
DVS: Distributed Volatile Storage for low-latency read access

Radu Berinde, Daniel Dumitran, Igor Ganichev, Mike Lin

Abstract

We describe the design and implementation of
DVS, a distributed, fault-tolerant in-memory
storage system for fast random access to large
datasets. The storage has a key-value interface
and is optimized for read performance. It is used
as a cache for static data stored on slower durable
mediums to accelerate access to large datasets,
such as those used in bioinformatics. The key
problems that DVS solves are data location on
and data distribution to a dynamic set of servers.
We show that DVS can speed up a real bioinfor-
matics application by more than 100%.

1 Introduction

We have identified a class of applications that
show the following properties:

• the computations are done by programs run-
ning on multiple computers

• the expected running times of the algo-
rithms are in the O(n) - O(n lg n) range;
I/O contributes to a large amount of run-
ning time

• the output of the programs is usually small;
result outputting does not use significant
running time

• the static data used is not small enough to
fit in one machine’s RAM

• the static data used is small enough to fit
in the total amount of RAM available on all
the machines involved in the computations

Our project is centered around the problem
of efficiently storing the data used by these pro-
grams. Our main idea is to use the available

RAM on the machines to store volatile copies of
the data, using the network to transfer data from
machines that store it to machines that need it.
Thus, we create a Distributed Volatile Storage
(DVS) system.

The main class of applications that fit this
tight description is related to the emerging field
of computational biology. Bioinformatics pro-
grams process genomes and protein sequences.
Even though sometimes corrections and addi-
tions are made to a genome or protein sequence
(usually by human decision), the data is static in
the sense that the programs only read this data.

1.1 BLAST/BLAT

We present a particular bioinformatics algorithm
as the sample use-case of our project. BLAST
- Basic Local Alignment and Search Tool - is
an algorithm for identifying sequences in a large
database that are similar to a query sequence.
BLAST is used often interactively by bench
scientists and even lawyers involved in a gene
patent filing, so even somewhat modest speedup
factors would be worthwhile. Researchers run
independent instances of BLAST on their own
computer either using local copies of the data or
a central file server. Many bioinformatics cen-
ters also have dedicated BLAST farms to facili-
tate large-scale analysis, and may not be able to
make full use of these hardware resources with
large sequence databases.

BLAT [7] - BLAST-Like Alignment Tool - is
a program implementing a variant of this algo-
rithm. BLAT’s architecture is presented in figure
1. Part of BLAT is the gfServer that precom-
putes a hash table of words (short subsequences
of a certain length) in the sequence database to
identify possible regions of similarity to a given
query sequence. BLAT gfClients query the gf-

1



gfServer indexes 
the genome upon 
startup (one large 
sequential read)

gfServer NFS server

index genome

query
seq

locations
of hits in
genome

load seq
near

each hit

gfClient

gfClient

Figure 1: BLAT Architecture

Server to find candidate regions, which are then
loaded from storage and processed in order to de-
termine whether they show significant similarity
with the query sequence. A region is typically
less than 1,000 bytes. Usually, many database se-
quences have spurious word “hits” to the query
sequence without significant longer-range simi-
larity, and these spurious hits tend to distribute
randomly throughout the database. Thus, the
goal of our system is to increase the perfor-
mance of gfClients. We ran BLAT and found
that a search against the NR protein sequence
database, which is approximately 3GB and was
stored on disk, took around 60 seconds on a mod-
ern PC, at less than 25% average CPU usage
during the search step.

BLAST programs exhibit an additional prop-
erty to the ones presented in the first subsection:
it reads many small randomly-distributed
portions of the large static dataset. This
property indicates that the usual solution of
storing the data on a hard drive (locally or
remotely) is inefficient because of disk seeks -
reading small portions of data randomly dis-
tributed on the storage medium is the worst
possible workload for a hard disk. [[6], Fig.1]
shows that the running time of NCBI-BLAST is
roughly proportional with dataset size; however,
when the dataset becomes too large to fit in one

computer’s memory, the proportion constant in-
creases 6-fold.

1.2 Current solutions

Some bioinformatics clusters, like the one used
by Broad Institute, store the data using hard
disks on a central file server. The data is put in
files that are accessed through a shared filesys-
tem. We feel that the productivity of such a
cluster can be increased as long as the size of the
data corresponds to our requirements.

The current state-of-the art solution for par-
allel BLAST is mpiBLAST [6]. It is a parallel
BLAST implementation tailored for clusters; it
works by dividing the database between workers
and distributing queries to workers which hold
the corresponding data segment. mpiBLAST
aims to give each machine a portion of the data
that fits in the machine’s RAM, making it ca-
pable to process respective queries without disk
I/O. This is a particular solution for BLAST on
clusters, and our system cannot compete with
it. The purpose of our system is to provide a
more general solution to an entire class of appli-
cations without redesigning them from scratch -
including single-machine BLAST programs that
researchers run on their own machines rather
than a cluster.

Since the static data fits in the RAM of the
machines in the cluster, it probably fits on a sin-
gle hard drive. Each machine has a hard drive
anyway, so a possible solution is to store all the
data on every machine’s hard disk. One problem
with this solution is that the data is hard to man-
age - updating the genomes or sequences would
be hard. Another problem is that even a local
hard drive might be slower than a network trans-
fer, especially with non-sequential reads (like in
the BLAST case).

1.3 System requirements

We identify the requirements of a system that
can efficiently serve the data to programs that
process it; these are the main challenges we face
in designing the system:

Performance. When run on machines on the

2



same network the latency of the read(get) oper-
ation must be smaller than the latency to read
from a local hard drive - the average seek time.
The motivation for this decision is the BLAST
usage scenario, where an alternative solution
would be to store hard copies of the genomes
on each machine. Comparable write (set) per-
formance is preferred, although not required.

Weak Consistency. The system must guaran-
tee that a read never results in the wrong data; a
read must return either the correct data or noth-
ing if the data cannot be found (perhaps lost be-
cause of failures).

Failure resistance. The system must adapt to
machine failures; the data lost because of fail-
ure must be repopulated from the slower stable
storage.

Manageability. The system must allow addi-
tion and removal of new machines (within some
pre-established limits) during operation without
any reconfiguration on the already running ma-
chines.

One might argue that the last requirement is
not very important; however, the manageability
feature implies that the system allows recovered
machines to rejoin the system. This is very im-
portant; if the set of machines in the system can
only decrease, the system will always need a to-
tal restart at some point in time. Restarting the
whole system is not only slow - the whole data
must be read from stable storage - but it also
requires human intervention. Running programs
would also probably need restarting, or would
at least have to wait while the system is being
re-populated.

A scenario where this last feature is vital is
one where there is no dedicated cluster avail-
able. An example is where researchers inter-
actively run (single-cpu) BLAST on their local
machines, either using local copies of data or
a shared file server. In this scenario, the re-
searchers should be able to share their machine’s
resources through the storage system by volun-
tarily running a server program in the back-
ground when they choose to do so - this clearly
shows that the system needs to adapt to ma-

chines joining and parting.

2 Related Work

A system centered around caching data in the
free RAM of multiple machines is memcached.
The goal of the memcached system is to provide
regular cache semantics to the applications on a
cluster while using memory on multiple machines
of the cluster. In particular, the cache starts
out empty and the applications check the cache
before they access any object from a database
(typically stored on the disk). If the object is
not in the cache, applications request it from the
database and then put it into the cache. When
the cache fills up, either the least recently used
object is discarded or subsequent set operations
are ignored, depending on configuration.

While the design of memcached is not docu-
mented, we were able to study the source code
which is publicly available. The distributed as-
pect of memcached is implemented solely in the
client library; there is no coordination between
the memcached servers. Each server acts as a
stand-alone storage server and the client library
chooses the server on which to store a given
key. memcached cannot handle new servers join-
ing the system while its running - each client
program initializes the library with the list of
servers. It does handle failures in the sense that
once a server has failed, it is marked as deac-
tivated and all future requests with keys corre-
sponding to the failed server are routed to the
next available server in the list; however, once a
server crashed, it will not be used again by a run-
ning client, even if the server recovers. Because
of this issue, the image of the system can eas-
ily become inconsistent between different clients
and thus inefficiently use resources by storing the
same data multiple times. These compromises
are probably acceptable in memcached usage sce-
narios and they greatly simplify the system and
its implementation.

A system which greatly influenced our design
choices is the Porcupine mail service [1], which
implements a decentralized design using node
homogeneity. Making the system homogeneous

3



client host

cached
key
map

DVS client library

NFS wrapper

existing application

f=open(“file”)
fseek(f,…)
fread(f,…)

custom application

DVS.get(“a_key”) DVS.get(“file_block12”)

DVS server

key
map

<key1,val1>
<key2,val2>
…

DVS server

key
map

<key3,val3>
<key4,val4>
…

DVS server

key
map

<key5,val5>
<key6,val6>
…

server=key_to_server(key)
call(GET_RPC,key,server)

Figure 2: DVS General Architecture

avoids introducing a single point of failure as well
as eliminates a possible performance bottleneck.
DVS uses a dynamic membership algorithm sim-
ilar to the one used in Porcupine and uses a sim-
ilar in-circle-chatter method.

3 Design

We attempt to fulfill the requirements with a sys-
tem that exhibits functional homogeneity, that
is, all operations can be performed by any ma-
chine in the cluster. Thus, we avoid designating
one of the machines as “the manager” for any
kind of system data. Any data structure needed
must be maintained by all machines. The scheme
of the DVS system is presented in figure 2.

The main challenge for DVS was to create pro-
tocols and policies that allow the system to be-
have in the desired manner while restricting deci-
sions taken by any machine to involve only parts
of the dataset maintained by that machine.

3.1 Buckets

We chose a key/value pair interface for DVS,
since it provides the generality that we need in

order to support any application that fits our
requirements. Since any key/value pair can be
stored on the system, we have to define some
way to distribute the keys among the live DVS
servers. Because of the manageability require-
ments of DVS, we cannot statically define a key-
to-host mappings; the system must maintain the
key-to-host mapping dynamically.

Since the number of different keys can get
quite large, a simple key-to-host list would eas-
ily become unmaintainable. Thus, we choose a
“hybrid” strategy: we split the key-space into
a fixed number of buckets, and define a static
key-to-bucket mapping while dynamically main-
taining a bucket-to-host mapping. The number
of buckets should be a small multiple of the num-
ber of possible DVS server (e.g. 1600 for a clus-
ter with 100 machines). The dynamic bucket-to-
host map has several thousand entries, so its size
is only a few kilobytes.

3.1.1 Key-to-bucket static map

For the static key-to bucket distribution we use
a deterministic hash function (known to all ma-
chines) to map any key to a bucket. Because
we use DVS to cache file blocks (see 3.7), most
keys have values of the same size (8Kb; some
have less). Thus, we can assume that the hash
function distributes the data evenly, resulting in
buckets of approximately equal size.

3.1.2 Bucket-to-node dynamic map

The dynamic map is maintained by all nodes
in the cluster. It stores for every bucket a list
of nodes which have copies of the keys in that
bucket. We allow a node to add or remove it-
self from one of these lists. The challenge in im-
plementing this behavior is to define a rebalanc-
ing protocol that maintains agreement between
servers when more than one node tries to change
the map at the same time.

We require that at any point in time - even
during a change of the bucket map - any server
that is listed in a bucket’s server list must still
have the values for the keys in the bucket, this
being able to fulfill get requests.

4



3.2 Rebalancing Mechanism

DVS allows each server to decide what buckets
it should maintain. First, we focus on the mech-
anisms that allow the behavior we want: at any
point, any server must be able to start or stop
maintaining a bucket. Later in the paper we dis-
cuss the policies that define the server decisions;
the important point is that as long as the mech-
anisms are correct, the policies can be improved
with minimal effort.

There is a problem when there is only one
server maintaining a bucket, and that server
wants to dispose of the bucket. In this case, the
server is not allowed to simply remove itself from
the bucket’s server list in the bucket map be-
cause the bucket’s values would be lost. To solve
this problem, we define a “need-to-remove” flag
for each bucket. In the presented scenario, the
server sets this flag and waits until another server
replicates the bucket before removing itself from
the bucket’s server list.

The operation that enables any node to add,
remove, or flag as “need-to-remove” a bucket
is called a “rebalancing” operation. It involves
making a change to the dynamic bucket-to-node
map; this operation can be invoked by any node
usually because of nodes running out of memory,
failing, or joining, as well as for load balancing.
Note that when a server decides to start main-
taining a bucket, it first gets all the values in
that bucket before invoking the rebalancing op-
eration. Similarly, a node removing a bucket first
invokes the rebalancing operation before discard-
ing the values in a bucket.

There are many situations in which problems
arise if two servers try to change the bucket map
at the same time. For example, if two servers
maintain a bucket and they both decide to stop
maintaining it, the bucket data would be lost -
whereas if only one succeeds the rebalancing, the
other server would flag the bucket rather than
removing it or perhaps would not even decide
to remove the bucket after examining the new
configuration. The chance of two concurrent re-
balancing attempts occurring at the same time is
not small; a server usually decides to rebalance

because of some external event, like a failure.

In general, a server must decide any reconfig-
uration upon examination of the latest bucket
map; with concurrent updates, sometimes there
is no “latest” bucket map and it would be very
hard to define correct policies for rebalancing
decisions. Thus, when two concurrent rebalac-
ing attempts are made, only one should succeed.
The failed attempt should not be blindly retried;
the server might reach a different decision upon
reexamination of the new configuration.

We describe the protocol that serializes the
attempts to rebalance data that is similar to
TRM[3]. We use the concept of a global lock as-
sociated with the right to change the bucket-to-
node mapping. To serialize the acquire attempts,
each node maintains a Lamport clock[2]. When
a node wants to make a change to the bucket-to-
host map, it reads its current Lamport clock and
uses it as an epoch ID in a broadcasted “acquire”
message. The node then waits for “ok” responses
form all other hosts. Every node remembers the
highest epoch ID received; if a node received an
acquire message with a lower epoch ID, it replies
with a “deny” message.

The result of this protocol is that exactly one
node will receive “ok” from all other nodes. This
node has obtained the lock, and denies any fur-
ther acquire attempts until it is ready to release
the lock. To complete the rebalancing, the node
broadcasts a “commit” message including the de-
sired change to the mapping and waits for ac-
knowledgments; afterwards, the lock can be re-
leased.

If at any point during these three rounds a
machine is detected as failed, the failed node is
simply removed from the live set list and the op-
erations continue as usually until the rebalancing
change is finished.

If the machine initiating the attempt fails dur-
ing the transaction, some machines may have
received the changes and some might have not.
However, this is not important since a node only
initiates mapping changes related to that par-
ticular node and whenever a node fails, all the
other nodes remove the references to that node

5



from the mappings.

To make sure that the rebalancing decision is
made on the basis of the latest bucket map, the
decision must be recomputed after the lock is ac-
quired. Thus a DVS server checks (every few sec-
onds) the bucket map and decides, based on the
rebalancing policies, whether a change must be
made. The server then attempts to acquire the
lock, retrying until successful. After the lock is
acquired, the server once again checks the bucket
map and reaches a (perhaps different) decision,
upon which it acts to commit.

3.3 Get protocol

The get protocol is simple - the client has a list
of nodes in the cluster and chooses a random
host to send the request to (if the host doesn’t
respond, another one is randomly chosen). The
list of nodes doesn’t need to be complete. Any
node in the cluster can hash the key to find the
bucket and examine the bucket-to-node map to
find a node holding the bucket to forward the
request to. The second node replies to the in-
termediary node, which sends the value to the
client.

We can optimize this protocol: the key-to-
bucket hash function can also be applied by the
client. If the client had a copy of the bucket-
to-node map, the request could be sent directly
to a node holding the bucket, thus eliminating
the overhead due to the node in the middle. An
important point is that this map does not need
to be up-to-date on the client; an incorrect en-
try simply results in a regular “unoptimized” re-
quest. The clients request the bucket map from
a random node at large time intervals (20-30 sec-
onds), so that the overhead of this optimization
is minimal.

Note that the read requests are not affected
by rebalancing operations; at any point before,
during, or after a rebalancing, any server listed
in the bucket map as a maintainer for a bucket
in the bucket map still has the values for the
corresponding keys.

3.4 Put protocol

To write a key value, a client again chooses ran-
domly a node to send the request to. Any node
can send the data to the node(s) responsible for
the bucket. The same optimization can be used -
the client chooses a server by reading the bucket
entry in its copy of the bucket map. A DVS
server receiving a write request sends the value
to each server and waits for acknowledgments
before returning.

If a write operation overlaps with a rebalanc-
ing operation, a new server starting to maintain
a bucket might not receive the value of the new
key. This issue is not a problem given our weak
consistency model. Rebalancing operations are
not frequent, so the DVS performance is mini-
mally affected. Note that if needed, this prob-
lem can be fixed by storing in the bucket map
two lists for each bucket - a list of servers to
read from and a list of servers to write to; the
idea would be that a server adding a bucket first
adds itself to the write list, transfers the bucket
values, and then adds itself to the read list.

3.5 Live set detection

We do not aim to handle all the possible cases
of failures and network partitions. Since the
dataset is static, it is not a fatal matter if live set
inconsistencies arise due to network partitions
and such. In the worst case, the live machines’
resources might be very inefficiently used and the
system would need a total restart; however, the
programs will still run correctly (albeit slower).

We focus on ensuring that the live machines
detect failed nodes and rebalance accordingly,
and that a new machine can join the system.

3.5.1 Node failures

The only way in which a node can be declared
failed is if it does not reply to an RPC. RPCs
are used not only for regular requests and mes-
sages, but also in periodic in-circle pinging - each
machine periodically sends a message to the ma-
chine with the successive node ID, except the one
with the highest ID which sends statistics to the

6



one with the lowest ID. The node ID is a concate-
nation of the host’s IP address and port num-
ber. Note that the in-circle messaging scheme
could also be used to exchange usage patterns
and statistics useful for advanced load balancing
schemes.

When a node detects a failure of another node,
it broadcasts a “node failed” message to all the
other machines. The other machines remove this
node from their live set list and bucket-to-host
mappings. Nothing else needs to be done; the
other nodes will automatically notice that some
buckets are unmanaged by any node and will ini-
tiate rebalancing operations.

3.5.2 New node joining

When a new node joins the system, it must have
the address of at least a node in the system; it
sends an RPC to that node requesting a list of
the live machines in the system.

After this step, the new node needs a copy
of the bucket-to-node mapping. If a rebalancing
occurs at this time, the “current” copy of the
mapping might be unclear. To avoid this issue,
the new node acquires the global lock used in
rebalancings by broadcasting an “acquire” mes-
sage. If the attempt is successful, it requests the
mapping from a random node and then sends a
blank “commit” message to release the rights.

The challenge lies in correctly solving the case
when several machines try to join the system at
(roughly) the same time. They can both join
the system unaware of each other; in this state,
the global lock mechanism would fail to ensure
serialization of mapping changes and problems
would occur.

To solve this case, we add functionality to the
global lock mechanism: first, when a node re-
ceives an “acquire” message from an unknown
node, it adds the node in its live set; second,
when a node sends an “ok” reply to an “acquire”
message related to a join operation, it piggy-
backs its list of the live nodes. Upon receiving
the “ok” messages, the initiating node immedi-
ately processes these lists merging them with its
own live set, and also sends “acquire” to any new

nodes in these lists.

Assuming an initial consistent state of live
views and a number of new nodes joining at the
same time, the state of the system will eventually
become consistent; the new nodes that join the
system will immediately attempt to acquire the
lock in order to request the bucket mapping; af-
ter all the nodes have acquired the lock (in some
order), they have all become aware of each other.

Note that an entry of a failed node might make
its way into a live set because of the view merging
upon receiving “ok” messages; however, this is
not a problem since the failure of the node will
be re-detected and it will be eventually removed
from the live set.

3.6 Rebalancing policy

We need to define the policy that affects the de-
cisions behind the rebalancing operations. We
have focused on supplying all the necessary
mechanisms (locking, need-to-remove flag, in-
circle messages) in order to allow any reasonable
rules for rebalancing.

In our implementation, each server is started
with an argument pre-setting the maximum
amount of memory it should use. We use the
following rules, given in their priority order:

1. A DVS server with free RAM must try to
add an orphan bucket - one that is unmain-
tained by any server.

2. A DVS server with free RAM must try to
add a bucket flagged as “need-to-remove”.

3. A DVS server with free RAM should add a
random bucket with a minimum replication
factor

4. A DVS server maintaining a replicated
bucket must try to remove it in favor of
adding an orphan or flagged

Since the rules are applied in a serial order,
it is clear that they will always enforce a max-
imum number of maintained buckets. In fact,
if the cumulated available memory is approxi-
mately equal to the dataset size, only rule 1 is
sufficient. If there is more available memory, the

7



other rules maintain a fairly even load balancing
(in terms of incoming read requests). Note that
in the current implementation, a server never
flags a bucket with the need-to-remove flag; how-
ever, we did implement the functionality to al-
low better rebalancing policies. Rule 1 is ap-
plied however many times needed per rebalanc-
ing, while the other rules are applied only once
per rebalancing because 2, 3 involve data trans-
fer and 4 involves trashing data.

A number of improvements to these rules are
possible. For example, if the servers exchange
information about processing power and perfor-
mance, rule 3 could choose buckets from slow or
overloaded servers. Servers could adapt to CPU
usage of other processes. We chose not to imple-
ment any advanced load balancing rules because
in our tests with the BLAT alignment tool, the
CPU usage of the DVS server processes was small
(5-10%).

3.7 Interface

The client library interface is simple, exposing
get and set functions. It is possible to write
custom applications that use DVS directly; they
would have to use set to upload and reload data
when needed.

However, the programs that we are trying to
provide data to are already designed to work
with files; changing them could be a substantial
effort, depending on their implementations. Be-
cause of this, we chose to write an NFS loopback

0

100

200

300

400

Local Hard
Drive

DVS

se
co

nd
s Waiting Time

CPU Time

Figure 3: Performance of BLAT running from local
hard drive versus BLAT using DVS (3 servers)

server as a “wrapper” for DVS. The NFS server
acts as a DVS client and simulates a filesystem,
providing a transparent interface.

The data loading and reloading mechanism
is also implemented in the NFS server. The
wrapper assumes that the files are available on
a shared filesystem and keeps them open. The
wrapper can be started with an “-upload” argu-
ment to upload all the data to DVS. Each key
corresponds to an 8Kb block in the file. The
NFS server handles read requests by issuing one
or two DVS get requests. If any DVS get returns
an empty value, the NFS server reads the corre-
sponding block from the “real” file, issues a DVS
set with the data and returns to the client.

4 Performance

We measured the performance of our system by
running BLAT on modern PCs with SATA hard
disks, connected with a switched gigabit net-
work. BLAT was not modified in any way; the
tests were ran through NFS wrapper. As de-
scribed in 1.1, BLAT has a gfServer and a gf-
Client part. We are interested in improving the
performance of the gfClient reads; throughout
our tests, we ran two BLAT gfServers on differ-
ent machines on the same network. We compare
our results against clients using copies stored on
the local hard drives.

We first tested the performance of a sin-
gle client; we queried around 1500 predicted
gene sequences from the fruit fly Drosophila

0

100

200

300

P4
3.8Ghz

P4
2.8Ghz

 P4
2.8Ghz

 P4
2.8Ghz

tim
e 

in
 s

ec
on

ds

Local HDD

DVS

Figure 4: Four machines, each machine runs a DVS
server and a BLAT client

8



0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

query groups

tim
e 

in
 s

ec
on

ds
Local HDD
DVS, no failures
DVS, failure at 5
DVS, after failure

Figure 5: Performance comparison when one of four DVS server fails

melanogaster against the human chromosomes
2-9, 20-22, X and Y. The query sequences total
to around 250kb, while the human (database) se-
quences use 900Mb. We ran a single BLAT client
and 3 DVS servers on different machines. Using
DVS, the client completed in about 90 seconds,
about 2.5 times faster than a client using the lo-
cal hard drive (figure 3). In both cases, the CPU
time used by the client was around 30 seconds.

We also tested four BLAT clients running con-
currently on four machines; each client each ma-
chine also runs a DVS server. The dataset was
the entire human genome taking around 1.7Gb.
The clients finished 2-3 times faster using DVS
(figure 4). Note that the times are not compara-
ble with the ones in the previous test, since the
dataset is different.

To test the performance loss due to failures, we
ran a benchmark with the 900Mb dataset, using
four DVS servers. Each DVS server used 320Mb
of memory; thus about 42% of the buckets were
replicated. We split the query sequences into 14
groups; the results are shown in figure 5. First,
we ran BLAT using a copy of the dataset stored
on the local hard drive for reference, since the
difficulties of the query groups varied. We also
ran BLAT using DVS (no failures). We restarted
the experiment and crashed a DVS server at the
5th query group. The graph shows a peak at that
group, showing the overhead of the rebalancing

operations and RPC timeouts. After the peak,
the queries operate at slower speed because a
part of the data was lost, resulting in read faults;
the NFS wrapper has to load pieces of data from
the hard drive. Because the dataset does fit into
the memory used by the three live servers, and
the rebalancing operations maintain a good load
balance, the read faults repopulate the lost data;
subsequent runs, even with only three servers,
operate at the same speed with the first DVS
run (without failures).

The results of these benchmarks show that
DVS provides a significant improvement over a
local hard drive, which should be faster than a
file server on the network, given that the clients
read different parts of the dataset. However, the
gigabit ethernet that we used for our benchmarks
is a very good platform for DVS. We tested
DVS on slower networks and the results were
unpromising; on a 10Mbps network, DVS was
50% slower than the local hard drive, even with
BLAT’s seek-unfriendly reads. Tests using the
6.824 lab computers showed that even a 100Mbs
network might not be fast enough for DVS to be
a worthwhile investment.

5 Conclusions

We argue that many bioinformatics algorithms
are disk bound because of sparse reads from a

9



large dataset. We present DVS as our solution
to speed up reads given some restrictions on the
dataset. The results of our benchmarks show
that DVS is capable of significantly speeding up
bioinformatics algorithms like BLAT. However,
it is important to keep in mind that communi-
cation is the limiting factor in DVS and a fast
network is required. Fortunately, gigabit net-
works are becoming increasingly popular while
hard drive performance improves very slowly.

Acknowledgments. We thank Prof. Morris
and Emil Sit for their guidance, feedback and
help with technical issues regarding this project.

References

[1] Yasushi Saito, Brian N. Bershad, Henry M.
Levy. Manageability, availability and per-
formance in Porcupine: a highly scalable,
cluster-based mail service. Department of
Computer Science and Engineering, Univer-
sity of Washington

[2] Leslie Lamport. Time, clocks, and the order-
ing of events in a distributed system. Com-
munications of the ACM, 21(7):558-565, July
1978.

[3] Flaviu Cristian and Frank Schmuck. Agree-
ing on processor group membership in asyn-
chronous distributed systems. Technical Re-
port CSE95-428, UC San Diego, 1995.

[4] Danga Interactive. memcached : a dis-
tributed memory object caching system.
http://www.danga.com/memcached

[5] H. Lin, X. Ma, P.Chandramohan, A. Geist,
N. Samatova. Efficient Data Access for Par-
allel BLAST. IEEE International Parallel &
Distributed Processing Symposium, Denver,
CO, April 2005

[6] A. Darling, L. Carey, and W. Feng The
Design, Implementation, and Evaluation of
mpiBLAST. 4th International Conference on
Linux Clusters: The HPC Revolution 2003

in conjunction with the ClusterWorld Con-
ference & Expo, San Jose, CA, June 2003

[7] JW. Kent. BLAT - The BLAST-Like Align-
ment Tool. Genome Research 12(4):656-664,
2002

10


