Distance between
two successive
fields of a Node is
proportional to N

. . .
struct Node {

int f1;
int f2;
int f3;

};

Node List [N];

Example C-style code.
Node is a record with
three fields.

List is an array of Nodes
with rank N.

f1 f2 f3 f1 f2 f3 f1 f2 f3

f1 f1 f1 . . . f2 f2 f2 f3 f3 f3.

Contiguous memory segment reserved for variable List

fields are
collocated

Fig. 6. Layout of fields in a reserved memory segment using the traditional and remapped layout

strategies for a sample source code.

ingly; efforts to accommodate a range of MAPs along different program regions
may prove worthwhile, but warrants careful attention, especially when concerns for
curtailing the application’s power consumption are rated as “first-class citizens.”
In Section 5.4.2, we elaborate on the optimality of our analysis as a guide to data
remapping.

2.2 Remapping of Global Data Objects

Once remapping candidate are identified, the global program variables are filtered to
isolate arrays of records. Each such object is traditionally allocated in a contiguous
memory segment (cluster) with a statically known starting location (base) and
size (rank). The location of a field within a cluster is computed using an offset
computation function (OCF) which determines the offset to the target relative to
the base. For example, consider a record with fields f1, f2, f3, and a cluster of such
records with a rank of one. The offset to field f1 relative to the base is zero—the
base location of the cluster is the same as the location of field f1 for the first record
of the array. The offset to field f2 is equal to the size of field f1. Similarly, the
offset to field f3 is equal to the size of fields f1 and f2. This can be generalized to
clusters of any rank, as shown in Eq. 1.

In order to improve spatial locality within a cluster, our data remapping strategy
manipulates the offset computation function to yield a desired object and field
layout. To this end, we introduce the remap offset computation function shown
in Eq. 2 and illustrate the data layout that results from the traditional and remap
offset expressions in Figure 6. The remapping transformation is desirable for record
types with low NAP, as the respective fields of various objects in the cluster are
now adjacent—that is, the remapped data layout correlates well with the reference
patterns shown in Figure 4(b). In effect, if the NAP for a record type is low, then
it follows that successive data references will likely not access fields of the same
object.

The algorithm for remapping global data arrays is outlined in Figure 7. First,
we attribute arrays of records in a program with either the traditional or remap
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 11

Input: NAP-annotated Program P .
Output: Data remapped P .

01. for each global variable V in P do

02. if V is an array of records R then

03. if R is marked for remapping then
04. Attribute V with GDRemap

05. else
06. Attribute V with GDNomap

07. end if

08. end if
09. end for

10. perform code generation

Fig. 7. Algorithm for remapping global data objects.

offset expressions. Subsequently, during code generation, the associated expression
is evaluated to compute the memory location of a referenced data item. Since the
remapping is completely automated and performed by the compiler, expensive data
relocation at runtime is not necessary. The two offset computation functions used
for the purposes of this article are

GDNomap(Rk.f) = (k − 1)×RecordSize(R) +
f−1∑
i=1

FieldSize(R.i) (1)

GDRemap(Rk.f) = (k − 1)× FieldSize(R.f) + N ×
f−1∑
i=1

FieldSize(R.i) (2)

where Rk.f represents the fth field of the kth instance of a record R. We define
FieldSize(R.f) as the number of consecutive addressable units required to store
field f , and RecordSize(R) as the sum of FieldSize(R.f) for all fields f in a
record R. The essential difference between the two OCF is the last term. The
latter staggers any two fields of a single object by a distance proportional to the
size (N) of the cluster—we refer to N as the stagger constant and the term as
a whole is called the stagger distance. However, since the remapping strategy is
strictly applied to global data objects, the rank is readily available to the compiler,
and hence the stagger distance is statically computed. Therefore, the traditional
and remapping strategies contribute the same runtime overhead.

2.3 Remapping of Dynamic Data Objects

The need for cache-conscious data placement is ever more important as applications
increasingly rely on dynamically allocated objects [Chilimbi et al. 1999; Calder et al.
1998]. It is common for traditional allocation strategies to ignore the underlying
memory hierarchy in favor of low runtime overhead. Unfortunately, such a scenario
often results in poor interactions between data layout and program access patterns.
Our methodology is to leverage the NAP analysis to identify suitable data types
that would benefit from a controlled placement of newly allocated objects. The

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

12 · R. M. Rabbah and K. V. Palem

Object layout after one, two and three
traditional allocations of Node

Object layout after one, two and three
remapped (wrapper) allocations of Node

f1 f2 f3

f1 f2 f3 f1 f2 f3

f1 f2 f3 f1 f2 f3 f1 f2 f3

f1 f1 f1 f2 f2 f2 f3 f3 f3

f1 f1 f2 f2 f3 f3

f1 f2 f3

Fig. 8. Layout of fields in a reserved memory segment for the traditional and remapped dynamic
layout strategies.

goal is to produce a field collocation layout as illustrated in Figure 8 and introduced
previously for arrays of records. To this end, we use automatically generated light-
weight wrappers around traditional memory allocation requests in the program—
much like customized memory management mechanisms used in many applications
where a large memory pool is allocated, and smaller portions within the pool are
reassigned with successive allocation requests. However, unlike traditional custom
memory management modules which tend to be complex [Chilimbi et al. 1999;
Calder et al. 1998; Truong et al. 1998], the generated wrappers are simple and
efficient. Furthermore, the innovative combination of a custom memory allocator
and new OCF allows for fine-grain control of field placement as opposed to object
placement alone.

The algorithm for remapping dynamic data objects is shown in Figure 9. The first
steps of the algorithm intercepts memory allocation requests and substitute custom
allocation requests, viz, a wrapper (lines 1–8). An example wrapper function is
illustrated in Figure 10. The automatic generation of such wrappers is trivial
and not discussed here. Note that the algorithm targets repeated single object
allocations, rather than dynamic allocations of arrays of records. The remapping
strategy used for global arrays may be applied to dynamic ones. In this case,
however, the size of a dynamically allocated array may not be available to the
compiler. Furthermore, an application may allocate several such arrays, each of a
different size. Therefore, the optimization will incur some runtime overhead, as the
stagger distance is necessarily computed online. A special scenario arises when the
compiler is able to determine that all dynamic arrays of a given record type are of
the same size, or alternatively, that a suitable maximum size can be used. In such a
case, the stagger distance is statically fixed and the wrapper adjusted accordingly.

Once all wrapper allocations are in place, the code generator calculates the field
offset for a given pointer access. If it can be determined that a pointer aliases a dy-
namically allocated record, the compiler evaluates the remapping offset expression
shown in Eq. 4. Similarly, the code generator uses the traditional offset calculation
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 13

Input: NAP-annotated Program P .
Output: Data remapped P .

01. for each statement S in P do

02. if S is of the form x← Allocate(RecordSize(R)) then

03. if R is marked for remapping then
04. replace S with x←Wrapper(R)

05. generate Wrapper(R) if necessary
06. end if

07. end if

08. end for
09. for each recordtype R in P do

10. if R is marked for remapping then

11. reorder the fields of R such that the most frequently
used field has field index equal to 1

12. end if

13. end for
14. perform code generation

Fig. 9. Algorithm for remapping dynamic data objects.

Input: Record Type R and Stagger Constant N .

Output: Valid heap (base) address where R is allocated.

/* Cluster, Base and Limit are persistent variables */
Initialize Cluster, Base and Limit to 0

if Base = Limit then
Cluster ← reserve heap segment of size N ×RecordSize(R)
Base← base address of Cluster

Limit← Base + N ×MaxFieldSize(R)
end if
Address← Base
Base← Base + MaxFieldSize(R)

return Address

Fig. 10. An example wrapper function.

(Eq. 3) for pointer variables that alias static records. When the compiler is unable
to disambiguate a data alias, we evaluate both expressions and rely on a runtime
comparison of the pointer value against the stack pointer register to determine the
proper offset (Figure 11). This is possible because the remapping is restricted to
heap objects and does not alter the layout of stack objects. We used a variation
of Steensgaard points-to analysis [Steensgaard 1996] to statically disambiguate an
application’s pointer references. The simple runtime disambiguation that supple-
ments the compiler analysis was found to be highly effective, contributing less than
a 5% increase to the total dynamic instruction count of an application; a more
detailed discussion of pointer-related issues can be found in Section 6.1. The offset

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

14 · R. M. Rabbah and K. V. Palem

void Foo () {
struct Node {

int f1;
int f2;
int f3;

};
Node List [100];
Node ∗P;
…
if (select) P = wrapper (Node);
else P = address of List [k];
Print (P→ f2);

}

R1 = [P] + DDNomap (P→ f2);

R2 = [P] + DDRemap (P→ f2);

P0 = [P] > Stack Pointer Register

R1 = R2 if P0

R3 = Load R1

(a) (b)

(note [P] represents the contents of P)

Fig. 11. In (a) the value of select may not be statically known. Thus, P may alias a remapped

record or a static record. The code generated for the expression P → f2 is shown in (b) and the
dynamic disambiguation code is highlighted.

computation expressions used for dynamically allocated objects are

DDNomap(P → f) =
f−1∑
i=1

FieldSize(∗P.i) (3)

DDRemap(P → f) =
f−1∑
i=1

StaggerConstant×MaxFieldSize(∗P) (4)

where P is a pointer to a record of type R = ∗P and MaxFieldSize is the maximum
FieldSize of all fields f in a record R. The stagger constant is a compiler-defined
value that is equivalent to the rank of an array used earlier to remap global data
objects. The maximum field size is used in the remapping OCF to ensure that fields
from different record instances do not overlap. However, when a record consists of
fields with widely varying sizes, it is necessary to refine the remapping approach,
as eluded to in Section 6.4. Note that a runtime disambiguation is not necessary
for the first field of a record (i.e., when f = 1), since DDNomap and DDRemap
evaluate to zero. Hence, the remapping algorithm modifies the record layout such
that the most frequently used field has an index of one (lines 9–13 in Figure 9).

3. EXPERIMENTAL FRAMEWORK

Benchmarks from the DIS, Olden and SPEC2000 suites were selected for detailed
analysis. The Olden benchmarks provide a common frame of reference with pre-
vious work on data reorganization [Kistler and Franz 2000; Chilimbi et al. 1999;
Truong et al. 1998]. The others provide insight into larger programs. The bench-
marks were executed using large reference input sets, whereas profile information
was gathered using much smaller training workloads.4

A short description of each benchmark is as follows. 164.gzip is an integer SPEC
benchmark. It utilizes a dynamically allocated array of records during decompres-

4Some simulation-based results are reported for less time-intensive workloads. However, the results

reported for commercial processors are all based on reference input sets.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 15

Table III. Benchmarks, Workloads and Main Memory Footprints
Name Workload Memory Footprint

164.gzip test 15Mb

179.art test small

Field 11654 Tokens small

Health 8 Levels, 100 Units 100 41Mb

Perimeter 11Kx11K 146Mb

TSP 1M Cities 40Mb

TreeAdd 22 Levels, 20 Iteration 64Mb

sion. 179.art is a floating point benchmark from the SPEC suite. It dynamically
allocates an array of records at startup, which is heavily used throughout execu-
tion. DM and Field are benchmarks from the DIS suite. The former is a database
management system, with many different dynamically allocated objects that are
repeatedly updated, deleted, and reallocated. The latter uses an array of records
that is repeatedly searched and modified at random. The remaining benchmarks are
provided by the Olden suite. They are memory intensive and allocate substantial
amounts of heap objects. The primary data structure used in Health is a linked list
to which elements are added and removed. Perimeter and TreeAdd, respectively,
allocate quad and binary trees at program start-up and do not subsequently mod-
ify them. TSP creates a quad-tree at program startup that is repeatedly updated.
Additional details for each benchmark, such as the input workload and memory
footprint, are tabulated where appropriate (Tables III and VIII).

4. EXPERIMENTAL RESULTS

We present experimental results in two parts. First, we use data remapping as
a design exploration tool. To this end, our experiments were conducted using a
robust research infrastructure. Second, we highlight the use of data remapping
as a traditional compiler optimization, wherein the applications are optimized to
achieve the best possible performance on various commercial processors.

4.1 Design-Space Exploration

The remapping algorithms were implemented within Trimaran, a publicly available
infrastructure for compiler research. It provides a common and uniform platform
for verification and validation of results. Trimaran includes an optimizing compiler,
a parametric processor simulator, and a smart memory and cache hierarchy sim-
ulator. The algorithms were implemented in the compiler front-end, where type
information is available. The benchmarks (Table III) were compiled using clas-
sic and high-level optimizations which include loop unrolling, copy propagation,
common subexpression elimination, dead code elimination, and aggressive register
allocation. In addition, both superblock [Hwu et al. 1993] and hyperblock [Mahlke
et al. 1992] optimizations—designed to increase instruction-level parallelism—were
applied and it was determined that the former resulted in the best baseline perfor-
mance (i.e., prior to remapping). For the results that follow, all benchmarks were
completely simulated. Various memory hierarchy configurations, with respect to
primary and secondary cache organization, were used and are reported throughout
where appropriate. The results reported in this section assume a bandwidth of

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

16 · R. M. Rabbah and K. V. Palem

Table IV. Summary of Execution Statistics Before Remapping
(L1=32 Kb, L1 block size=16 bytes, L2=1 Mb, L2 block size=32 bytes)

Execution L1 Read L1 Read Total L2

Benchmark Cycles Hits Misses Requests

164.gzip 1,106,079,932 4,077,168 328,996 554,515

179.art 704,713,706 22,119,661 38,059,226 57,595,798

Field 1,047,393,960 653,993,052 4,517,423 4,954,030

Health 2,616,712,073 104,512,992 74,405,616 115,343,232

Perimeter 813,958,394 129,045,017 10,798,610 39,561,696

TreeAdd 877,485,849 133,145,917 20,994,686 24,221,730

TSP 1,077,624,556 274,867,547 34,111,685 51,383,672

Table V. Percent Improvements After Remapping Compared to Table IV
(L1=32 Kb, L1 block size=16 bytes, L2=1 Mb, L2 block size=32 bytes)

Execution L1 Read L1 Read Total L2

Benchmark Cycles Hits Misses Requests

164.gzip 2.00 0.28 -0.01 -0.06

179.art 69.23 38.11 75.89 71.55

Field -0.02 0.00 0.00 0.00

Health 21.90 -16.47 23.13 31.24

Perimeter 22.82 -0.65 7.82 26.87

TreeAdd 10.50 8.15 24.88 26.61

TSP 14.07 -37.08 43.72 42.23

Average 20.07 – – 28.36

8 bytes per cycle throughout the hierarchy, a memory access latency of 30 cycles,
and 4-way associative caches. In addition, the memory is configured to provide
streaming support and uses read/write-allocate semantics.

In Table IV, we summarize the processor and memory hierarchy performance
for a baseline architecture, before remapping. Specifically, we tabulate the total
execution cycles of the application and the number of primary cache (L1) hits and
misses. In addition, we provide the number of requests that reached the secondary
cache (L2). In Table V, we illustrate the impact of data remapping in the traditional
sense of a compiler optimization relative to a fixed target processor. The average
performance improvement for all the benchmarks after data remapping is 20%. A
noteworthy statistic is the reduction in traffic between the first and second levels of
the memory hierarchy – 28.36% on average, an indication of increased data locality;
in Section 5.4.2, we investigate the notion of locality in greater detail. While data
remapping affords significant reductions in execution time, the objective here is to
explore the possibility of trading-off some of the benefits in order to reduce the
memory needs of the application. Thus, in Tables VI and VII, we illustrate some
examples of the memory design space that we explored. Specifically, the former
tabulates the results for the same set of experiments where the only variable is
the size of the secondary cache—we reduced the L2 cache size from 1024-Kb to
512-Kb. Thus, while the secondary cache size is halved, the performance gains are
reduced roughly 6% to 18.97%. In Table VII we show the result of applying data
remapping to the same set of benchmarks, however, in this case, both cache sizes
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 17

Table VI. Percent improvements after remapping compared to Table IV.
(L1=32 Kb, L1 block size=16 bytes, L2=512 Kb, L2 block size=32 bytes)

Execution L1 Read L1 Read Total L2

Benchmark Cycles Hits Misses Requests

164.gzip 2.00 0.28 -0.01 -0.06

179.art 64.38 38.11 75.89 72.04

Field -0.02 -0.01 0.00 0.00

Health 21.88 -16.47 23.13 31.24

Perimeter 22.81 -0.65 7.82 26.87

TreeAdd 10.49 8.15 24.88 26.61

TSP 11.25 -37.08 43.72 42.23

Average 18.97 – – 28.43

Table VII. Percent improvements after remapping compared to Table IV.
(L1=16 Kb, L1 block size=16 bytes, L2=512 Kb, L2 block size=32 bytes)

Execution L1 Read L1 Read Total L2
Benchmark Cycles Hits Misses Requests

164.gzip -0.66 1.38 -13.68 -11.64

179.art 64.36 38.11 75.89 72.04

Field 0.00 0.00 0.00 0.00

Health 21.77 -16.18 22.73 30.28

Perimeter 22.79 -0.64 7.70 26.75

TreeAdd 10.46 8.19 24.67 26.26

TSP 9.51 -36.29 37.40 30.43

Average 18.32 – – 24.87

are halved. The results demonstrate a 9% trade-off in savings due to remapping
in exchange for significantly smaller caches. Concomitantly, when the memory
hierarchy components are reduced in size, the corresponding power and energy
requirements are also reduced [Palem et al. 2002].

In Section 5, we investigate the impact of the block size and bandwidth on the
memory hierarchy and processor performance. Briefly however, when we increased
the width of a cache block from 16 bytes to 32 bytes—for an 8-issue EPIC pro-
cessor with a 32-Kb primary cache—we measured an average reduction of 38% in
cache misses before remapping. Similarly, when we further increased the width of
the block to 64 bytes, we observed a 73% reduction in cache misses. Intuitively, a
larger block is more likely to contain data that is actually used compared to a smaller
block. However when we applied data remapping and simulated the benchmarks
using the narrower block (i.e., 16 bytes per block), we measured a 36% reduction in
cache misses. This is comparable to the result previously achieved when the block
size was 32 bytes (and in the absence of remapping). Thus, the added system com-
plexity is not easily justifiable. Similarly, we applied our optimization, simulated
the benchmarks using a 32-bytes per block cache configuration, and measured a
miss ratio reduction of 85% on average, considerably better than simply doubling
the size of a cache block to 64 bytes. In this context, data remapping again affords
a memory subsystem with lesser complexity. Furthermore, we found that similar
trade=offs are possible with respect to processor ILP. Namely, a 4-issue processor

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

18 · R. M. Rabbah and K. V. Palem

Table VIII. Benchmarks, Workloads and Main Memory Footprints
Name Workload Memory Footprint

179.art ref1 and ref2 small

DM set14 and set24 24Mb

Field 11654 and 54860 Tokens small

Health Levels 3-6, Units 1000-10000 123Mb

Perimeter 11Kx11K and 12Kx12K 147Mb

TreeAdd 20 and 25 Levels 512Mb

TSP 3M and 8M Cities 320Mb

in the presence of data remapping may outperform an 8-issue processor without
the benefits of remapping. In the sequel, we demonstrate why such trade-offs are
possible.

4.2 Optimization for a Fixed Architecture

To demonstrate the data remapping impact in a real-world setting, the benchmarks
were compiled using a remapping-augmented industry-strength compiler and exe-
cuted on commercial processors. This serves to demonstrate the applicability of
data remapping in a broader context and presents a high-level overview of perfor-
mance. It does not however allow a fine-grain analysis of various system compo-
nents.

The remapping algorithms were implemented within the GNU Compiler Collec-
tion (GCC, version 2.95.2). Profile information was gathered using Trimaran and
shared with GCC, since the latter lacks the necessary tools for feedback-driven op-
timizations. The algorithms were implemented in the compiler front-end, where
type information is available and source-level transformations are possible. The
benchmarks in this context, as well as the input workloads and memory footprints,
are listed in Table VIII.

The benchmarks are compiled using the standard and the highest available levels
of optimization (−O and −O3). Similarly, the benchmarks were compiled with our
remapping-augmented compiler. Standard GCC optimizations are geared to reduce
code size and execution time. Aggressive optimizations add function inlining and
other techniques that do not involve a time-speed trade-offs. Two Pentium and
a Sun UltraSparc II processors were used to measure user execution times. The
processor configurations were summarized earlier in Table II.

Table IX summarizes execution time speedups for the Pentium III system for ag-
gressive (O3) and data remapping (R) optimizations compared to the baseline (O).
For example, in the second column we report the percent execution-time speedup
when aggressive optimizations (O3) are enabled, relative to the baseline perfor-
mance (O optimizations in this case)—hence, a positive percentage indicates an
improvement and a negative percentage is indicative of performance degradation.
Similarly, in the third column, we present the percent speedup when baseline op-
timizations are used with data remapping (O+R), compared to baseline optimiza-
tions alone. In some cases (DM, Health, Perimeter, TreeAdd) data remapping
alone outperformed aggressive compiler optimizations. Results for the Pentium II
and UtlraSparc II are reported in Tables X and XI, respectively. Speedups are
generally similar, with some exceptions. Results for the Pentium II system in-
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 19

Table IX. Results for Pentium III Processor
% Execution Speedup

Benchmark O3/O O+R/O O3+R/O O3+R/O3

179.art 54.97 36.84 74.72 43.87

DM -17.95 15.12 -3.26 12.45

Field 78.01 37.67 79.25 5.63

Health 8.96 36.35 49.13 44.12

Perimeter 19.10 28.65 46.15 33.44

TreeAdd 12.82 28.02 38.33 29.26

TSP 29.28 10.20 37.80 12.04

Average 26.46 27.55 46.02 25.83

Table X. Results for Pentium II Processor
% Execution Speedup

Benchmark O3/O O+R/O O3+R/O O3+R/O3

179.art -9.33 30.94 74.32 76.51

DM -25.39 14.44 -11.84 10.81

Field 58.05 32.83 45.52 -29.86

Health 12.03 24.07 39.22 30.91

Perimeter 21.96 31.91 53.87 40.89

TreeAdd 22.36 10.09 31.05 11.19

TSP 2.78 22.69 26.81 24.71

Average 11.78 23.85 36.99 23.59

Table XI. Results for UltraSparc II Processor
% Execution Speedup

Benchmark O3/O O+R/O O3+R/O O3+R/O3

179.art 62.03 4.05 61.57 -1.19

DM 24.13 -4.67 18.75 -7.09

Field 86.23 22.08 82.79 -24.98

Health 16.42 12.80 32.38 19.10

Perimeter 24.14 25.00 51.72 36.36

TreeAdd 28.89 22.91 50.51 30.39

TSP 45.04 1.43 48.89 7.00

Average 40.98 11.94 49.52 8.51

dicate performance degradation occurs when aggressive optimizations are applied
to 179.art and DM. In contrast, applying data remapping alone reduces execu-
tion time by 31% and 14% respectively. Surprisingly, when 179.art was compiled
with aggressive optimizations in conjunction with data remapping, execution time
was reduced by a factor of four. In contrast, the Field benchmark benefits from
data remapping alone. However, when other optimizations are applied, execution
time is lengthened. We made no attempt to determine which compiler optimiza-
tions benefited from or were inhibited by data remapping; our ongoing research
will consider the interactions among different optimizations. The speedups for the
UltraSparc II were generally lower than either Pentium architectures, despite the
largest secondary cache size (see Section 6.3 for a possible explanation).

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

20 · R. M. Rabbah and K. V. Palem

5. MEASURES FOR QUANTIFYING MEMORY AND PROCESSOR PERFORMANCE

The proposed data-remapping schema is an example of a highly effective locality-
enhancing algorithm. In general, locality, temporal or spatial, is a well-recognized
phenomenon, though it lacks concrete characterization. To this end, we introduce
four novel measures that completely encapsulate locality and its performance im-
plications. These measures characterize the intrinsic behavior of a program and
quantify the impact of various microarchitecture constraints on the realized or ob-
served program behavior. As a result, the measures provide a deeper analysis for
the reasons why data remapping is effective.

Informally, the measures are turnover factor, packing factor, demand bandwidth,
and balance factor. The turnover factor is a measure of rate of change of the appli-
cation. The packing factor measures the application workingset and the efficacy of a
data layout relative to a memory hierarchy configuration. The demand bandwidth
measures the rate at which the program accesses new data. The balance factor
relates the demand bandwidth to processor throughput. As a byproduct of the
measures, we show why remapping allows a program to execute and achieve a fixed
performance point with a lower hardware investment. Thus, simpler machines can
achieve the same level of performance as a more complex and expensive machine
in the absence of remapping.

The proposed methodology is based on the premise that the bandwidth—the rate
of data transfer across a data bus between two objects in the memory hierarchy—is
the main bottleneck to faster processing rates. Namely, when the available band-
width is saturated, any further increase in the clock frequency will not yield a
performance improvement [Cragon 1996]. Hence, the balance between both the
availability of and demand for memory bandwidth must be carefully managed to
deliver the promise of Moore’s law to the end-user.

While the measures and the methodology detailed below are applicable to any
memory hierarchy, we restrict our focus to the ubiquitous and elaborate cache
memories. It will be readily apparent how the proposed measures may be applied
in the context of less sophisticated memory structures such as scratchpad memories,
on-chip local memories, and similar custom data buffers.

5.1 Factors that Impact Memory and Processor Performance

A well-known performance bottleneck in the current and forthcoming computer
architectures is the increasing gap between processor and memory speeds [Burger
et al. 1996]. A popular strategy advocated to address the bottleneck entails the
prediction of a data reference and its delivery to the cache (from memory) in ad-
vance of the actual request. This process, known as prefetching, serves to mask
the long latency associated with a memory access (cache miss). In Figure 12, we
illustrate a hypothetical prefetching process. Specifically, a central processing unit
(CPU) executes a specific program, P. When a demand for a noncached data item
(address) is issued, the processor stalls until the item is delivered to the cache and
subsequently forwarded to a register. The address is snooped by the prefetching
engine and analyzed in the context of a local history which the engine maintains to
guide its decision. The prefetcher may then initiate the retrieval of additional data
items from memory and their transfer across the pipeline (bus) to the cache. An
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 21

Local History

Prefetching
Engine

qu
er

y

Analysis
And

Decision

Main Memory

Large Capacity
Long Access Latency

Main Memory

Large Capacity
Long Access Latency

Cache
Level 1
Cache
Level 1

Processor (CPU)Processor (CPU)

snoop
address

demand
address

forward data
to register

demand
data from

memory

forward data to
cache across
pipeline (bus)

Fig. 12. Prefetching overview.

Processor demands

Prefetching Engine snoops
Cache demands
Prefetching Engine demands
Memory forwards

k

k

k

k + 1 k + 2

k + 1 k + 2k

Cache Hit ?

No

Cache forwards k

Yes

… k + c

Fig. 13. Example of a block-prefetch engine.

accurate prediction will increase processor throughput by increasing the cache hit
rates at lower levels of the hierarchy, thus obviating the need to access the slower
memory components. It is worthwhile to note that the success of a prefetching
engine hinges on two important factors. The first reflects the predictability of the
program, which is the degree to which the anticipated addresses match those de-
manded by the processor. The second factor is the rate of data transfer (in bytes
per cycle) from one object in the hierarchy to another.

5.2 Predicting Program Behavior in Hardware

A form of prefetching available in all architectures (including embedded computing
systems) is the block-fetch [Cragon 1996]. In this scheme, illustrated in Figure 13,
given an address k, the prefetching engine will initiate the delivery of data at
locations k+1, k+2, . . . , k + c, for c < B, and B is a design-specific block size.
Without a loss of generality, we assume the units of the block size to be in terms

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

22 · R. M. Rabbah and K. V. Palem

1 2 3 4 5 6 7 8 …

Fig. 14. MAP with spatial locality.

1 7 14 21 28 35 42 49 …

Fig. 15. MAP with no spatial locality.

of a generic addressable unit (au) such as a byte. We may think of the physical
memory space as if it were partitioned into nonoverlapping sets (blocks), each of
size B. Every address k in the physical memory space is mapped to a specific
and unique block by virtue of the hardware configuration. In practice, the block-
prefetcher does not cross block-boundaries when it initiates data demands (i.e., up
to c < B addresses are fetched, where k and k + c are members of the same block).
The advantages of a block-fetch strategy are twofold. First, it serves to amortize
the cost of expensive memory accesses by leveraging the capabilities of modern
memories to quickly and efficiently retrieve adjacent data items [Cragon 1996].
Second, and more importantly, it masks the latency of a cache miss. The strategy,
however, relies on the premise that the program will exhibit address adjacency or
spatial locality.

In Figure 14, we illustrate an example memory access pattern with an ordered
reference stream of adjacent data locations. Consequently, a block-fetch strat-
egy proves highly beneficial as the prefetching engine will accurately predict the
program MAP. On the other hand, pointer-centric applications may lack address
adjacency as an artifact of poor placement of data during allocation. Figure 15
illustrates an example program reference stream for which a block-fetch strategy is
ineffective (when the block size consists of five or fewer addressable units). Note
that although the addresses in the stream are separated by a fixed stride, we con-
sider such a MAP irregular (in the context of our analysis) for two specific reasons.
First, in order to discover the pattern (stride), the prefetching engine requires ad-
ditional and more complex logic [Fu and Patel 1992]. However in the context of
embedded system design, the additional investments in hardware complexity may
be prohibitive. Thus, while a stride-discovering prefetcher may prove beneficial,
we show that data remapping enables similar effects using the simpler block-fetch
mechanism. Second, we wish to point out the consequences of inaccurate mispre-
dictions by the prefetcher. Namely, incorrect prefetching artificially increases the
contention and demand for bandwidth. Furthermore, items that are unnecessar-
ily fetched and cached needlessly occupy valuable storage. Thus, assuming that
the reference pattern in Figure 15 is irregular relative to the block-fetch scheme is
justifiable.

5.3 Impact of Data Remapping on Predicting Program Behavior

The proposed optimization is a remapping of data elements into new blocks, such
that data items that are likely to be used contemporaneously belong to the same
block. Consequently, the mismatch between the predicted and the actual refer-
ence stream is reduced. A possible remapping of the data shown in Figure 15 is
illustrated in Figure 16. Observe that the remapped reference stream is similar to
that shown in Figure 14 where the predicted set of data references (using a block-
prefetcher) exactly match the actual set. In effect, by increasing the spatial locality
of a reference stream, data remapping improves the probability of a correct predic-
tion. A direct and desired consequence is a lowering of the amount of data that is
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 23

1 7 14 21 28 35 42 49 …

1 2 3 4 5 6 7 14… 21… 28… …

original Program reference stream

original data layout in memory

1 2 3 4 5 6 7 14… 21… 28… …
new data layout in memory

data remapping

1
remapped Program reference stream

2 3 4 5 6 7 8 …

Fig. 16. Example of how remapping improves the accuracy of a block-prefetch engine.

needlessly fetched and cached. Recall in Figure 3 we showed that the amount of
data that is unnecessarily fetched is 30% less when data remapping is applied. It
trivially follows that with a decrease in the amount of data fetched, the bandwidth
demands of the application will be lower.

5.4 Performance Metrics

We now formally introduce our novel measures, which (i) completely characterize
the intrinsic or virtual behavior of a program; and (ii) relate the virtual charac-
teristics to the realized or observed behavior when a microarchitectural model is
imposed during execution.

5.4.1 Intrinsic Program Behavior. Consider a data reference trace T for a spe-
cific application as a string of addresses. We partition T into smaller nonoverlapping
substrings, s1, s2, . . . , sn. The number of unique characters in each substring si

equals V, the virtual workingset size.5 In addition, the substrings do not overlap,
and therefore T = s1|s2| . . . |sn. We now define the cost of a transition between
two substrings si and si−1 as the turnover factor,

Γ(si>0) = V − |ŝi ∩ ŝi−1|,

where ŝi is the set formed from si, and ŝ0 is the empty set; we refer to ŝ as the
virtual workingset. The turnover factor quantifies the temporal locality inherent in
an application. That is, the average turnover factor of an application with perfect
temporal locality—complete data reuse—would equal zero. On the other hand, a
turnover factor equal to V is indicative of an application that does not exhibit any
temporal locality. Furthermore, given a workingset’s turnover factor, we can define
its demand bandwidth,

D(si>0) = Γ(si)/|si|,

5Here again we assume the units of a workingset size are in terms of a generic addressable unit

such as a byte.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

24 · R. M. Rabbah and K. V. Palem 5

Rodric M. Rabbah 2 December 2001
Georgia Institute of Technology http://www.crest.gatech.edu

Back to Basics

Virtual
Behavior

Cache
Level 1

Cache
Level 1

Cache
Level 2
Cache
Level 2

ProcessorProcessor

Main
Memory
Main

Memory

ICacheICache

Realized
BehaviorI P

Input
Program

program drives architecture

Program
Space

Architecture
Space

Fig. 17. The program drives the architecture.

Address that is requested
Memory Block

x x x x x x x x x x x x

Address that is not requestedx

(b)

(a)

Fig. 18. Examples of mappings addresses to memory blocks.

as the rate at which new data elements are referenced by the program. Here, we use
the length of each substring as a measure of time, such that a virtual workingset
spanning a long period of time requires less bandwidth than a workingset that is
changing very rapidly (i.e., |si| = V).

Whereas the turnover factor and demand bandwidth capture intrinsic program
behavior, it is necessary to interpret their implication in context of an architecture
model as shown in Figure 17. That is, a fixed program-input workload pair may
manifest different realized behaviors when executed on various computing platforms.
Of particular importance and focus is the notion of spatial locality and its impact
on bandwidth demand and processor throughput.

5.4.2 Impact of Microarchitecture on Program Behavior. Recall from Section 5.2
that for every address k in the memory space, there exists a unique block X such
that k ∈ X . Therefore, given a virtual workingset ŝi, let Ri equal the total number
of blocks necessary to map every address k in ŝi to its corresponding X . As an
example, consider a virtual workingset consisting of six (unique) addresses and a
block of three addressable units. In Figure 18(a), we illustrate one possible map-
ping such that R equals two. However, the architecture may impose an alternate
mapping such that each address is located in a different block (Figure 18(b)) and
as a result, R equals six. Therefore, in the context of a concrete machine model,
the size of a physical workingset may exceed that of the virtual workingset. This
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 25

implies that some data is needlessly, but necessarily, fetched and cached. There
are two important consequences that follow as a result. First, to accommodate the
unnecessary data items that are fetched, a cache with a greater capacity may be
necessary. Second, it trivially follows that the demand bandwidth will proportion-
ally increase, as demonstrated below. In order to quantify the extent to which these
two consequences impact the memory design, we first define the packing factor:

Φ(si) = Ri × B/V

as the ratio of the physical workingset size (R×B) to that of the virtual workingset.
When the ratio is greater than one, the bandwidth demand will proportionally
increase, and hence

D(si>0) = Γ(si)× Φ(si)/|si|.

Revisiting the example in Figure 18(b), for a virtual workingset size V = 6 au
and block size B = 3 au, the packing factor is equal to three. Therefore, the rate
of delivery of every block fetch must equal three units per cycle, lest the proces-
sor incur additional stall cycles as it awaits the delivery of data (i.e., the next
processor-initiated memory fetch cannot proceed until a previous bus transaction
has completed). By contrast, the mapping of addresses to memory blocks in Fig-
ure 18(a) leads to a packing factor of one. As a result, the rate of data delivery
across the memory hierarchy need not exceed a rate of one unit per cycle.

In Figure 19, we plot the physical workingset size (Ri ∗ B) as a function of
time for a representative benchmark before and after remapping for V = 32 au
and B = 32 au. Observe that in the absence of data remapping, the application
suffers from a severe lack of spatial locality, evident by the numerous broad peaks
throughout the application’s lifetime. By contrast, when locality enhancement is
applied via data remapping, the physical workingset sizes are significantly and
consistently smaller. As a consequence, it is possible to achieve better performance
using data remapping in conjunction with a smaller cache , as we noted earlier
in Section 4. The lower graph of Figure 19 reinterprets a figure shown earlier in
Section 1.3. Specifically, we plot the packing factor for the same application before
and after remapping as a function of time; also shown is the enhancement ratio
due to remapping. Note the prominent peaks that occur at several time periods
for the baseline reference trace (before remapping). They are an indication of how
poorly the data layout correlates with the application MAPs. In contrast, the
reorganized layout is dramatically better, with little jitter (i.e., relatively uniform
over time), thus reducing unpredictable memory hierarchy behavior and delivering
better overall performance.

The utility of the packing factor as a guide to memory system design is self-
evident. Specifically, if a locality-enhancing algorithm (LEA) fails to lower the
packing factor to an acceptable value, it will prove worthwhile to design a memory
subsystem that does not fetch data in blocks (which in turn lowers the complexity of
a design). Alternatively, the measure may be used to evaluate the merits of various
LEAs and select the optimization that yields the best overall results in terms of
system complexity and performance.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

26 · R. M. Rabbah and K. V. Palem

0

20

40

60

80

100

120

140

160

Time Sequenced Working-Sets

A
d

d
iti

o
n

al
 B

lo
ck

s
R

eq
u

ir
ed

 (H
un

dr
ed

s)

Baseline Data-Remapping

0

5

10

15

20

25

30

35

Time

Baseline Packing Factor

Remapping Packing Factor

Baseline / Remapping
Packing Factor Ratio

Fig. 19. Demonstrating the relationship between the physical workingset size (top) and the packing
factor (lower graph) as a function of time.

5.4.3 Impact of Bandwidth on Processor Throughput. Revisiting our initial claim
that the processing rate is limited by the amount of available bandwidth, we define
the balance factor as Ψ = D̂/W, where D̂ is the average demand bandwidth for the
entire memory reference trace and W is the available system bandwidth. Hence,
when the demand bandwidth of the application exceeds the available bandwidth,
the processor stall penalty will lengthen by a factor of Ψ.

In Table XII we illustrate how the block size B and hardware bandwidth W im-
pact overall performance before and after remapping. The first column lists the
block size and system bandwidth (in bytes and bytes per cycle, respectively). For
each row, we report the unoptimized and optimized balance factors in the second
and third columns, respectively. Similarly, columns four and five report the un-
optimized and optimized execution times in cycles. Each of the values is properly
normalized such that the balance factor (and execution cycles) of the unoptimized
case with the minimum bandwidth for a chosen block size is one. For example,
the results reported in the first row correspond to a block of size 16 bytes and an
available bandwidth of 8 bytes per cycle. The balance factor or stall penalty before
To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 27

Table XII. Memory and Processor Performance for Various Block and Bandwidth Configurations
S tall Penalty (Ψ) E xecution Cycles

B / W Before remapping After remapping Before remapping After remapping

16 / 8 1 .48 1 .78

16 / 16 .98 .48 .98 .78

32 / 8 1 .34 1 .80

32 / 32 .96 .34 .98 .78

64 / 8 1 .35 1 .89

64 / 64 .90 .32 .95 .85

Temporal
Locality

Spatial
Locality

Turnover
Factor

Packing
Factor

Demand Bandwidth Available Bandwidth

Balance Factor

Performance

Ability of Hardware to Predict
Program Behavior

Fig. 20. Summary of metrics for design space exploration of memory systems.

optimization is one. After applying data remapping and for the same hardware
configuration, the stall penalty (Ψ) is halved (i.e., 0.48 of the unoptimized penalty
for the same configuration). Concomitantly, the execution time is reduced 22%
(i.e., 0.78 of the unoptimized execution time). In the second row, we consider a
scenario where the bandwidth is increased while the block size is held constant
(i.e., B = 16 bytes and W = 16 bytes per cycle). In this case, the stall penalty of
the application before remapping is only marginally lower (2%) compared to that
where the bandwidth was less. From an embedded system perspective, the addi-
tional hardware complexity invested to increase the system bandwidth would not
be justifiable. Specifically, data remapping yields a significantly better reduction in
stall penalties with lesser hardware investments. The tables demonstrate that this
trend is consistent for several block and bandwidth configurations.

5.5 Summary and Impact

In Figure 20 we summarize our measures, which we believe can serve as the quan-
titative foundations of a design space exploration system in which remapping and
other novel compiler techniques can play a crucial role for optimizing the costs
associated with the cache subsystem.

While we have demonstrated how data remapping can be used to navigate the
memory design space and reduce memory needs, we believe the methodology is ap-
plicable to a wide range of locality-enhancing and latency-masking techniques. For

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

28 · R. M. Rabbah and K. V. Palem

example, loop-tiling, loop-skewing, and numerous other control-flow transforma-
tions [Ding and Kennedy 2000; 1999; Carter et al. 1998; McKinley et al. 1996; Lam
et al. 1991] have been shown to significantly improve the temporal locality (and,
inturn, performance) of applications with predictable access patterns. Whereas
such optimizations are rather complex and often fare poorly when applied to im-
portant dynamic and pointer-intensive real-world applications, our measures will
remain important design tools that can quantify the improvements achieved along
the range of identified dimensions.

The proposed measures will also quantify the utility of the latter class of latency-
masking techniques such as data prefetching. In this context, we observe that a
prefetch is a degenerate form of a regular memory access, and will therefore consume
bandwidth. Hence, an effective prefetching strategy will not increase the applica-
tion’s demand bandwidth requirements. By contrast, a prefetching strategy that
tends to mispredict program behavior will inflate bandwidth requirements. Note
that it is trivial to characterize cache management policies (e.g., data placement
and eviction strategies) as prefetching mechanisms such that the impact of the ex-
ecuted decisions is accounted for as part of the demand bandwidth. When one
considers the efficiency of a prefetching engine, an interesting question arises: what
is the simplest strategy that best matches the program behavior? From the perspec-
tive of a custom embedded system, a simple prefetching mechanism is desirable, as
its logic complexity and cost are likely to be low. A quantitative characterization
of the prefetching engine in terms of its logic complexity is beyond the scope of this
article and is the topic of ongoing research.

6. ENGINEERING DETAILS AND OTHER ODDITIES

In the following section, we highlight some noteworthy engineering details and
oddities we have encountered during our study of data remapping.

6.1 Static Alias Analysis

The proposed optimizations are geared towards preserving program semantics in the
presence of pointer variables. In order to ensure program correctness, alias analysis
is necessary to guide the selection of the proper offset computation function during
code generation. So far, we have defined two expressions for remapping (GDRemap
and DDRemap) and one for traditional data layouts. Therefore, alias analysis in
this context aims to statically characterize pointer accesses into one of three classes:
points-to static object,6 points-to heap object, or unknown. Clearly, it is the class
of unknowns that has been a show-stopper in the past. For our purpose, pointer
references are classified using Steensgaard points-to analysis [Steensgaard 1996]
applied to the application as a whole. Steensgaard analysis was chosen because
it does not discriminate among the fields of a record. Specifically, a pointer that
may alias a field within a record is classified as an alias to a record. By contrast,
Andersen-style [Andersen 1994] analysis does discriminate between field accesses.
Clearly, the former is desired for the purposes of data remapping.

6A slightly more detailed analysis would refine this category into two subclasses: one for stack

objects and the other for global data.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 29

Unresolved aliases mainly arise from nonstandard programming practices such
as pointer arithmetic and extensive type coercion. However, we found that the
compiler is often capable of inferring the intended meaning of various pointer arith-
metic manipulations. For example, let P represent a pointer variable pointing to
a record with three fields, each four bytes in size. Meaningful pointer arithmetic
expressions to access the first, second, and third fields of the aliased record first cast
P into an absolute address (i.e., an integer) then apply some addition of the form
(cast(P) + c) where c ∈ {0, 4, 8}. Program behavior for other values of c would be
undefined [Kernighan and Ritchie 1988; ANSI]. The compiler may use the specified
offset c and solve for the field index f using the traditional OCF. The expression
is then adjusted accordingly using the remapping OCF. An alternate, but related,
form of pointer arithmetic does not coerce (cast) the type of P . In this context, an
expression of the form (P + c) translates to P + c×RecordSize(∗P), where *P is
the type of the record aliased by P. Again, this form of pointer arithmetic can be
easily addressed using the OCFs introduced in Section 2.3. Namely, the expression
translates to P + c×MaxFieldSize(∗P).

6.2 Precompiled Libraries

Large applications will often use precompiled libraries to reduce development time.
If data remapping is partially applied, the modified layout may not be propagated
properly to the libraries, and program correctness cannot be preserved. A viable
solution is to undo the effects of remapping (data duplication) at a library function
call site and re-remap upon return. However, if this is done frequently, the cost of
data duplication may not be tolerated, and the optimization should be inhibited.
In general, any library function that operates on objects as a whole is an issue
(e.g., quicksort and memcpy). In practice it is rather obvious how new remapping-
compatible variants of such functions could be implemented (for example, memcpy
in our case is actually replaced by a fine-grained copy). Furthermore, in an em-
bedded system design setting it is common to have access to the entire application
source code, and thus it is reasonable to assume that the complete program may
be compiled and hence remapping consistently applied.

6.3 Object Deallocation

Many applications do not use heap objects that are persistent throughout execu-
tion. Rather, they may frequently deallocate old objects and subsequently allocate
new ones. To enable the remapping of dynamic data objects, wrappers reserve
relatively large clusters that are used for record allocation. Hence, when a request
to deallocate an object is made, a nonempty cluster may not be freed. The imple-
mented resolution is to maintain a bit vector per cluster that indicates when the
cluster is no longer in use and hence may be safely deallocated. In other words, the
object deallocation is delayed. This may in some cases result in a larger program
memory footprint. Some operating systems (e.g., SunOS) actually use a delayed
deallocation strategy, which may explain why DM (for example) did not benefit
from data remapping on the Sun UltraSparc II (Table XI). The operating system
for both Pentium machines is Linux RedHat version 6.2.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

30 · R. M. Rabbah and K. V. Palem

6.4 Remapping Variations

The proposed offset computation functions may be generalized to express other
complex remapping strategies. For example, the optimization discussed here col-
locates the respective fields from various objects. It may be desirable however to
collocate several fields from the same record as well. An example where such a
collocation might be applicable is in pointer-heavy applications, where the stagger
distance between any two fields must be statically known. In this context, failing
to collocate fields may lead to excessive padding between successive data elements
and thus diminish the benefits due to remapping. Therefore, for data record types
with numerous fields of varying sizes, it will prove useful to collocate several fields
to form an aggregate of constant size. A characteristic function may then be used
as a second-order OCF to locate fields within an aggregate. In order to achieve an
effective field-level collocation, it shall be necessary to augment our NAP analysis
such that the interactions of data fields in a memory access pattern are tracked.

7. REMARKS

In this article, we presented a novel data remapping algorithm and demonstrated
its surprising effectiveness in lowering the memory needs of a range of floating point
and integer applications. A notable contribution of our article is the use of data
remapping as a significant step in optimizing the cache memory needed to achieve
a given performance goal. To achieve this, we quantify the dynamics of memory
behavior through a range of cost measures capturing the program rate of change
and its impact on performance. Thus, given a particular application, optimizing the
size and cost of a cache will reduce to “navigating” over a space of these measures—
a topic for future research. Here our cost measures can serve as the foundation for
a design space exploration system where data remapping and other conventional
optimizations such as loop transformations can be used as key optimization steps.
Furthermore, for several COTS microprocessors with fixed cache architecture, such
as the Pentium and UltraSparc, we show that remapping can achieve a performance
improvement of 20% on the average. In addition, for a parametric research HPL-
PD microprocessor, which characterizes the new Itanium machines, we achieve a
performance improvement of 28% on average. All of our results are achieved using
the DIS, Olden and SPEC2000 family of integer and floating-point benchmarks.

ACKNOWLEDGMENTS

The authors wish to thank Richard Lipton, Santosh Pande and Yannis Smarag-
dakis for their comments and suggestions. In addition, the authors thank Lakshmi
Chakrapani, Mongkol Ekpanyapong, Benjamin Goldberg, Roy Ju, Ken MacKenzie,
Scott Mahlke, Trevor Mudge, Marc Saint, Suren Talla, Gary Tyson, P. S. Thiagara-
jan, Wong Weng-Fai, and the reviewers for their valuable advice and feedback.

REFERENCES

Abraham, S. and Mahlke, S. 1999. Automatic and efficient evaluation of memory hierarchies
for embedded systems. In Proceedings of the 32nd Annual International Symposium on Mi-

croarchitecture. 114–125.

Aditya, S., Rau, B. R., and Kathail, V. 1999. Automatic architectural synthesis of VLIW

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

Data Remapping for Design Space Optimization · 31

and EPIC processors. In Proceedings of the International Symposium on System Synthesis.

107–113.

Andersen, L. 1994. Program analysis and specialization for the C programming language. Ph.D.

thesis, University of Copenhagen.

ANSI. The ansi c standard. www.lysator.liu.se/c/.

Ball, T. and Larus, J. 1996. Efficient path profiling. In Proceedings of the 29th Annual Inter-
national Symposium on Microarchitecture.

Bass, M. and Christensen, C. 2002. The future of the microprocessor business. IEEE Spec-
trum 39, 4 (Apr.), 34–39.

Burger, D., Goodman, J., and Kagi, A. 1996. Memory bandwidth limitations of future micro-

processors. In Proceedings of the 23rd Annual International Symposium on Computer Archi-
tectures. 78–89.

Burks, A., Goldsteind, H., and von Neumann, J. 1987. Preliminary discussion of the logical
design of an electronic computing instrument. Papers of John von Neumann.

Calder, B., Krintz, C., John, S., and Austin, T. 1998. Cache-conscious data placement. In
Proceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems. 139–149.

Carter, J., Hsieh, W., Swanson, M., Zhang, L., Davis, A., Parker, M., Schaelicke, L.,
Stoller, L., and Tateyama, T. 1998. Memory system support for irregular applications. In
Workshop on Languages, Compilers, and Runtime Systems for Scalable Computers.

Catthoor, F., Wuytack, S., DeGreef, E., Balasa, F., Nachtergaele, L., and Vandecap-
pelle, A. 1998. Custom Memory Management Methodology. Exploration of Memory Organi-

zation for Embedded Multimedia System Design. Kluwer Academic Publishers.

Chilimbi, T., Davidson, B., and Larus, J. 1999. Cache-conscious structure definition. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation. 13–24.

Chilimbi, T., Hill, M., and Larus, J. 1999. Cache-conscious structure layout. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

1–12.

Chilimbi, T. and Hirzel, M. 2002. Dynamic hot data stream prefetching for general-purpose

programs. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation. 199–209.

Cragon, H. 1996. Memory Systems and Pipelined Processors. Jones and Barlett Publishers.

Ding, C. and Kennedy, K. 1999. Improving cache performance of dynamic applications with

computation and data layout transformations. In Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation. 229–241.

Ding, C. and Kennedy, K. 2000. The memory bandwidth bottleneck and its amelioration by a
compiler. In Proceedings of the International Parallel and Distribute Processing Symposium.

DIS. Data intensive systems benchmark suite. www.aaec.com/projectweb/dis/.

Fu, J. and Patel, J. 1992. Stride directed prefetching in scalar processors. In Proceedings of the

25th Annual International Symposium on Microarchitecture. 102–110.

Hwu, W., Mahlke, S., Chen, W., Chang, P., Warter, N., Bringmann, R., Ouellette, R.,

Hank, R., Kiyohara, T., Haab, G., Holm, J., and Lavery, D. 1993. The superblock: An
effective technique for VLIW and superscalar compilation. Journal of Supercomputing.

IPF. The Intel itanium Processor Family. www.intel.com/products/server/processors/server/itanium/index.htm.

Kathail, V., Schlansker, M., and Rau, B. R. 2000. HPL-PD architecture specification: Version
1.1. Tech. Rep. HPL-9380 (R.1), Hewlett Packard Laboratories. Feb.

Kernighan, B. and Ritchie, D. 1988. The C Programming Language. Prentice Hall.

Kistler, T. and Franz, M. 2000. Automated data-member layout of heap objects to im-

prove memory-hierarchy performance. ACM Transactions on Programming Languages and
Systems 22, 3 (May), 490–505.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

32 · R. M. Rabbah and K. V. Palem

Kulkarni, C., Catthoor, F., and Man, H. 2000. Advanced data layout organization for multi-

media applications. In Proceedings of the Workshop on Parallel and Distributed Computing in
Image Processing, Video Processing, and Multimedia.

Lam, M., Rothberg, E., and Wolf, M. 1991. The cache performance of blocked algorithms. In

Proceedings of the Fourth International Conference in Architectural Support for Programming
Languages and Operations Systems. 63–74.

Lee, P. and Kedem, Z. 1990. Mapping nested loop algorithms into multidimensional systolic
arrays. IEEE Transactions on Parallel and Distributed Systems 1, 1, 64–79.

Mahlke, S., Lin, D., Chen, W., Hank, R., and Bringmann, R. 1992. Effective compiler support
for predicated execution using the hyperblock. In Proceedings of the 25th Annual International
Symposium on Microarchitecture. 45–54.

McKinley, K., Carr, S., and Tseng, C. 1996. Improving data locality with loop transformations.

ACM Transactions on Programming Languages and Systems 18, 4 (July), 424–453.

Nystrom, E., Ju, R., and Hwu, W. 2001. Characterization of repeating data access patterns in
integer benchmarks. In Proceedings of the Workshop of Memory Performance Issues held in
conjunction with the 28th International Symposium on Computer Architecture.

Olden. The olden benchmark suite. www.cs.princeton.edu/˜mcc/olden.html.

Palem, K., Rabbah, R., Mooney, V., Korkmaz, P., and Puttaswamy, K. 2002. Design space
optimization of embedded memory systems via data remapping. In Proceedings of the Lan-

guages, Compilers, and Tools for Embedded Systems and Software and Compilers for Embedded

Systems.

Panda, P., Catthoor, F., Dutt, N., Danckaert, K., Brockmeyer, E., Kulkrani, C., Van-
dercappelle, A., and Kjeldsberg, P. 2001. Data and memory optimization techniques for

embedded systems. ACM Transactions on Design Automation of Electronic Systems 6, 2

(Apr.), 149–206.

Panda, P., Dutt, N., and Nicolau, A. 1997. Memory data organization for improved cache

performance in embedded processor applications. ACM Transactions on Design Automation

of Electronic Systems 2, 4, 384–409.

Petrank, E. and Rawitz, D. 2002. The hardness of cache conscious data placement. In Pro-
ceedings of the 29th Annual ACM Symposium on Principles of Programming Languages.

Rau, B. R. and Schlansker, M. 2000. Embedded computing: New directions in architecture

and automation. Tech. Rep. HPL-2000-115, Hewlett Packard Laboratories. Sept.

Schreiber, R., Aditya, S., Mahlke, S., Kathail, V., Rau, B. R., Cronquist, D., and Sivara-
man, M. PICO-NPA: High-level synthesis of nonprogrammable hardware accelerators. Journal

of VLSI Signal Processing.

SPEC. The Standard Performance Evaluation Corporation benchmark suite. www.spec.org.

StarCore. Leadership in DSP technology for communication applications. www.starcore-
dsp.com/files/SC140pres.pdf.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM

Symposium on Principles of Programming Languages. 32–41.

Taub, A. 1963. Collected Works of John von Neumann. The Macmillan Company, New York.

Texas Instrument TI-C6 VLIW Processor. TMS320C600: A high performance DSP platform.
www.ti.com/sc/docs/products/dsp/c6000/index.htm.

TriMedia. The TriMedia processor cores. www.trimedia.com/products.html.

Truong, D., Bodin, F., and Seznec, A. 1998. Improving cache behavior of dynamically allo-

cated data structures. In International Conference on Parallel Architectures and Compilation

Techniques. 322–329.

Wu, Y. 2002. Efficient discovery of regular stride patterns in irregular programs and its use

in compiler prefetching. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation. 210–221.

To Appear in the ACM Transactions on Embedded Computing Systems, Vol. 2, No. 2, May 2003.

