
PD-XML: Extensible Markup Language for Processor Description
S. P. Seng1, K. V. Palem2, R. M. Rabbah2, W.F. Wong3, W. Luk1, P.Y.K. Cheung1

1 Imperial College of Science, Technology and Medicine, England,{sps,wl}@doc.ic.ac.uk,{p.cheung}@ic.ac.uk
2 School of Electrical and Computer Engineering, Georgia Institute of Technology, USA,{palem, rabbah}@ece.gatech.edu

3 Department of Computer Science, National University Singapore, Singapore, wongwf@comp.nus.edu.sg

Abstract
This paper introduces PD-XML, a meta-language for de-

scribing instruction processors in general and with an em-
phasis on embedded processors, with the specific aim of en-
abling their rapid prototyping, evaluation and eventual de-
sign and implementation. PD-XML is not specific to any
one architecture, compiler or simulation environment and
hence provides greater flexibility than related machine de-
scription methodologies. We demonstrate how PD-XML
can be interfaced to existing description methodologies and
tool-flows. In particular, we show how PD-XML specifica-
tions can be translated into appropriate machine descrip-
tions for the parametricHPL-PDVLIW processor, and for
the Flexible Instruction Processor (FIP) approach targeting
reconfigurable implementations.

1 Introduction
In this paper, we propose aprocessor description extensi-

ble markup language(PD-XML) [4] as a means for describ-
ing instruction processors in general, with the specific aim
of enabling their rapid prototyping, evaluation and eventual
design and implementation. It can be used to support meth-
ods and tools for developing and optimizing instruction
set architectures and their implementations, such as TRI-
MARAN [6] and FIP [5]. In particular, PD-XML allows for
extensible descriptions for both instruction set architectures
and their microarchitecture implementations. The frame-
work follows a specification format which may be easily
simulated or even synthesized. This will permit the rapid
exploration of the architectural space and will complement
several well-founded methodologies that have emerged to
ameliorate the engineering costs associated with exploring
the design space of custom computing components [3, 5].

The contributions of our work are as follows: (1) We
propose PD-XML, a generic and extensible methodology
for describing, simulating and implementing instruction set
architectures. Information is intuitively organized into two
entities: one for storage, and the other for the instruction set.
(2) We extend PD-XML to cover descriptions of microar-
chitectures, by including information about the resources
associated with a given microarchitecture. (3) We demon-
strate how PD-XML can be used to support existing de-
scription methodologies and tool-flows. In particular, we
show how a specification realized in PD-XML may be trans-

lated into a machine description for the parametric HPL-
PD VLIW processor and for the FIP approach [5].

2 Overview of approach
Our description framework is based on an extensible

markup language known as XML. XML is generic, easily
extensible and is widely popular with the World Wide Web
Community as a means for structured information exchange
and collaboration. PD-XML subsumes many of the exist-
ing processor description languages, and overcomes many
of their disadvantages and drawbacks. In particular,(i)
PD-XML is not tied to any one architecture, compiler or
simulation environment,(ii) it is capable of representing
both high-level as well as low-level specifications required
to support a design space exploration toolchain, and(iii) it
does not require expert-level know-how to read, understand
and extend.

PD-XML consists of a collection of three main entities.
The first captures information about components that store
information, such as register files, stacks, external memory,
or block RAMs on FPGAs; hence is called thestore en-
tity. The second entity describes the instruction set and is
called theinst entity; it may include pseudo instructions
which are decomposed by a compiler into several opera-
tions that are executed by the processor. The third is the
resource entity and it contains information about physi-
cal resources available in a microarchitecture such as ALUs,
cache control, fetch and decode units. An instruction set ar-
chitecture (ISA) description of a processor mainly involves
thestore and inst entities (Section 3); the microarchi-
tecture description requires all three entities (Section 4).

A microarchitecture description comes in two flavours:
high level and low level. A high-level microarchitecture de-
scription makes explicit the resources associated with each
instruction, enabling simulation to take place. A low-level
microarchitecture description contains detailed information
regarding datapath and control, allowing design optimisa-
tion, evaluation and implementation. Note that an ISA can
be implemented by multiple high-level microarchitectures,
and a high-level microarchitecture can be implemented by
multiple low-level microarchitectures (Figure 1).

3 Describing ISA
An ISA description should: (1) expose the capabilities of

an instruction set to the programmer and compiler writer, as



ISA
+

HuA

...

High-level compilation
and simulation

Low-level compilation,
simulation and hardware

generation

Application
software

ISA instruction set
architecture
description

HuA high-level
microarchitecture
description

LuA low-level
microarchitecture
desciption

LuA LuA

Figure 1. An (ISA, HuA) pair can be used for high-level de-
sign exploration involving application software. For detailed de-
sign development and implementation, an LuA description is also
required. The box labeled “high-level compilation and simulation”
will be elaborated in Figure 2.

well as (2) provide a functional specification of the instruc-
tion set for implementation by microarchitectures. As such
an ISA description is made up ofstore and inst enti-
ties. The bit-width of registers and instruction formats are
included at this stage to allow for the generation of binary
code.

In PD-XML, the instruction repertoire of an ISA can
be obtained by inspecting the list ofinst entities. The
list of store entities provide information on the storage
resources available to the ISA. Criterion (1) and (2) can
be satisfied by the information contained in the two lists.
For example, theopcode attribute and theinst format
tag provide information on how to translate assembly code
into machine code. Thebehav tag specifies the functional
capability of the instruction, and can be used to directly
map instructions to high level microarchitecture descrip-
tions. The following is an example of astore entity:
<store type="RegFile" name="r">

<doc>
registers used for general computation

</doc>
<ISA>

<bitsize>32</bitsize>
<depth>5</depth>
<index>0..31</index>

</ISA>
</store>
<store type="RegFile.r" name="t">

<ISA>
<index>8..15,23..25</index>

</ISA>
</store>

The store entity has two fields,type and name.
Here, we declare a register file calledr . Thedoc field pro-
vides documentation for the entity. TheISA tag is used to
group together relevant information. Thebitsize field
provides information on the number of bits (size) of the
number that can be represented by a single register. The
depth field provides information on the depth of the reg-
ister file; here it says that the register file can be accessed
by a pointer that is 5 bits wide, so there are 25 registers in
this register file,r[0] . . .r[31] . The index field shows
the indexing count for this register file. In other words,

the depth value tells the compiler the number of bits re-
quired to index into this register file, and the index value
tells the compiler the actual index positions into the regis-
ter file. This allows for a single physical register file to be
logically split into separate smaller register files.

At this level of abstraction no decisions are made as to
the physical implementation of components. However, it is
often convenient to segregate the use of registers within a
register file. For example, there are 32 general purpose reg-
isters in the MIPS ISA description, which are split into dif-
ferent categories of usage; temporary store, argument store,
reserved for stack, frame pointer etc. This can be defined
by creating astore entity with a type that refers to a pre-
viously defined entity. The secondstore entity defines an
alias to the register filer : thet registers are referred to like
a register file, but indices fort registers are translated into
indices forr registers, using the convention outlined in the
index section. Heret[0] is an alias ofr[8] .

An example of aninst entity – which defines an in-
struction calledADD – is shown below:
<inst opcode="ADD">

<doc>
add rd,rs,rt
rd = rs + rt;
where rd,rs,rt are from the r register file

</doc>
<ISA>
<in type="RegFile.r">in1,in2</in>
<out type="RegFile.r">out1</out>
<inst_format>

000000::in1::in2::out1::xxxxx::100000
</inst_format>
<behav>r[out1] = r[in1] + r[in2];</behav>

</ISA>
</inst>

It takes three operands that contain indices for the
RegFile.r register file. The namesin1 , in2 and
out1 are labels that refer to indices into thestore en-
tity RegFile.r . Theinst format tag gives the binary
instruction format for theADD instruction. The first six bits
correspond to the opcode while the last six bits corresponds
to the function code, as defined by the MIPS instruction set.
The ‘::’ operator denotes concatenation and ‘x’ denotes bits
whose value we don’t care about.

For convenience, the labelsin1 , in2 andout1 above
refer to 5-bit numbers (derived from the depth value of the
RegFile.r object) and acceptable values for this 5-bit
number are numbers between 0 and 31 (derived from the
index tag of theRegFile.r object). Thebehav field
contains the behavioural information that outlines the oper-
ation of this instruction in a high-level manner.

Figure 2 shows that the ISA description can be used to
produce compilation and simulation tools to facilitate high-
level design exploration. Note that multiple high-level mi-
croarchitectures can be used to implement each ISA; de-
tails of a high-level microarchitecture description will be
explained in the next section.



Compiler

Simulator

ISA
+

HuA

Application
software

Figure 2. The ISA and HuA (high-level microarchitecture) de-
scriptions can be used to produce high-level compilation and simu-
lation tools. The dotted line indicates that the simulation result can
be used to refine the ISA and HuA descriptions.

pc

Inst_mem

RegFile

LOAD

STORE

ADD

SUB

XOR

BEQ

Data_mem

JMP

Figure 3. A graph representation of a high level microarchitec-
ture description.

4 Describing Microarchitecture
The microarchitecture section captures resource depen-

dence in the processor, so that a cycle accurate description
can be developed. This level contains descriptions of re-
sources that are not directly accessible by a programmer,
such as the fetch module or the program counter.

The purpose of a microarchitecture description is to in-
clude implementation constraints to enable effective imple-
mentation and evaluation. From experience, it should: (1)
expose the hardware capabilities of an instruction proces-
sor, (2) expose the resource dependencies, (3) allow further
optimisation of a compiler, (4) provide enough information
for cycle-accurate simulation of the microarchitecture.

In PD-XML, the uA field can be written in two levels
of abstraction: high-level microarchitecture and low-level
microarchitecture. From theuA definition, we can deduce
dependence information, which can be drawn as a DOT
graph [2]. Each node in the graph maps to a physical im-
plementation block. This exposes the hardware capabilities
of the processor. Thein andout tags capture dependence
information. This is reflected in the edges of the graphs.
Section 4.2 shows how information for further optimizing
a compiler can be captured. Simulation of a microarchitec-
ture can be done in two levels. The high level microarchi-
tecture can be simulated using information captured in the
behav tags in the ISA and low level microarchitecture can
be simulated with information from thestruct tags.

4.1 High-level microarchitecture
The high level microarchitecture description closely re-

sembles the ISA specification, where instructions are segre-

pc

Fetch

inc

Inst_mem

RegFile Mul

ALU

BranchUnit

Data_mem

Decode

LoadStore

Figure 4. A graph representation of a processor with shared
functional units.

gated. TheuA description at this level is organized around
the instructions in the processor and only data flow between
thestore andinst entities are shown. Figure 3 shows a
graph representation of part of a MIPS processor. TheuA
field contains information about the modules and provides
information such as data dependence, allowing pipelining
and scheduling to take place. An example of theuA defini-
tion follows:
<store type="RegFile" name="r">

<uA>
<in>Inst_mem</in>
<out>ADD;XOR;SUB;LOAD;STORE;BEQ</out>

</uA>
</store>

Behavioural information can be incorporated in the same
way as in the low-level microarchitecture definition shown
in the next section. Latency information can be incorpo-
rated manually or can be determined by simulation.

4.2 Low-level microarchitecture
While the high-level microarchitecture describes the re-

source dependences of the ISA, the low-level microarchi-
tecture captures how the ISA may be realized. This is di-
vided into two parts, LL1 and LL2. Two new entity tags are
also introduced,resource which contains implementa-
tion details for resources such as the ALU, andinstance
which creates an instance of a resource.

LL1 – data path: LL1 describes the types of resources
found in the datapath and the instances of these resources.
Instances may also contain additional implementation de-
pendent information. For example, in the case of a cache,
different cache parameters and policies can be described.

Figure 4 shows a single issue implementation of the
MIPS ISA, while Figure 5 shows a multi-issue implementa-
tion. The high level microarchitecture description provides
an easy but inefficient way to implement the ISA. The ISA
can then be mapped into different low level microarchitec-
ture implementations depicted in Figure 4 and 5. This for-
mat allows microarchitectures of different levels of abstrac-
tion and functionality to be coupled with an ISA descrip-
tion. Conversely several ISA definitions can be mapped
onto a microarchitecture description.

LL2 – control path : LL2 describes resources that con-
trol the flow of instructions. Information regarding imple-



pc

Fetch

inc

Inst_mem

RegFile

LoadStore

Mul1

Mul2

ALU1

ALU2

ALU3

ALU4

Data_mem

Decode

BranchUnit

Prefetch

Figure 5. A graph representation of the MIPS ISA with multi-
issue microarchitecture.

mentation details such as whether the processor is EPIC or
superscalar, for example, are also encapsulated in this part
of the machine description.

5 Interfacing PD-XML
HMDES Interface: PD-XML may be interfaced with

and enhance HMDES [1], a powerful and complex machine
description language used in the TRIMARAN research com-
piler and simulation environment. Altering the ISA and
microarchitecture of a HMDES-modeled processor requires
modifications at different levels of the description. In con-
trast, PD-XML consists of only three components, each a
self-contained and easily modified entity. Most of the speci-
fications and definitions required by the HMDES infrastruc-
ture can be directly inferred from PD-XML descriptions.

We believe that PD-XML can be used to augment the
TRIMARAN infrastructure which was conceived to explore
the evolution of VLIW architectures. In particular, the
machine-driven optimizing compiler and performance mon-
itoring tools available in TRIMARAN may be easily retar-
geted to investigate the merits of architectural innovations
via rapid prototyping using PD-XML. This is of increasing
significance as VLIW architectures continue to proliferate
at various tiers of the processor industry.

FIP Interface: The Flexible Instruction Processor (FIP)
approach provides a mechanism for the systematic cus-
tomization of instruction processors, targeting mainly re-
configurable devices. This approach helps designers tune
hardware implementations to the characteristics of a system
both at design time and at run time [5]. PD-XML provides
a concise way to express both the ISA and the microarchi-
tecture information required by the FIP approach.

Figure 6 shows a simplified FIP design flow. The FIP
profiler takes in a custom specification, usually in C or in
Java, as well as ISA information in PD-XML format from
the FIP library. The ISA description is customized to the
application source code provided in the custom specifica-

Customisation specification:
eg. application source code and data

FIP Profiler

Instruction
information

Processor
architecture
information

FIP library

FIP analysis and instantiation

Annotated
source code

FIP compiler

Executable
FIP code

Decision
condition

information

FIP
configuration
information

FIP
management

system

FIP template
generator

Figure 6. The design flow for the Flexible Instruction
Processor (FIP) approach.

tion. This information is then passed to the FIP template
generator which creates a high-level microarchitecture in
PD-XML that corresponds to the ISA description.

Next, the FIP template is put through an analysis phase
where operations are optimized and custom instructions are
introduced if appropriate [5]. After instancing, a FIP con-
figuration is produced to program a reconfigurable device.
A PD-XML description of the low-level microarchitecture
is also passed to the FIP compiler, so that executable code
can be produced for the FIP implementation.

6 Summary
This paper introduces PD-XML, a meta-language for de-

scribing processors in general with an emphasis on em-
bedded processors. PD-XML enables rapid high-level and
low-level architectural specifications required to support a
toolchain for design space exploration. Current and future
work includes the completion of the retargeting of our tools
to support PD-XML, and the extension of PD-XML to sup-
port adaptive implementations that can be reconfigured at
run time [5].

ACKNOWLEDGEMENTS
This work is supported in part by DARPA contract F30602-00-2-0564, A*STAR
Project No. 012-106-0046, UK EPSRC projects GR/N 66599 and GR/R 55931,
Celoxica Limited, Hewlett Packard Laboratories, and Yamacraw.

References
[1] J. Gyllenhaal, W. Hwu, and B. R. Rau. HMDES version 2.0 specification. Tech-

nical Report IMPACT-96-3, University of Illinois, Urbana, 1996.
[2] Open source graph drawing software. http://www.research.att.com/sw/tools/

graphviz.
[3] K. Palem. Rapid design of custom embedded systems via architecture as-

sembly. Technical report, Proceler Inc., Feb. 2002, http://www.proceler.com/
pdfs/EETimes.pdf.

[4] S. Seng, K. Palem, R. Rabbah, W. F. Wong, W. Luk, P. Y. K. Cheung. PD-
XML: Extensible markup language for processor description. Technical report,
2002/16, Department of Computing, Imperial College, UK, 2002.

[5] S. Seng, W. Luk, and P. Cheung. Runtime Adaptive Flexible Instruction Proces-
sors. InProc. FPL, LNCS 2438, Springer, 2002.

[6] TRIMARAN : An infrastructure for research in instruction level parallelism.
http://www.trimaran.org.


