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ABSTRACT
The problem of finding heavy hitters and approximating the fre-
quencies of items is at the heart of many problems in data stream
analysis. It has been observed that several proposed solutions to
this problem can outperform their worst-case guarantees onreal
data. This leads to the question of whether some stronger bounds
can be guaranteed. We answer this in the positive by showing that
a class of “counter-based algorithms” (including the popular and
very space-efficient FREQUENT and SPACESAVING algorithms)
provide much stronger approximation guarantees than previously
known. Specifically, we show that errors in the approximation
of individual elements do not depend on the frequencies of the
most frequent elements, but only on the frequency of the remaining
“tail.” This shows that counter-based methods are the most space-
efficient (in fact, space-optimal) algorithms having this strong error
bound.

This tail guarantee allows these algorithms to solve the “sparse
recovery” problem. Here, the goal is to recover a faithful represen-
tation of the vector of frequencies,f . We prove that using space
O(k), the algorithms construct an approximationf∗ to the fre-
quency vectorf so that the L1 error‖f − f∗‖1 is close to the
best possible errorminf ′ ‖f ′ − f‖1, wheref ′ ranges over all vec-
tors with at mostk non-zero entries. This improves the previously
best known space bound of aboutO(k log n) for streams without
element deletions (wheren is the size of the domain from which
stream elements are drawn). Other consequences of the tail guar-
antees are results for skewed (Zipfian) data, and guaranteesfor ac-
curacy of merging multiple summarized streams.
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1. INTRODUCTION
Data stream algorithms have become an indispensable tool for

analyzing massive data sets [21, 27]. Such algorithms aim topro-
cess huge streams of updates in a single pass and store a compact
summary from which properties of the input can be discovered,
with strong guarantees on the quality of the result. This approach
has found many applications, in large scale data processingand
data warehousing [19, 4, 16, 18], as well as in other areas, such as
network measurements [1, 11, 13, 15], sensor networks [5, 29] and
compressed sensing [17, 7].

Finding the “heavy hitters” is one of the quintessential problems
in data stream algorithms. Given a stream of items (possiblywith
weights attached), find those items with the greatest total weight.
This is an intuitive problem, that applies to many natural questions:
given a stream of search engine queries, which are the most fre-
quently occurring terms? Given a stream of supermarket transac-
tions and prices, which items have the highest total dollar sales?
Further, this simple question turns out to be a core subproblem of
many more complex computations over data streams, such as esti-
mating the entropy [8], and clustering geometric data [20].There-
fore, it is of high importance to design efficient algorithmsfor this
problem, and understand the performance of existing ones.

The problem can be formalized into one of estimating item fre-
quencies. In this problem we are given a stream ofN elements
from some universe; the goal is to compute, for each universeele-
menti, an estimator̂fi that approximatesfi, the number of times
the elementi occurs in the data stream (or the sum of associated
weights in a weighted version). Such estimators provide a succinct
representation of the data stream, with a controllable trade-off be-
tween description size and approximation error.

An algorithm for frequency estimation is characterized by two
related parameters: the space1 and the bounds on the error in es-

1We measure space in memory words, each consisting of a loga-
rithmic number of bits.



Algorithm Type Space Error bound
FREQUENT[13, 26, 23] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF1

FREQUENT[6] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF
res(1)
1

LOSSYCOUNTING [24] Counter O(1/ǫ log(ǫF1)) |fi − f̂i| ≤ ǫF1

SPACESAVING [25] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF1

Count-Min [12] Sketch O((k/ǫ) · log n) |fi − f̂i| ≤ ǫ/k · F res(k)
1

Count-Sketch [9] Sketch O((k/ǫ) · log n) (fi − f̂i)
2 ≤ ǫ/k · F

res(k)
2

This paper Counter O(k/ǫ) |fi − f̂i| ≤ ǫ/k · F res(k)
1

Table 1: Previously known bounds of frequency estimation algorithms.
F1 is the sum of all frequencies;F res(k)

1 is the sum of all but the topk frequencies;F res(k)
2 is the sum of the squares of all but the topk

frequencies;n is the size of the domain from which the stream elements are drawn.

timating thefis. The error bounds are typically of the “additive”
form, namely we have|fi − f̂i| ≤ ǫB, for a B (as in “bound”)
that is a function of the stream. The boundB is equal either to the
size of the whole stream (equivalently, to the quantityF1, where
Fp =

P

i(fi)
p), or to the size of theresidual tail of the stream,

given byF
res(k)
1 , the sum of the frequencies of all elements other

than thek most frequent ones (heavy hitters). The residual guaran-
tee is more desirable, since it is always at least as good as the F1

bound. More strongly, since streams from real applicationsoften
obey a veryskewedfrequency distribution, with the heavy hitters
constituting the bulk of the stream, a residual guarantee isasymp-
totically better. In particular, in the extreme case when there are
only k distinct elements present in the stream, the residual error
bound is zero, i.e. the frequency estimation is exact.

Algorithms for this problem have fallen into two main classes:
(deterministic) “counter” algorithms and (randomized) “sketch” al-
gorithms. Table 1 summarizes the space and error bounds of some
of the main examples of such algorithms. As is evident from the
table, the bounds for the counter and sketching algorithms are in-
comparable: counter algorithms use less space, but have worse er-
ror guarantees than sketching algorithms. In practice, however, the
actualperformance of counter-based algorithms has been observed
to be appreciably better than of the sketch-based ones, given the
same amount of space [10]. The reason for this disparity has not
previously been well understood or explained. This has led users
to apply very conservative bounds in order to provide the desired
guarantees; it has also pushed users towards sketch algorithms in
favor of counter algorithms since the latter are not perceived to of-
fer the same types of guarantee as the former.

Our Contributions. In this paper we show that the good empirical
performance of counter-based algorithms is not an accident: they
actually do satisfy a much stronger error bound than previously
thought. Specifically:

• We identify a general class ofHeavy-Tolerant Counter algo-
rithms (HTC), that contains the most popular FREQUENT

and SPACESAVING algorithms. The class captures the es-
sential properties of the algorithms and abstracts away from
the specific mechanics of the procedures.

• We show that any HTC algorithm that has anǫF1 error guar-
antee in fact satisfies the stronger residual guarantee.

We conclude that FREQUENT and SPACESAVING offer the
residual bound on error, while using less space than sketching algo-
rithms. Moreover, counter algorithms have small constantsof pro-
portionality hidden in their asymptotic cost compared to the much
larger logarithmic factors of sketch algorithms, making these space

savings very considerable in practice. We also establish through
a lower bound that the space usage of these algorithms is within
a small constant factor of the space required by any counter algo-
rithm that offers the residual bound on error.

The new bounds have several consequences beyond the immedi-
ate practical ramifications. First, we show that they provide bet-
ter bounds for thesparse recoveryproblem, a streaming analog
of Compressed Sensing [14, 7, 17, 28]. This problem is to find
the best representationf∗ of the frequency distribution, so thatf∗

has onlyk non-zero entries. Such a representation captures exact
stream statistics for all but‖f − f∗‖1 stream elements. We show
that using a counter algorithm to produce thek largest estimated
frequencieŝfi yields a good solution to this problem. Formally, let
S be the set of thek largest entries in̂f , generated by a counter al-
gorithm withO(k/ǫ) counters. Letf∗ be ann-dimensional vector
such thatf∗

i is equal tof̂i if i ∈ S andf∗
i = 0 otherwise. Then we

show that under theLp norm, for anyp ≥ 1, we have

‖f − f∗‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p

This is the best known result for this problem in a streaming
setting; note that the error is always at least(F

res(k)
p )1/p. The best

known sketching algorithms achieve this bound usingΩ(k log n
k
)

space (see[2, 3, 22]); in contrast, our approach yields a space bound
of O(k). By extracting allm approximated values from a counter
algorithm (as opposed to just topk), we are able to show another
result. Specifically, by modifying the algorithms to ensurethat they
always provide anunderestimateof the frequencies, we show that
the resulting reconstruction hasLp error(1+ǫ)(ǫ/k)1−1/pF

res(k)
1

for anyp ≥ 1.
As noted above, many common frequency distributions are nat-

urally skewed. We show that if the frequencies follow a Zipfian
distribution with parameterα > 1, then the same tail guarantee
follows using onlyO(ǫ−1/α) space. Lastly, we also discuss exten-
sions to the cases when streams can include arbitrary weights for
each occurrence of an item; and when multiple streams are sum-
marized and need to be merged together into a single summary.We
show how the algorithms considered can be generalized to handle
both of these situations.

1.1 Related Work
There is a large body of algorithms proposed in the literature

for heavy hitters problems and their variants; see [10] for asurvey.
Most of them can be classified as eithercounter-basedor sketch-
based. The first counter algorithm is due to Misra and Gries [26],
which we refer to as FREQUENT. Several subsequent works dis-
cussed efficient implementation and improved guarantees for this



algorithm [13, 6]. In particular, Boseet al. showed that it offers
an F

res(1)
1 guarantee [6]. Our main result is to improve this to

F
res(k)
1 , for a broader class of algorithms.
A second counter algorithm is the LOSSYCOUNTING algorithm

of Manku and Motwani. This has been shown to requireO(1/ǫ)
counters over randomly ordered streams to give anǫF1 guaran-
tee, but there are adversarial order streams for which it requires
O(1/ǫ log ǫn) [24]. Our results hold over all possible stream or-
derings.

The most recent counter solution is the SPACESAVING algo-
rithm due to Metwallyet al. [25]. The algorithm is shown to offer
an F1 guarantee, and also analyzed in the presence of data with
Zipfian frequency distribution. Here, we show anF

res(k)
1 bound,

and demonstrate similar bounds for Zipfian data for a larger class
of counter algorithms.

Sketch algorithms are based on linear projections of the frequency
vector onto a smaller sketch vector, using compact hash functions
to define the projection. Guarantees in terms ofF

res(k)
1 or F

res(k)
2

follow by arguing that the items with thek largest frequencies are
unlikely to (always) collide under the random choice of the hash
functions, and so these items can effectively be “removed” from
consideration. Because of this random element, sketches are an-
alyzed probabilistically, and have a probability of failure that is
bounded by1/nc for a constantc (n is the size of the domain
from which the stream elements are drawn). The Count-Sketch
requiresO((k/ǫ) log n) counters to give guarantees on the sum of
squared errors in terms ofF

res(k)
2 [9]; the Count-Min sketch uses

O((k/ǫ) log n) counters to give guarantees on the absolute error
in terms ofF res(k)

1 [12]. These two guarantees are incomparable
in general, varying based on the distribution of frequencies. A key
distinction of sketch algorithms is that they allow both positive and
negative updates (where negative updates can correspond todele-
tions, in a transactional setting, or simply arbitrary signal values,
in a signal processing environment). This, along with the fact that
they are linear transforms, means that they can be used to solve
problems such as designing measurements for compressed sensing
systems [17, 7]. So, although our results show that counter algo-
rithms are strictly preferable to sketches when both are applicable,
there are problems that are solved by sketches that cannot besolved
using counter algorithms.

We summarize the main properties of these algorithms, along
with the correspond results based on our analysis, in Table 1.

2. PRELIMINARIES
We introduce the notation used throughout this paper. The al-

gorithms maintain at mostm counters which correspond to a “fre-
quent” set of elements occurring in the input stream. The input
stream contains elements, which we assume to be integers between
1 andn. We denote a stream of sizeN by u1, u2, . . . uN . We use
ux...y as a shorthand for the partial streamux, ux+1, . . . , uy.

We denote frequencies of elements by ann-dimensional vec-
tor f . For ease of notation, we assume without loss of generality
that elements are indexed in order of decreasing frequency,so that
f1 ≥ f2 ≥ . . . ≥ fn. When the stream is not understood from con-
text, we specify it explicitly, e.g.f(ux...y) is the frequency vector
for the partial streamux...y. We denote the sum of the frequencies
by F1; we denote the sum of frequencies except the largest ones by
F

res(k)
1 , and we generalize the definition to sums of powers of the

frequencies:

F res(k)
p =

n
X

i=k+1

fp
i , Fp = F res(0)

p

The algorithms considered in this paper can be thought of as ad-
hering to the following form. The state of an algorithm is repre-
sented by ann-dimensional vector of countersc. The vectorc has
at mostm non-zero elements. We denote the “frequent” set by
T = {i | ci 6= 0}, since only this set needs to be explicitly stored.
The counter value of an element is an approximation for its fre-
quency; the error vector of the approximation is denoted byδ, with
δi = |fi − ci|.

We demonstrate our results with reference to two known counter
algorithms: FREQUENT and SPACESAVING . Although similar,
the two algorithms differ in the analysis and their behaviorin prac-
tice. Both maintain their frequent setT , and process a stream of
updates. Given a new itemi in the stream which is stored inT ,
both simply increase the corresponding counterci; or, if i /∈ T
and |T | < m, theni is stored with a count of1. The algorithms
differ when an unstored item is seen and|T | = m: FREQUENT

decrements all stored counters by 1, and (implicitly) throws out
any counters with zero count; SPACESAVING finds an itemj with
smallest non-zero countcj and assignsci ← cj + 1, followed by
cj ← 0, so in effecti replacesj in T . Pseudocode for these algo-
rithms is presented in Figure 1

These algorithms are known to provide a “heavy hitter” guaran-
tee on the approximation errors of the counters:

Definition 1. An m-counter algorithm provides aheavy hitter
guarantee with constantA > 0 if, for any stream,

δi ≤

—

A
F1

m

�

∀i

More precisely, they both provide this guarantee with constant
A = 1. Our result is that they also satisfy the following stronger
guarantee:

Definition 2. An m-counter algorithm provides ak-tail guaran-
tee with constants(A, B), with A, B > 0 if for any stream

δi ≤

$

A
F

res(k)
1

m−Bk

%

∀i

Note that the heavy hitter guarantee is equivalent to the0-tail
guarantee. Our general proof (which can be applied to a broad
class of algorithms) yields ak-tail guarantee with constantsA = 1,
B = 2 for both algorithms (for anyk ≤ m/2). However, by
considering particular features of FREQUENTand SPACESAVING ,
we prove ak-tail guarantee with constantsA = B = 1 for any
k < m following appropriate analysis (see appendices B, C).

The lower bound proved in appendix A establishes that any counter

algorithm that provides an error bound of
F

res(k)
1
m−k

must use at least
(m− k)/2 counters; thus the number of counters FREQUENTand
SPACESAVING use is within a small factor (3 for k ≤ m/3) of the
optimal.

3. RESIDUAL ERROR BOUND
In this section we state and prove our main result on the error

bound for a class of heavy-tolerant counter algorithms. We begin
by formally defining this class.

Definition 3. A value i is x-prefix guaranteedfor the stream
u1...s if after the firstx < s elements of the stream have been pro-
cessed,i will stay in T even if some elements are removed from the
remaining stream (including occurrences ofi). Formally, the value
i is x-prefix guaranteedif 0 ≤ x < s andci(u1...xv1...t) > 0 for
all subsequencesv1...t of u(x+1)...s, 0 ≤ t ≤ s− x.



Algorithm 1: FREQUENT(m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else forall j ∈ T do
cj ← cj − 1;
if cj = 0 then

T ← T\{j};

Algorithm 2: SPACESAVING (m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else
j ← arg minj∈T cj ;
ci ← cj + 1;
T ← T ∪ {i}\{j};

Figure 1: Pseudocode for FREQUENTand SPACESAVING algorithms

Note that ifi is x-prefix guaranteed, theni is alsoy-prefix guar-
anteed for ally > x.

Definition 4. A counter algorithm isheavy-tolerantif extra oc-
currences of guaranteed elements do not increase the estimation
error. Formally, an algorithm isheavy-tolerantif for any stream
u1...s, given anyx, 1 ≤ x < s, for which elementi = ux is
(x−1)-prefix guaranteed, it holds that

δj(u1...s) ≤ δj(u1...(x−1)u(x+1)...s) ∀j

THEOREM 1. Algorithms FREQUENTand SPACESAVING are
heavy-tolerant.

THEOREM 2. If a heavy-tolerant algorithm provides a heavy
hitter guarantee with constantA, it also provides ak-tail guarantee
with constants(A, 2A), for anyk, 1 ≤ k < m/2A.

3.1 Proof of Heavy Tolerance
Intuitively, this is true because occurrences of an elementalready

in the frequent set only affect the counter value of that element; and,
as long as the element never leaves the frequent set, the value of its
counter does not affect the algorithm’s other choices.

PROOF OFTHEOREM1. Denotev1...t = u(x+1)...(x+t), with
t ≤ s− x. We prove by induction ont that for both algorithms

c(u1...xv1...t) = c(u1...(x−1)v1...t) + ei

whereei is thei-th row ofIn, then×n identity matrix; this implies
that

δ(u1...xv1...t) = δ(u1...(x−1)v1...t)

Base case at t = 0: By the hypothesis:ci(u1...(x−1)) 6= 0, hence
when elementux = i arrives after processingu1...x, both FRE-
QUENT and SPACESAVING just increasei’s counter:

c(u1...x) = c(u1...(x−1)) + ei

Induction step for t > 0: We are given that

c(u1...xv1...(x−1)) = c(u1...(x−1)v1...(t−1)) + ei

Note that sincei is (x−1)-prefix guaranteed, these vectors have
the same support.
Case 1: cvt(u1...xv1...(t−1)) > 0. Hence
cvt(u1...(x−1)v1...(t−1)) > 0. For both streams,vt’s counter just
gets incremented and thus

c(u1...xv1...t) = c(u1...xv1...(t−1)) + evt

= c(u1...(x−1)v1...(t−1)) + evt + ei

= c(u1...(x−1)v1...t) + ei

Case 2: cvt(u1...xv1...(t−1)) = 0. Note thatvt 6= i sincei is x-
prefix guaranteed andcvt(u1...(x−1)v1...(t−1)) = 0. By the induc-
tion hypothesis, both counter vectors have the same support(set of
non-zero entries). If the support is less thanm, then the algorithm
addsevk

to the counters, and the analysis follows Case 1 above.
Otherwise, the two algorithms differ:

• FREQUENTalgorithm: In this case all non-zero counters will
be decremented. Since both counter vectors have the same
support, they will be decremented by the samem-sparse bi-
nary vectorγ = χ(T ) =

P

j:cj 6=0 ej .

• SPACESAVING algorithm: The minimum non-zero
counter is set to zero. To avoid ambiguity, we specify that
SPACESAVING will pick the countercj with the smallest
identifier j if there are multiple counters with equal small-
est non-zero value. Let

j = argmin
j∈T (u1...xv1...(t−1))

cj(u1...xv1...(t−1))

and

j′ = argmin
j′∈T (u1...(x−1)v1...(t−1))

cj′(u1...(x−1)v1...(t−1))

Sincei is x-prefix guaranteed, its counter can never become
zero, hencej 6= i, j′ 6= i. Since

ci′(u1...xv1...(t−1)) = ci′(u1...(x−1)v1...(t−1))

for all i′ 6= i, it follows thatj = j′ and

cj(u1...xv1...(t−1)) = cj′(u1...(x−1)v1...(t−1)) = M.

Hence both streams result in updating the counters by sub-
tracting the same difference vectorγ = Mej − (M + 1)evt

So each algorithm computes some difference vectorγ irrespec-
tive of which stream it is applied to, and updates the counters:

c(u1...xv1...t) = c(u1...xv1...(t−1))− γ

= c(u1...(x−1)v1...(t−1)) + ei − γ

= c(u1...(x−1)v1...t) + ei



3.2 Proof of k-tail guarantee
Let Remove(u1...s, i) be the subsequence ofu1...s with all oc-

currences of valuei removed, i.e.

Remove(u1...s, i) =

8

<

:

empty sequence ifs = 0
(u1,Remove(u2...s, i)) if u1 6= i

Remove(u2...s, i) if u1 = i

LEMMA 3. If i isx-prefix guaranteed and the algorithm is heavy-
tolerant, then

δj(u1...s) ≤ δj(u1...xv1...t) ∀j

wherev1...t = Remove(u(x+1)...s, i), with0 ≤ t ≤ s− x.

PROOF. Let x1, x2, . . . , xq be the positions of occurrences of
i in u(x+1)...s, with x < x1 < x2 < . . . < xq. We apply the
heavy-tolerant definition for each occurrence; for allj:

δj(u1...s) ≤ δj(u1...(x1−1)u(x1+1)...s)

≤ δj(u1...(x1−1)u(x1+1)...(x2−1)u(x2+1)...s)

≤ . . .

≤ δj(u1...xv1...t)

Note in particular thatδi(u1...p), the error in estimating the fre-
quency ofi in the original stream, is identical toδi(u1...xv1...q), the
error ofi on the derived stream, sincei is x-prefix guaranteed.

Definition 5. An error boundfor an algorithm is a function∆ :
N

n → R
+ such that for any streamu1...s

δi(u1...s) ≤ ⌊∆(f(u1...s))⌋ ∀i

In addition,∆ must be “increasing” in the sense that for any two
frequency vectorsf ′ andf ′′ such thatf ′

i ≤ f ′′
i for all i, it holds

that∆(f ′) ≤ ∆(f ′′).

LEMMA 4. Let∆ be an error bound for a heavy-tolerant algo-
rithm that provides a heavy hitter guarantee with constantA. Then
the following function is also an error bound for the algorithm, for
anyk, 1 ≤ k < m/A:

∆′(f) = A
k∆(f) + k + F

res(k)
1

m

PROOF. Let u1...s be any stream. Let
D = 1 + ⌊∆(f(u1...s))⌋. We assume without loss of generality
that the elements are indexed in order of increasing frequency.

Let k′ = max {i | 1 ≤ i ≤ k andfi(u1...s) > D}.
For eachi ≤ k′ let xi be the position of theD-th occurrence of

i in the stream. We claim that anyi ≤ k′ is xi-prefix guaranteed:
let v1...t be any subsequence ofu(xi+1)...s; it holds for allj that

δj(u1...xi
v1...t) ≤ ⌊∆(f(u1...xi

v1...t))⌋ < D

and socj(u1...xi
v1...t) ≥ fj(u1...xi

v1...t)− δj(u1...xi
v1...t)

> D −D = 0.

Let i1, i2, . . . ik′ be the permutation of1 . . . k′ so thatxi1 >
xi2 > . . . > xik′

. We can apply Lemma 3 fori1 which is xi1 -
prefix guaranteed; for allj

δj(u1...s) ≤ δj(u1...xi1
v1...sv )

wherev1...sv = Remove(u(xi1
+1)...s, i1).

Sincex2 < x1, i2 is x2-prefix guaranteed for the new stream
u1...xi1

v1...sv and we apply Lemma 3 again:

δj(u1...s) ≤ δj(u1...xi1
v1...sv ) ≤ δj(u1...xi2

w1...sw ) ∀j

wherew1...sw = Remove(u(xi2
+1)...xi1

v1...sv , i2). Since the
xij

values are decreasing, we can continue this argument fori =
3, 4, . . . , k′. We obtain the following inequality for the final stream
z1...sz

δj(u1...s) ≤ δj(z1...sz ) ∀j

wherez1...sz is the streamu1...s with all “extra” occurrences of
elements1 to k′ removed (“extra” means after the firstD occur-
rences). Thus

‖f(z1...sz )‖1 = k′D +

n
X

i=k′+1

fi(u1...s)

Eitherk′ = k, or k′ < k andfi(u1...s) ≤ D for all k′ < i ≤ k; in
both cases we can replacek′ with k:

‖f(z1...sz )‖1 ≤ kD +
n
X

i=k+1

fi(u1...s)

We now apply the heavy hitter guarantee for this stream; for all
j:

δj(u1...s) ≤ δj(z1...sz )

≤

—

A
kD +

Pn
i=k+1 fi(u1...s)

m

�

≤

$

A
k∆(u1...s) + k + F

res(k)
1

m

%

We can now prove theorem 2.
PROOF OFTHEOREM 2. We start with the initial error bound

given by the heavy hitter guarantee∆(f) = A ‖f‖1

m
and apply

Lemma 4 to obtain another error bound∆′. We can continue it-
eratively applying Lemma 4 in this way. Either we will eventually
obtain a new bound which is worse than the previous one, in which
case this process halts with the previous error bound; or else we can
analyze the error bound obtained in the limit (in the spirit of [6]).
In both cases, the following holds for the best error bound∆:

∆(f) ≤ A
k∆(f) + k + F

res(k)
1

m

and so∆(f) ≤ A
k + F

res(k)
1

m−Ak
.

We have shown that for any streamu1...p,

δi(u1...p) ≤

$

A
k + F

res(k)
1

m−Ak

%

∀i

We show that this implies the guarantee

δi(u1...p) ≤

$

A
F

res(k)
1

m− 2Ak

%

∀i

Case 1: AF
res(k)
1 < m− 2Ak. In this case both guarantees are

identical: all errors are0.
Case 2: AF

res(k)
1 ≥ m− 2Ak:

A2kF
res(k)
1 ≥ Ak(m− 2Ak)

A(m− Ak)F
res(k)
1 ≥ A(m− 2Ak)

“

k + F
res(k)
1

”

A
F

res(k)
1

m− 2Ak
≥ A

k + F
res(k)
1

m− Ak



4. SPARSE RECOVERIES
Thek-sparse recovery problem is to find a representationf ′ so

thatf ′ has onlyk non-zero entries (“k-sparse”), and theLp norm
‖f − f ′‖p = (

Pn
i=1 |fi − f ′

i |
p)1/p is minimized. A natural ap-

proach is to buildf ′ from the heavy hitters off , and indeed we
show that this method gives strong guarantees for frequencies from
heavy tolerant counter algorithms.

4.1 k-sparse recovery
To get ak-sparse recovery, we run counter algorithm that pro-

vides ak-tail guarantee withm counters and createf ′ using thek
largest counters. These are not necessarily thek most frequent el-
ements (with indices1 to k in our notation), but we show that they
must be “close enough”.

THEOREM 5. If we run a counter algorithm which provides
a k-tail guarantee with constants(A, B) usingm = k( 3A

ε
+ B)

counters and retain the topk counter values into thek-sparse vec-
tor f ′, then for anyp ≥ 1 :

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p

PROOF. Let K = {1, . . . , k} be the set of thek most frequent
elements. LetS be the set of elements with thek largest counters.
Let R = {1, . . . , n} \ (S ∪ K) be the set of all other remaining
elements. Letk′ = |K \ S| = |S \K|.

Let x1 . . . xk′ be thek′ elements inS \ K, with cx1 ≥ cx2 ≥
. . . ≥ cx

k′
. Let y1 . . . yk′ be thek′ elements inK \ S, with cy1 ≥

cy2 ≥ . . . ≥ cyk′
. Notice thatcxi

≥ cyi
for any i: cyi

is theith

largest counter inK \ S, whereascxi
is theith largest counter in

(K ∪S) \ (S ∩K), a superset ofK \S. Let∆ be an upper bound
on the counter errorsδ. Then for anyi

fyi
−∆ ≤ cyi

≤ cxi
≤ fxi

+ ∆ (1)

Hencefyi
≤ fxi

+ 2∆. Let f ′ be the recovered frequency vector
(f ′

xi
= cxi

and zero everywhere else). For anyp ≥ 1, and using
the triangle inequality‖a + b‖p ≤ ‖a‖p + ‖b‖p on the vectorfi

restricted toi ∈ R ∪ S and the vector equal to the constant2∆
restricted toi ∈ S \K:

‖f − f ′‖p =

0

@

X

i∈S

(ci − fi)
p +

X

i∈R∪K\S

(fi)
p

1

A

1/p

≤

0

@

k
X

i=1

∆p +
X

i∈K\S

(fi)
p +

X

i∈R

(fi)
p

1

A

1/p

≤ k1/p∆ +

0

@

k′

X

i=1

(fyi
)p +

X

i∈R

(fi)
p

1

A

1/p

≤ k1/p∆ +

0

@

k′

X

i=1

(fxi
+2∆)p +

X

i∈R

(fi)
p

1

A

1/p

≤ 3k1/p∆ +

0

@

X

i∈R∪S\K

(fi)
p

1

A

1/p

≤ 3k1/p∆ + (F res(k)
p )1/p

If an algorithm has the tail guarantee with constants(A, B), by
usingm = k( 3A

ε
+ B) counters we get

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p (2)

Note that(F res(k)
p )1/p is the smallest possibleLp error of any

k-sparse recovery off . Also, if the algorithm provides one-sided
error on the estimated frequencies (as is the case for FREQUENT

and SPACESAVING ), it is sufficient to usem = k( 2A
ε

+ B) coun-
ters, since nowfyi

≤ fxi
+ ∆.

Estimating F
res(k)
1 . Since our algorithms give guarantees in terms

of F
res(k)
1 , a natural question is to estimate the value of this quan-

tity.

THEOREM 6. If we run a counter algorithm which provides a
k-tail guarantee with constants(A, B) using(Bk + Ak

ε
) counters

and retain the largestk counter values as thek-sparse vectorf ′,
then:

F
res(k)
1 (1− ε) ≤ F1 − ‖f

′‖1 ≤ F
res(k)
1 (1 + ε)

PROOF. To show this result, we rely on the definitions and prop-
erties of setsS andK from the proof of Theorem 5. By construc-
tion of setsS andK, fxi

≤ fyi
for any i. Using equation (1) it

follows that

fyi
−∆ ≤ cxi

≤ fyi
+ ∆

So the norm off ′ must be close to the norm of the bestk-sparse
representative off , i.e. (F1−F

res(k)
1 ). Summing over each of the

k counters yields

F1 − F
res(k)
1 − k∆ ≤ ‖f ′‖1 ≤ F1 − F

res(k)
1 + k∆

F
res(k)
1 − k∆ ≤ F1 − ‖f

′‖1 ≤ F
res(k)
1 + k∆

The result follows when settingm = k(Ak
ε

+ B)) so the upper

bound ensures∆ ≤ ε
k
F

res(k)
1 .

4.2 m-sparse recovery
When the counter algorithm usesm counters, it stores approxi-

mate values form elements. It seems intuitive that by using allm
of these counter values, the recovery should be even better.This
turns out not to be true in general. Instead, we show that it ispos-
sible to derive a better result given an algorithm which always un-
derestimatesthe frequencies (ci ≤ fi). For example, this is true in
the case of FREQUENT.

As described so far, SPACESAVING always overestimates, but
can be modified to underestimate the frequencies. In particular,
the algorithm has the property that error is bounded by the small-
est counter value, i.e.∆ = min{cj |cj 6= 0}. So settingc′i =
max{0, ci −∆} ensures thatc′i ≤ fi. Becausefi + ∆ ≥ ci ≥ fi,
fi − c′i ≤ ∆ and thusc′ satisfies the samek-tail bounds with
A = B = 1 (as per appendix C). Note that in practice, slightly im-
proved per-item guarantees follow by storingǫi for each non-zero
counterci as the value of∆ wheni last entered the frequent set,
and usingci − ǫi as the estimated value (as described in [25]).

THEOREM 7. If we run an underestimating counter algorithm
which provides ak-tail guarantee with constants(A,B) using
(Bk + Ak

ε
) counters and retain the counter values into them-

sparse vectorf ′, then for anyp ≥ 1:

‖f − f ′‖p ≤ (1 + ε)
“ ε

k

”1−1/p

F
res(k)
1



PROOF. Setm = k(A
ε

+ B) in Definition 2 to obtain

‖f − f ′‖p =

 

k
X

i=1

(fi − ci)
p +

n
X

i=k+1

(fi − ci)
p

!1/p

≤

„

k
εp

kp
(F

res(k)
1 )p+

+
n
X

i=k+1

(fi − ci)
εp−1

kp−1
(F

res(k)
1 )p−1

!1/p

≤

„

εp

kp−1
(F

res(k)
1 )p +

εp−1

kp−1
(F

res(k)
1 )p

«1/p

≤ (1 + ε)
“ ε

k

”1−1/p

F
res(k)
1

5. ZIPFIAN DISTRIBUTIONS
Realistic data can often be approximated with a Zipfian [30] dis-

tribution; a stream of lengthF1 = N , with n distinct elements,
distributed (exactly) according to the Zipfian distribution with pa-
rameterα has frequencies

fi = N
1

iαζ(α)
where ζ(α) =

n
X

i=1

1

iα

The valueζ(α) converges to a small constant whenα > 1. Al-
though data rarely obeys this distribution exactly, our first result
requires only that the “tail” of the distribution can be bounded by
a (small constant multiple of) a Zipfian distribution. Note that this
requires that the frequencies follow this distribution, but the order
of items in the stream can be arbitrary.

THEOREM 8. Given Zipfian data with parameterα ≥ 1, if a
counter algorithm that provides ak-tail guarantee with constants

(A, B) for k =
`

1
ε

´1/α
is used withm = (A + B)

`

1
ε

´1/α
coun-

ters, the counter errors are at mostεF1.

PROOF. Thek-tail guarantee with constants(A, B) means

∆ = A
F

res(k)
1

m−Bk
≤ A

N

ζ(α)

Pn
i=k+1 i−α

m−Bk

Then

n
X

i=k+1

1

iα
≤

Z n

k

1

xα
dx =

1

kα−1

Z n/k

1

1

xα
dx ≤

ζ(α)

kα−1

∆ ≤ A
ζ(α)

kα−1

N

ζ(α)(m−Bk)
=

N

kα
A

k

m−Bk

by settingk =
`

1
ε

´1/α
, m = (A + B)k,

∆ ≤
N

kα
= εN

A similar result is proved for SPACESAVING in [25] under the
stronger assumption that the frequencies are exactly as defined by
the Zipfian distribution.

5.1 Top-k
In this section we analyze the algorithms in the context of the

problem of finding topk elements, when the input is Zipf dis-
tributed.

THEOREM 9. Assuming Zipfian data with parameterα > 1,
a counter algorithm that provides ak′-tail guarantee fork′ =

Θ
“

k
`

k
α

´1/α
”

can retrieve the topk elements in correct order

usingO
“

k
`

k
α

´1/α
”

counters. For Zipfian data with parameter

α = 1, an algorithm withk′-tail guarantee fork′ = Θ(k2 lnn)
can retrieve the topk elements in correct order usingO(k2 lnn)
counters.

PROOF. To get the topk elements in the correct order we need

∆ <
fk − fk+1

2

fk − fk+1 =
N

ζ(α)

„

1

kα
−

1

(k + 1)α

«

=
N

ζ(α)

(k + 1)α − kα

(k + 1)αkα

<
N

ζ(α)

αkα−1

(k + 1)αkα
=

N

ζ(α)

α

(k + 1)αk

Thus we need error rate

ε =
α

2ζ(α)(k + 1)αk
=



Θ(α/k1+α) for α > 1
Θ(1/(k2 ln n)) for α = 1

The result then follows from Theorem 8.

6. EXTENSIONS

6.1 Real-Valued Update Streams
So far, we have considered a model of streams where each stream

token indicates an arrival of an item with (implicit) unit weight.
More generally, streams often include a weight for each arrival: a
size in bytes or round-trip time in seconds for Internet packets; a
unit price for transactional data, and so on. When these weights are
large, or not necessarily integral, it is still desirable tosolve heavy
hitters and related problems on such streams.

In this section, we make the observation that the two counter
algorithms FREQUENT and SPACESAVING naturally extend to
streams in which each update includes a positive real valuedweight
to apply to the given item. That is, the stream consists of tuplesui,
Eachui is a tuple(ai, bi) representingbi occurrences of element
ai wherebi ∈ R

+ is a positive real value.
We outline how to extend the two algorithms to correctly process

such streams. For SPACESAVING , observe that when processing
each new itemai, the algorithm identifies a counter corresponding
toai and increments it by 1. We simply change this to incrementing
the appropriate counter bybi to generate an algorithm we denote
SPACESAVINGR. It is straightforward to modify the analysis of
[25] to demonstrate that SPACESAVINGRachieves the basic Heavy
Hitters guarantee (Definition 1). This generalizes SPACESAVING ,
since when everybi is 1, then the two algorithms behave identically.

Defining FREQUENTR is a little more complex. If the new item
ai ∈ T , then we can simply increasesai’s counter bybi; and if
there are fewer thanm − 1 counters then one can be allocated to
ai and set tobi. But if ai is not stored, then the next step de-
pends on the size ofcmin, the smallest counter value stored inT .



If bi ≤ cmin, then all stored counters are reduced bybi. Other-
wise, all counters are reduced bycmin, and some counter with zero
count (there must be at least one now) is assigned toai and given
countbi− cmin. Following this, items with zero count are removed
from T . Then FREQUENTR achieves the basic Heavy Hitter guar-
antee by observing that every subtraction of counter valuesfor a
given item coincides with the same subtraction tom−1 others, and
all counter increments correspond to somebi of a particular item.
Therefore, the error in the count of any item is at mostF1/m.

We comment that a similar analysis to that provided in Section 3
applies, to demonstrate that these new counter algorithms give a
tail guarantee. The main technical challenge is generalizing the
definitions ofx-prefix guaranteed and heavy tolerant algorithms in
the presence of arbitrary real updates. We omit the detailedanalysis
from this presentation, and instead we state in summary:

THEOREM 10. FREQUENTR and SPACESAVINGR both pro-
vide k-tail guarantees withA = B = 1 over real-valued non-
negative update streams.

6.2 Merging Multiple Summaries
A consequence of sparse recovery is the fact that multiple sum-

maries of separate streams can be merged together to create asum-
mary of the union of the streams. More formally, considerℓ streams,
defining frequency distributionsf (1) . . . f (ℓ) respectively. Given a
summary of each stream produced by (the same) algorithm with
m counters, the aim is to construct an accurate summary off =
Pℓ

j=1 f (j).

THEOREM 11. Given summaries of eachf (j) produced by a
counter algorithm that provides ak-tail guarantee with constants
(A, B), a summary off can be obtained with ak-tail guarantee
with constants(3A, B + A).

PROOF. We construct a summary by first building ak-sparse
vectorf ′(j) from the summary off (j), with the guarantee of equa-
tion (2). By generating a stream corresponding to this vector for
each stream, and feeding this into the counter algorithm, weobtain
a summary of the distributionf ′ =

Pℓ
j=1 f ′(j). Now observe that

from this we have an estimated frequency for any itemi asci so
that

|ci − fi| ≤ ∆ = ∆f ′ +
ℓ
X

j=1

∆j

where each∆j is the error from summarizingf (j) by f ′(j), while
∆f ′ is the error from summarizingf ′. For the analysis, we require
the following bound:

LEMMA 12. For anyn-dimensional vectorsx andy,

|F res(k)
1 (x)− F

res(k)
1 (y)| ≤ ‖x− y‖1

PROOF. LetX denote the set ofk largest entries ofx, andY the
set ofk largest entries ofy. Let π(i) determine any bijection from
i ∈ Y \X to π(i) ∈ X\Y . Then

F
res(k)
1 (x)− F

res(k)
1 (y) =

X

i6∈X

xi −
X

i6∈Y

yi

≤
X

i∈Y \X

xπ(i) −
X

i∈X\Y

yi +
X

i6∈(X∪Y )

|xi − yi|

=
X

i6∈Y

|xi − yi| ≤
X

i

|xi − yi| ≤ ‖x− y‖1

Interchanging the roles ofx andy gives the final result.

This lets us place an upper bound on the first component of the
error:

∆f ′ ≤
A

m−Bk
F

res(k)
1 (f ′)

≤
A

m−Bk
(F

res(k)
1 (f) + ‖f − f ′‖1)

where, by the triangle inequality and the proof of Theorem 5,

‖f − f ′‖1 ≤
ℓ
X

j=1

‖f (j) − f ′(j)‖1

≤
ℓ
X

j=1

(3k∆j + F
res(k)
1 (f (j)))

Since∆j ≤ AF
res(k)
1 (f (j))/(m−Bk), the total error obeys

∆ ≤
A

m−Bk

 

F
res(k)
1 (f) +

ℓ
X

j=1

(3k∆j + 2F
res(k)
1 (f (j))

!

We observe that
ℓ
X

j=1

F
res(k)
1 (f (j)) ≤ F

res(k)
1

 

ℓ
X

j=1

f (j)

!

= F
res(k)
1 (f)

since
Pℓ

j=1 F
res(k)
1 (f (j)) ≤

Pℓ
j=1

P

i6∈T f (j) for any T such
that |T | = k. So

∆ ≤
A

m−Bk

„

3F
res(k)
1 (f) + 3k

A

m −Bk
(F

res(k)
1 (f))

«

=
3A

m−Bk

„

1 +
Ak

m−Bk

«

F
res(k)
1 (f))

This can be analyzed as follows:

(m−Bk)2 − (Ak)2 ≤(m−Bk)2

(m−Bk + Ak)(m−Bk − Ak) ≤(m−Bk)2

1 +
Ak

m−Bk
≤

(m−Bk)

m− (A + B)k

3A

m−Bk

„

1 +
Ak

m−Bk

«

≤
3A

m− (A + B)k

Hence, we have a(3A, A + B) guarantee for thek-tail estima-
tion.

In particular, since the two counter algorithms analyzed have k
tail guarantees with constants(1, 1), their summaries can be merged
in this way to obtaink tail summaries with constants(3, 2). Equiv-
alently, this means to obtain a desired error∆, we need to pick the
number of countersm to be at most a constant factor (three) times
larger to give the same bound on merging multiple summaries as
for a single summary.
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APPENDIX

A. LOWER BOUND

THEOREM 13. For any deterministic counter algorithm withm
counters, for anyk, 1 ≤ k ≤ m, there exists some stream in which

the estimation error of an element is at least
F

res(k)
1
2m

PROOF. The proof is similar to that of Theorem 2 in [6]. For
some integerX, consider two streamsA andB. The streams share
the same prefix of sizeX(m + k), where elementsa1 . . . am+k

occurX times each. After the counter algorithm runs on this first
part of each stream, onlym elements can have non-zero counters.
Assume without loss of generality that the otherk elements are
a1 . . . ak.

Then streamA continues with elementsa1 . . . ak, while stream
B continues with k other elementsz1 . . . zk distinct from
a1 . . . am+k. Both streams thus have total sizeX(m + k) + k.

For both streams, after processing the prefix of sizeX(m + k),
the algorithm has no record of any of the elements in the remaining
parts of either of the streams. So the two remaining parts look
identical to the algorithm and will yield the same estimates. Thus,
for 1 ≤ i ≤ k, cai

(A) = czi
(B). But fai

(A) = X + 1 while
fzi

(B) = 1. The counter error for one of the two streams must
be at leastX/2. Note thatF res(k)

1 (A) = Xm andF
res(k)
1 (B) =

Xm + k; then the error is at least

X

2
≥

F
res(k)
1

2m + 2k/X

As X →∞, this approaches our desired bound.

Thus an algorithm that provides an error bound of
F

res(k)
1
m−k

must
use at least(m− k)/2 counters.



B. TAIL GUARANTEE WITH CONSTANTS
A = B = 1 FOR FREQUENT

We can interpret the FREQUENTalgorithm in the following way:
each element in the stream results in incrementing one counter; in
addition, some number of elements (call this numberd) also result
in decrementingm + 1 counters (we can think of thed elements
incrementing and later decrementing their own counter). The sum
of the counters at the end of the algorithm is‖c‖1. We have

‖c‖1 = ‖f‖1 − d(m + 1)

Since there wered decrement operations, and each operation de-
creases any given counter by at most one, it holds that the final
counter value for any element is at leastfi − d. We restrict our
attention to thek most frequent elements. Then

‖c‖1 = ‖f‖1 − d(m + 1) ≥
k
X

i=1

(fi − d)

‖f‖1 − d(m + 1) ≥ −dk +

k
X

i=1

fi

n
X

i=k+1

fi ≥ d(m + 1− k)

d ≤
F

res(k)
1

m + 1− k

Since the error in any counter is at mostd, this implies thek-tail
guarantee withA = B = 1.

C. TAIL GUARANTEE WITH CONSTANTS
A = B = 1 FOR SPACESAVING

The tail guarantee follows almost immediately from the follow-
ing claims proven in [25]:

LEMMA 3 IN [25]: If the minimum non-zero counter value is∆,
thenδi ≤ ∆ for all i.

THEOREM 2 IN [25]: Whether or not elementi (i.e. i-th most
frequent element) corresponds to thei-th largest counter, the value
of this counter is at leastfi, the frequency ofi.

If we restrict our attention to thek largest counters, the sum of
their values is at least

Pk
i=1 fi. Since in this algorithm the sum of

the counters is always equal to the length of the stream, it follows
that:

∆ ≤
‖f‖1 −

Pk
i=1 fi

m− k

thus by Lemma 3

δi ≤
F

res(k)
1

m− k
∀i

which is thek-tail guarantee with constantsA = B = 1.


