
Defining Safe Hardware Design
Rachit Nigam

Massachusetts Institute of Technology

Abstract
Type systems have been remarkably successful within the
software engineering community as a lightweight mecha-
nism for formal verification: sophisticated type systems, such
as Rust’s, can prove properties such as memory safety with-
out imposing any overheads. However, type-based approaches
have seen little development for hardware description lan-
guages (HDLs): most state of the art languages provide sim-
ple guarantees that do not dramatically reduce the verifi-
cation burden. We define more powerful criteria for safe
hardware design, discuss how language-based approaches
enforce these properties in recent HDLs, and make a case
for the development of sophisticated type systems for HDLs
that provide order of magnitude improvements in the hard-
ware verification process.

1 Type Safety
Legacy HDLs [6] provided minimal static checking; a com-
mon source of bugs was bitwidth mismatches where an in-
put port on a module might expect 8-bit signals but the user
was allowed to connect a 16-bit value which silently lost in-
formation. Modern HDLs [2, 3, 8, 9] remedy this problem
by performing type checking and generating a compile-time
error message; if the user wants to connect a 16-bit wire to
an 8-bit port, they have to explicit truncate the signal.
Type safety is a design-time abstraction: at the netlist-level,

the bits on a wire do not know if they are an IP packet head-
ers or the mantissa of a floating-point number. However, at
design time, users can use a type system to mark some 8-bit
values as mantissas and others as IP headers. Furthermore,
because type safety is checked statically, it imposes no over-
head on the final circuit.
However, type safety alone is not enough to guarantee

correctness. For example, in software languages like C, a
program can be type safe but still exhibit bugs because of
memory management bugs such as double-frees and use-
after-free. To address these challenges, the categorized bugs
that pointer-manipulating programs suffer from and called
them memory safety violations. By defining a target, the
community focused its efforts towards a clear and shared
goal and developed a wide arsenal of techniques to attack
the problem; run-time mechanisms like automatic memory
management aswell as compile-time such as Rust’s type sys-
tems. We argue that hardware design similarly rich notions
of safety which categorizes a large class of bugs and gives
our community a clear goal to achieve.

2 Eliminating Structural Hazards
In order to provide this guarantee, we develop clearer defini-
tion of resource constraint violation based on Filament’s for-
malism [10]. From a producer-consumermodel of a pipeline,
there are two causes of a structural hazard: (1) if a consumer
reads a value that the producer did not intend for it to, and
(2) if a producer assumes that the consumer accepted a value
from it when it did not.

Latency safety. At the netlist-level, circuits continuously
read and write values to wires. At the design-level, the pro-
grammer has to define which signals are meaningful and
should be used to perform a computation. This is usually
done through a protocol which defines how physical signals
should be used over time. For example, a producer might
provide an explicit 1-bit valid signal that the consumer
must check before using the value on the data signal. Simi-
larly, a producer might declare its latency is four cycles and
the consumer is responsible for tracking the passage of time
and read the output on the correct cycle.
However, like data types, protocols are a purely semantic

concepts; they do not exist within the netlist. Therefore, fail-
ing to follow such protocols leads to silent data corruption
which is hard to debug. A latency-safe HDL guarantees
that whenever a signal value is used, it is semantically
meaningful, as defined by a protocol.

Resource safety. On the consumer side, a module uses
a protocol to define when it can accept new inputs, i.e., its
reuse constraint. For example, it might use a 1-bit ready sig-
nal to indicate that it can accept new inputs or statically de-
clare that it can accept new inputs every two cycles. Once
again, these guidelines are purely semantic but failing to
follow them creates logical errors in the design which are
hard to debug. A resource-safe HDL guarantees that all
reuse constraints on resources are respected.

3 Analysis
Like memory safety, latency and resource safety can be en-
forced using language abstractions, dynamic mechanisms,
and static reasoning. Table 1 overviews existing safe HDLs
and their enforcementmechanisms. Traditional andmodern
HDLs do not provide safety guarantees so we elide their dis-
cussion.

Bluespec. Bluespecmodules are organized as rules—single-
cycle computations with a combinational guard that deter-
mines if the rule can execute in a given cycle. Rules can



Rachit Nigam

HDLs Abstraction Type Latency Resource
Modern [1, 7], Embedded [2, 3, 8] RTL 3 7 7
Rules-based [4, 12] Atomic Actions 3 Programmatic Dynamic
Synchronous [5, 13, 14] Pipelines 3 3 7
Filament [10, 11] Pipelines 3 3 3
Anvil [15] Message-passing 3 3 Programmatic

Table 1. Type safety ensures that bits on a wire represent semantic data structures, latency safety ensures that values are
read when they are meaningful, and resource safety ensures that resources are used when they are available. Properties are
enforced at compile time (3), through extra circuitry (Dynamic), or through language abstractions (Programmatic).

use overlapping sets of resources which creates opportuni-
ties for resource safety violations. However, Bluespec’s com-
piler analyzes all the rules and synthesizes a scheduler which
dynamically detects and eliminates conflicts by aborting the
execution of conflicting rules.
Next, methods provide a structuredway for Bluespecmod-

ules to communicate and enforce latency safety. For exam-
ple, performing a push or peek on a FIFO is done by call-
ing the respective method on an instance. Bluespec’s com-
piler then generates a enable-ready interface to activate
the method and ensure that it receives meaningful data, en-
suring latency safety. The downside is all modules in Blue-
spec must use the same interface.
While Bluespec is arguably the first safe HDL, its enforce-

ment mechanisms limit both expressivity, by requiring de-
signs to use methods and rules, and are expensive, requiring
synthesis of a scheduling circuit.

Synchronous HDLs. Synchronous HDLs use a type sys-
tem to enforce latency safety. Pipelines and registers are
first-class constructs in such languages and allow the type
system to track the cycle in which a signal is produced us-
ing a latency tag. If a combinational computation attempts
to use signals with different latency tags, the user gets a
compile-time errormessage indicating that the pipelinemay
be imbalanced. Some embedded HDLs [2, 8] also provide
this reasoning capability. However, this approach onlyworks
with statically-known latencies and does not allow for vari-
able latency computations. Most HDLs in this category pro-
vide escape hatches to latency safety to allow for general
purpose design and therefore do not guarantee that all pro-
grams are latency safe. Synchronous HDLs do not provide
resource safety. For example, Spade [13] and Sus [14] do not
support reasoning about partially pipelined modules.

Filament. Filament [10] introduced the concept of latency
safety and resource safety and demonstrated that they can
be enforced using purely static reasoning.Module signatures
in Filament use events—whichmodel valid signals—and avail-
ability intervals—which capture when signals are required
and provided—to track the timing behavior of amodule. Events
additionally provide a delay which describes how often the
valid signal can be toggled and therefore captures the reuse

constraint for a module. Filament’s type system statically
guarantees that all signals are used when they are available
(as defined by their availability interval) and modules are
sent inputs at a rate they can accept them.
Filament’s approach has a couple of benefits. First, it does

not need to “bake-in” the concept of registers or pipelines;
its type system is powerful enough to characterize regis-
ters as just another module with a type signature. Second,
Filament’s multi-cycle availability intervals allow modules
to express that a producer needs to hold a value stable for
multiple cycles allowing optimizations such as multi-cycle
paths. Finally, Filament’s reasoning has been recently ex-
tended to parameterized and generator-produced designs
enable it to statically guarantee that all possible parameteri-
zations of a design are latency and resource safe. However,
like synchronousHDLs, Filament is limited to static pipelines.

Anvil. Anvil uses the message passing abstraction to de-
scribe hardware designs: modules use the send and recv
operators to pass signals through channels and Anvil’s com-
piler synthesizes a ready-valid interface for each channel.
Anvil defines a type system that uses Filament’s abstrac-
tions of events and availability intervals to guarantee tim-
ing safety which combines latency safety with the guaran-
tee registers are not mutated if a future computation may
use their value. Finally, Anvil programmatically enforces
resource safety by disallowing multiple senders to provide
a value on the same channel. Anvil, like Bluespec, enables
general-purpose and safe hardware design but suffers from
the abstraction overhead: designsmust use themessage pass-
ing abstraction to receive its guarantees and are limited to
single producer-consumer relationships.

4 Conclusion
New abstractions for safe hardware design can bring the
same revolutionary reusability and reliability that languages
like Rust brought to the software ecosystem. However, we
should not let our ambitions run amok: safe HDLs should
not aim to provide the same guarantees as heavyweight for-
mal tools and instead focus on automatically eliminating a
broad class of bugs that are obviously beneficial for every
hardware design.



Defining Safe Hardware Design

References
[1] IEEE Standards Association. 2018. IEEE Standard for SystemVerilog–

Unified Hardware Design, Specification, and Verification Language.
doi:10.1109/IEEESTD.2018.8299595

[2] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. 2010.
C𝜆aSH: Structural Descriptions of Synchronous Hardware Using
Haskell. In Euromicro Conference on Digital System Design: Architec-
tures, Methods and Tools. doi:10.1109/DSD.2010.21

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a Scala embedded language.
doi:10.1145/2228360.2228584

[4] Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala. 2020.
The essence of Bluespec: a core language for rule-based hardware
design. doi:10.1145/3385412.3385965

[5] Steven F Hoover. 2017. Timing-abstract circuit design in transaction-
level Verilog. In IEEE International Conference on Computer Design
(ICCD).

[6] IEEE. 2006. IEEE Standard for Verilog Hardware Description Lan-
guage. IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006).

[7] IEEE. 2009. IEEE Standard VHDL Language Reference Manual. IEEE
Std 1076-2008 (Revision of IEEE Std 1076-2002) (Jan 2009).

[8] Jane Street. 2022. HardCaml: Register Transfer Level Hardware De-
sign in OCaml. Retrieved October 15, 2022 from https://github.com/

janestreet/hardcaml
[9] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL:

A Unified Framework for Vertically Integrated Computer Architec-
ture Research. doi:10.1109/MICRO.2014.50

[10] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian
Sampson. 2023. Modular Hardware Design with Timeline Types.
doi:10.1145/3591234

[11] Rachit Nigam, Ethan Gabizon, Edmund Lam, Carolyn Zech, Jonathan
Balkind, and Adrian Sampson. 2026. Parameterized Hardware Design
with Latency-Abstract Interfaces.

[12] Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, correct
RTL from high level specifications. In Conference on Formal Meth-
ods and Models for Co-Design (MEMOCODE). doi:10.1109/MEMCOD.
2004.1459818

[13] Frans Skarman and Oscar Gustafsson. 2023. Spade: An Expression-
Based HDL With Pipelines. doi:10.48550/arXiv.2304.03079

[14] Lennart Van Hirtum and Christian Plessl. 2024. Latency counting in
the SUS language. In Workshop Languages, Tools, and Techniques for
Accelerator Design.

[15] Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E.
Carlson, and Prateek Saxena. 2025. Anvil: A General-Purpose Timing-
Safe Hardware Description Language. arXiv:2503.19447 [cs.AR]
https://arxiv.org/abs/2503.19447

https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3385412.3385965
https://github.com/janestreet/hardcaml
https://github.com/janestreet/hardcaml
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1145/3591234
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.48550/arXiv.2304.03079
https://arxiv.org/abs/2503.19447
https://arxiv.org/abs/2503.19447

	Abstract
	1 Type Safety
	2 Eliminating Structural Hazards
	3 Analysis
	4 Conclusion
	References

