
IEEE/ACM TRANSACTIONS ON NETWORKING 1

XORs in the Air: Practical Wireless Network
Coding

Sachin Katti Hariharan Rahul Wenjun Hu Dina Katabi Muriel M´edard Jon Crowcroft

Abstract— This paper proposes COPE, a new architecture
for wireless mesh networks. In addition to forwarding packets,
routers mix (i.e., code) packets from different sources to increase
the information content of each transmission. We show that intel-
ligently mixing packets increases network throughput. Ourdesign
is rooted in the theory of network coding. Prior work on network
coding is mainly theoretical and focuses on multicast traffic.
This paper aims to bridge theory with practice; it addressesthe
common case of unicast traffic, dynamic and potentially bursty
flows, and practical issues facing the integration of network
coding in the current network stack. We evaluate our design on
a 20-node wireless network, and discuss the results of the first
testbed deployment of wireless network coding. The resultsshow
that using COPE at the forwarding layer, without modifying
routing and higher layers, increases network throughput. The
gains vary from a few percent to several folds depending on the
traffic pattern, congestion level, and transport protocol.

Index Terms— Network Coding, Wireless Networks, Algo-
rithms, Design, Performance, Theory

I. I NTRODUCTION

Wireless networks suffer from low throughput and do not
scale to dense deployments [1]. To address this problem, we
present COPE, a new forwarding architecture that substantially
improves the throughput of stationary wireless mesh networks.
COPE inserts a coding shim between the IP and MAC layers.
It identifies coding opportunities and benefits from them by
forwarding multiple packets in a single transmission.

COPE’s design is inspired by the theory of network coding.
Consider the scenario in Fig. 1, where Alice and Bob want
to exchange a pair of packets via a router. In current ap-
proaches, Alice sends her packet to the router, which forwards
it to Bob, and Bob sends his packet to the router, which
forwards it to Alice. This process requires 4 transmissions.
Now consider a network coding approach. Alice and Bob send
their respective packets to the router, which XORs the two
packets and broadcasts the XOR-ed version. Alice and Bob
can obtain each other’s packet by XOR-ing again with their
own packet. This process takes 3 transmissions instead of 4.
Saved transmissions can be used to send new data, increasing
the wireless throughput.

The main challenge in designing COPE is to extend the
idea beyond duplex flows. Few applications send data in
both directions, limiting the practical benefits of the scenario
in Fig. 1. To achieve large throughput gains, we need to
generalize the idea to any topology and traffic pattern. To do
so, we exploit the broadcast nature of the wireless medium.

Sachin Katti, Hariharan Rahul, Dina Katabi, and Muriel Médard are
affiliated with the Department of EECS, MIT. Wenjun Hu and JonCrowcroft
are affiliated with the University of Cambridge.

(a) Current Approach

(b) COPE
Fig. 1—A simple example of how COPE increases the throughput.
It allows Alice and Bob to exchange a pair of packets using 3
transmissions instead of 4 (numbers on arrows show the order
of transmission).

We make the nodes snoop on all transmissions and store the
overheard packets for a short period. As a result, a router can
XOR two packets and deliver them to two different neighbors
in a single transmission whenever it knows that each of the
two neighbors has overheard the packet destined to the other.
Snooping not only extends the benefits of coding beyond
duplex flows, but also enables us to code more than pairs
of packets, producing a larger throughput increase than that in
Fig. 1.

Our work advocates an alternative architecture for wireless
mesh networks that significantly improves their throughput. It
is based on the following two key principles.

• Employ network coding.Current routers forward packets
from one link to another. COPE, however, shows that there
are practical benefits for allowing the routers to intelligently
mix the content of the packets before forwarding them.

• Embrace the broadcast nature of the wireless channel.
Network designers typically abstract the wireless channel
as a point-to-point link, then adapt forwarding and routing
techniques designed for wired networks for wireless. In
contrast, COPE exploits the broadcast property of radios
instead of hiding it under an artificial abstraction.

We summarize the contributions of this work as follows.
(1) COPE provides a general scheme for inter-session wireless
network coding. It applies to any topology and an arbitrary
number of bursty flows whose duration is not known a priori,
and that arrive and leave dynamically. In contrast, prior work
on inter-session network coding either focuses on duplex

IEEE/ACM TRANSACTIONS ON NETWORKING 2

flows [2] or assumes known flow patterns with steady rates
and ideal scheduling [3].
(2) COPE is the first integration of network coding into the
current network stack, presenting a system architecture that
works seemlessly with higher layer protocols and supports
both TCP and UDP flows. We also implement COPE in the
Linux kernel and evalute its performance in a wireless testbed.
(3) The paper presents the results of the first deployment of
network coding in a wireless network. It studies the perfor-
mance of COPE in a 20-node wireless testbed using state-of-
the-art routing protocols, and reveals its interactions with the
wireless channel and higher layer protocols. Our findings can
be summarized as follows:
• Network coding, used purely as an enhancement of the for-

warding layer, while keeping routing and other higher layers
unmodified, substantially improves wireless throughput.

• When the wireless medium is congested and the traffic
consists of many random UDP flows, COPE increases the
throughput of our testbed by 3-4x.

• If the traffic does not exercise congestion control (e.g.,
UDP), COPE’s throughput improvement may substantially
exceed the expected theoretical coding gain. This additional
gain occurs because coding makes a router’s queue smaller,
reducing the probability that a congested downstream router
will drop packets that have consumed network resources.

• For a mesh network connected to the Internet via an access
point, the throughput improvement observed with COPE
varies depending on the ratio between total download and
upload traffic traversing the access point, and ranges from
5% to 70%.

• Hidden terminals create a high collision rate that cannot be
masked even with the maximum number of 802.11 retrans-
missions. In these environments, TCP does not send enough
to utilize the medium, and thus does not create coding
opportunities. With no hidden terminals, TCP’s throughput
increases by an average of 38% in our testbed.

II. BACKGROUND AND RELATED WORK

Research on network coding can be divided into two cat-
egories: intra-session, where coding is restricted to packets
belonging to the same session or flow, and inter-session,
where coding is allowed among packets belonging to possibly
different sessions or flows. Intra-session network coding has
been extensively studied, beginning with the pioneering paper
by Ahlswede et al. [4], who show that having the routers mix
information in different messages allows the communication
to achieve multicast capacity. Li et al. show that for multicast
traffic linear codes are sufficient to achieve the maximum
capacity bounds [5]. Koetter and Médard [6] present poly-
nomial time algorithms for encoding and decoding, and Ho
et al. extend these results to random codes [7]. Further, some
work studies intra-session wireless network coding [8]–[16].
In particular, Lun et al. study intra-session network coding
and show that the problem of minimizing the communication
cost can be formulated as a linear program and solved in a
distributed manner [17].

The above work is either theoretical or simulation based and
assumes a combination of multicast traffic, optimal scheduling,

Term Definition
Native Packet A non-encoded packet
Encoded or XOR-
ed Packet

A packet that is the XOR of multiple
native packets

Nexthops of an
Encoded Packet

The set of nexthops for the native pack-
ets XOR-ed to generate the encoded
packet

Packet Id A 32-bit hash of the packet’s IP source
address and IP sequence number

Output Queue A FIFO queue at each node, where it
keeps the packets it needs to forward

Packet Pool A buffer where a node stores all packets
heard in the pastT seconds

Coding Gain The ratio of the number of trans-
missions required by the current non-
coding approach, to the number of
transmissions used by COPE to deliver
the same set of packets.

Coding+MAC
Gain

The expected throughput gain with
COPE when an 802.11 MAC is used,
and all nodes are backlogged.

TABLE I —Definitions of terms used in this paper.

and known flow patterns with steady rates. In a recent paper,
we present a low-complexity algorithm for intra-session net-
work coding and demonstrate via implementation and testbed
experiment that intra-session network coding yields practical
benefits to both unicast and multicast flows [16].

Inter-session network coding, to which COPE belongs, is
known to be difficult. It is known that linear codes are
insufficient for optimal inter-session network coding [18], and
even if we limit ourselves to linear codes, determining how
to perform the coding is NP-hard [6]. Hence, recent work
has focused on developing heuristics that provide significant
throughput gains [2], [3], [19], [20]. Wu et al. [2] describe
a physical piggybacking scheme for inter-session network
coding in line networks i.e., duplex flows like those in Fig. 1.
COPE generalizes that scheme to arbitrary networks. Queue
stability and MAC issues for line networks have been explored
in [21], [22]. This paper focuses on inter-session network
coding but it develops a practical heuristic that bridges the gap
between the theory of network coding and practical network
design and provides an operational protocol for general unicast
traffic.

Related work has also built on our conference publication
of COPE [23]. Wu et al. [24] have presented algorithms for
mixing packets optimally, Rayanchu et al. [25] have explored
routing and MAC algorithms for COPE, and Liu et al. [26]
have analyzed the theoretical throughput benefits obtainedwith
COPE style of coding. The technique has also been recently
extended to the physical layer [27]–[30].

Finally, a rich body of systems research has tackled the
problem of improving the throughput of wireless networks.
The proposed solutions range from designing better routing
metrics [31]–[33] to tweaking the TCP protocol [34], and
include improved routing and MAC protocols [35], [36]. Our
work builds on these foundations but adopts a fundamentally
different approach; it explores the utility of network coding in
improving the throughput of wireless networks.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

(a) B can code packets it wants to send (b) Nexthops of packetsin B’s queue (c) Possible coding options

Fig. 2—Example of Opportunistic Coding; Node B has 4 packets in its queue, whose nexthops are listed in (b). Each neighbor of B
has stored some packets as depicted in (a). Node B can make a number of coding decisions (as shown in (c)), but should selectthe
last one because it maximizes the number of packets delivered in a single transmission.

III. COPE OVERVIEW

We introduce COPE, a new forwarding architecture for
wireless mesh networks. It inserts a coding layer between the
IP and MAC layers, which detects coding opportunities and
exploits them to forward multiple packets in a single trans-
mission. COPE assumes that there is an underlying routing
protocol which picks paths between nodes. Before delving into
details, we refer the reader to Table I, which defines the terms
used in the rest of the paper.

COPE incorporates three main techniques:

(a) Opportunistic Listening: Wireless is a broadcast medium,
creating many opportunities for nodes to overhear packets
when they are equipped with omni-directional antennae. COPE
sets the nodes in promiscuous mode, makes them snoop on
all communications over the wireless medium and store the
overheard packets for a limited periodT (defaultT = 0.5s).

In addition, each node broadcastsreception reportsto tell
its neighbors which packets it has stored. Reception reports
are sent by annotating the data packets the node transmits. A
node that has no data packets to transmit periodically sends
the reception reports in special control packets.

(b) Opportunistic Coding: The key question is what packets
to code together to maximize throughput. A node may have
multiple options, but it should aim tomaximize the number
of native packets delivered in a single transmission, while
ensuring that each intended nexthop has enough information
to decode its native packet.

The above is best illustrated with an example. In Fig. 2(a),
nodeB has 4 packets in its output queuep1, p2, p3, andp4. Its
neighbors have overheard some of these packets. The table in
Fig 2(b) shows the nexthop of each packet inB’s queue. When
the MAC permitsB to transmit,B takes packetp1 from the
head of the queue. Assuming thatB knows which packets each
neighbor has, it has a few coding options as shown in Fig. 2(c).
It could sendp1 ⊕ p2. Since nodeC hasp1 in store, it could
XOR p1 with p1⊕p2 to obtain the native packet sent to it, i.e.,
p2. However, nodeA does not havep2, and so cannot decode
the XOR-ed packet. Thus, sendingp1 ⊕ p2 would be a bad
coding decision forB, because only one neighbor can benefit
from this transmission. The second option in Fig. 2(c) showsa
better coding decision forB. Sendingp1⊕p3 would allow both

neighborsC andA to decode and obtain their intended packets
from a single transmission. Yet the best coding decision forB
would be to sendp1 ⊕ p3 ⊕ p4, which would allow all three
neighbors to receive their respective packets all at once.

The above example emphasizes an important coding issue.
Packets from multiple unicast flows may get encoded together
at some intermediate hop. But their paths may diverge at
the nexthop, at which point they need to be decoded. If
not, unneeded data will be forwarded to areas where there
is no interested receiver, wasting much capacity. The coding
algorithm should ensure that all nexthops of an encoded packet
can decode their corresponding native packets. This can be
achieved using the following simple rule:

To transmit n packets, p1, ...,pn, to n nexthops,
r1, ...,rn, a node can XOR then packets together
only if each next-hopr i has alln− 1 packetspj for
j 6= i.

This rule ensures that each nexthop can decode the XOR-
ed version to extract its native packet. Whenever a node has
a chance to transmit a packet, it chooses the largestn that
satisfies the above rule to maximize the benefit of coding.

(c) Learning Neighbor State: But how does a node know
what packets its neighbors have? As explained earlier, each
node announces to its neighbors the packets it stores in
reception reports. However, at times of severe congestion,
reception reports may get lost in collisions, while at times
of light traffic, they may arrive too late, after the node has
already made a suboptimal coding decision. Therefore, a node
cannot rely solely on reception reports, and may need to guess
whether a neighbor has a particular packet.

To guess intelligently, we leverage the routing computation.
Wireless routing protocols compute the delivery probability
between every pair of nodes and use it to identify good
paths. For e.g., the ETX metric [31] periodically computes
the delivery probabilities and assigns each link a weight equal
to 1/(delivery probability). These weights are broadcast to all
nodes in the network and used by a link-state routing protocol
to compute shortest paths. We leverage these probabilitiesfor
guessing. In the absence of deterministic information, COPE
estimates the probability that a particular neighbor has a packet
as the delivery probability of the link between the packet’s

IEEE/ACM TRANSACTIONS ON NETWORKING 4

previous hop and the neighbor.
Occasionally, a node may make an incorrect guess, which

causes the coded packet to be undecodable at some nexthop. In
this case, the relevant native packet is retransmitted, potentially
encoded with a new set of native packets.

IV. U NDERSTANDING COPE’S GAINS

How beneficial is COPE? Its throughput improvement de-
pends on the existence of coding opportunities, which them-
selves depend on the traffic patterns. This section provides
some insight into the expected throughput increase and the
factors affecting it.

A. Coding Gain

We defined thecoding gainas the ratio of the number of
transmissions required by the current non-coding approach,
to the minimum number of transmissions used by COPE to
deliver the same set of packets. By definition, this number is
greater than or equal to 1.

In the Alice-and-Bob experiment, as described in§I, COPE
reduces the number of transmissions from 4 to 3, thus pro-
ducing a coding gain of43 = 1.33.

But what is the maximum achievable coding gain, i.e., what
is the theoretical capacity of a wireless network that employs
COPE? The capacity of general network coding for unicast
traffic is still an open question for arbitrary graphs [3], [37].
However, we analyze certain basic topologies that reveal some
of the factors affecting COPE’s coding gain. Our analysis as-
sumes identical nodes, omni-directional radios, perfect hearing
within some radius, and the signal is not heard at all outside
this radius, and if a pair of nodes can hear each other the
routing will pick the direct link. Additionally, we assume that
the flows are infinite and we only consider the steady state.

Lemma 4.1:In the absence of opportunistic listening,
COPE’s maximum coding gain is 2, and it is achievable.
We prove the lemma by showing that the coding gain of the
chain in Fig. 3(a) tends to 2 as the number of intermediate
nodes increases. The complete proof is in Appendix A.

While we do not know the maximum gain for COPE with
opportunistic listening, there do exist topologies where oppor-
tunistic listening adds to the power of COPE. For example,
consider the “X”-topology shown in Fig. 3(b). This is the
analogy of the Alice-and-Bob topology, but the two flows
travel along link-disjoint paths. COPE without opportunistic
listening cannot achieve any gains on this topology. But with
opportunistic listening and guessing, the middle node can
combine packets traversing in opposite directions, for a coding
gain of 4

3 = 1.33. This result is important, because in a real
wireless network, there might be only a small number of flows
traversing the reverse path of each other à la Alice-and-Bob,
but one would expect many flows to intersect at a relay, and
thus can be coded together using opportunistic listening and
guessing.

The “X” and Alice-and-Bob examples can be combined to
further improve the benefits of coding, as in the cross topology
of Fig. 3(c). Without coding, 8 transmissions are necessary
for each flow to send one packet to its destination. However,

n0 n1 n2 nN-1 nN

(a) Chain topology; 2 flows in reverse directions.

(b) “X” topology (c) Cross topology
2 flows intersecting atn2. 4 flows intersecting atn2

(d) Wheel topology; many flows intersecting at the center node.

Fig. 3—Simple topologies to understand COPE’s Coding and
Coding+MAC Gains.

assuming perfect overhearing (n4 and n5 can overhearn1

and n3, and vice versa),n2 can XOR 4 packets in each
transmission, thus reducing the number of transmissions from
8 to 5, producing a coding gain of85 = 1.6.

We observe that while this section has focused on theoretical
bounds, the gains in practice tend to be lower due to the
availability of coding opportunities, packet header overheads,
medium losses, etc. However, it is important to note that
COPE increases the actual information rate of the medium
far above the bit rate, and hence its benefits are sustained
even when the medium is fully utilized. This contrasts with
other approaches to improving wireless throughput, such as
opportunistic routing [35], which utilize the medium better
when it is not fully congested, but do not increase its capacity.

B. Coding+MAC Gain

When we ran experiments with COPE, we were surprised
to see that the throughput improvement sometimes greatly
exceeded the coding gain for the corresponding topology. It
turns out that the interaction between coding and the MAC
produces a beneficial side effect that we call the Coding+MAC
gain.

The Coding+MAC gain is best explained using the Alice-
and-Bob scenario. Because it tries to be fair, the MAC divides
the bandwidth equally between the 3 contending nodes: Alice,

IEEE/ACM TRANSACTIONS ON NETWORKING 5

Topology Coding Gain Coding+MAC Gain
Alice-and-Bob 1.33 2

“X” 1.33 2
Cross 1.6 4

Infinite Chain 2 2
Infinite Wheel 2 ∞

TABLE II —Theoretical gains for a few basic topologies.

Bob, and the router. Without coding, however, the router
needs to transmit twice as many packets as Alice or Bob.
The mismatch between the traffic the router receives from the
edge nodes and its MAC-allocated draining rate makes the
router a bottleneck; half the packets transmitted by the edge
nodes are dropped at the router’s queue. COPE allows the
bottleneck router to XOR pairs of packets and drain them
twice as fast, doubling the throughput of this network. Thus,
the Coding+MAC gain of the Alice-and-Bob topology is 2.

The Coding+MAC gain assumes all nodes continuously
have some traffic to send (i.e., backlogged), but are limitedby
their MAC-allocated bandwidth. It computes the throughput
gain with COPE under such conditions. For topologies with a
single bottleneck, like the Alice-and-Bob’s, the Coding+MAC
gain is the ratio of the bottleneck’s draining rate with COPE
to its draining rate without COPE.

Similarly, for the “X” and cross topologies, the Cod-
ing+MAC gain is higher than the coding gain. For the “X”,
the Coding+MAC gain is 2 since the bottleneck node is able
to drain twice as many packets, given its MAC allocated rate.
For the cross topology, the Coding+MAC gain is even higher
at 4. The bottleneck is able to send 4 packets out in each
transmission, hence it is able to drain four times as many
packets compared to no coding. This begs the question: what
is the maximum Coding+MAC gain? The maximum possible
Coding+MAC gains with and without opportunistic listening
are properties of the topology and the flows that exist in a
network. Here we prove some upper bounds on Coding+MAC
gains.

Lemma 4.2:In the absence of opportunistic listening,
COPE’s maximum Coding+MAC gain is 2, and it is achiev-
able.
The proof is in Appendix B.

Lemma 4.3:In the presence of opportunistic listening,
COPE’s maximum Coding+MAC gain is unbounded.
The proof, detailed in Appendix C, uses the wheel topology in
Fig. 3(d). AssumingN edge nodes, with COPE the bottleneck
node, in the center of the wheel, XORsN packets together,
and consequently drains its queueN times faster than without
COPE. As the number of edge nodes increases, i.e.,N →
∞, the gain becomes infinite. While the previous example is
clearly artificial, it does illustrate the potential of COPEwith
opportunistic listening to produce a several-fold improvement
in throughput, as in§VII.

Table II lists the gains for a few basic topologies.

V. M AKING IT WORK

To integrate COPE effectively within the current network
stack, we need to address some important system issues.

A. Packet Coding Algorithm

To build the coding scheme, we have to make a few design
decisions. First, we design our coding scheme around the
principle ofnever delaying packets. When the wireless channel
is available, the node takes the packet at the head of its
output queue, checks which other packets in the queue may be
encoded with this packet, XORs those packets together, and
broadcasts the XOR-ed version. If there are no encoding op-
portunities, our node does not wait for the arrival of a matching
codable packet. COPE therefore lets the node opportunistically
overload each transmission with additional information when
possible, but does not wait for additional codable packets to
arrive.

Second, COPEgives preference to XOR-ing packets of
similar lengths, because XOR-ing small packets with larger
ones reduces bandwidth savings. Empirical studies show that
the packet-size distribution in the Internet is bimodal with
peaks at 40 and 1500 bytes [38]. We can therefore limit
the overhead of searching for packets with the right sizes by
distinguishing between small and large packets. We might still
have to XOR packets of different sizes. In this case, the shorter
packets are padded with zeroes. The receiving node can easily
remove the padding by checking the packet-size field in the
IP header of each native packet.

Third, notice that COPE willnever code together packets
headed to the same nexthop or packets generated by the
coding node, since the nexthop will not be able to decode
them. Hence,while coding, we only need to consider non-
self generated packets headed to different nexthops. COPE
therefore maintains two virtual queues per neighbor; one for
small packets and another for large packets (The default setting
uses a threshold of 100 bytes). When a new packet is added to
the output queue, an entry is added to the appropriate virtual
queue based on the packet’s nexthop and size.

Searching for appropriate packets to code is efficientdue
to the maintenance of virtual queues. When making coding
decisions, COPE first dequeues the packet at the head of the
FIFO output queue, and determines if it is a small or a large
packet. Depending on the size, it looks at the appropriate
virtual queues. For example, if the packet dequeued is a
small packet, COPE first looks at the virtual queues for small
packets. COPE looks only at the heads of the virtual queues
to limit packet reordering. After exhausting the virtual queues
of a particular size, the algorithm then looks at the heads of
virtual queues for packets of the other size. Thus for finding
appropriate packets to code COPE has to look at 2M packets
in the worst case, whereM is the number of neighbors of a
node.

Another concern ispacket reordering. We would like to
limit reordering packets from the same flow because TCP
mistakes it as a congestion signal. Thus, we always consider
packets according to their order in the output queue. Still,
reordering may occur because we prefer to code packets of the
same size. In practice, this reordering is quite limited because
most data packets in a TCP flow are large enough to be queued
in the large-packet queue, and thus be considered in order. We
will see in §V-D, however, that reordering might arise from

IEEE/ACM TRANSACTIONS ON NETWORKING 6

other reasons, particularly the need to retransmit a packetthat
has been lost due to a mistake in guessing what a neighbor
can decode. Thus, we choose to deal with any reordering that
might happen inside the network at the receiver. COPE has a
module that puts TCP packets in order before delivering them
to the transport layer as explained in§V-E.

Finally, we want to ensure that each neighbor to whom
a packet is headed has a high probability of decoding its
native packet. Thus, for each packet in its output queue, our
relay node estimates the probability that each of its neighbors
has already heard the packet. Sometimes the node can be
certain about the answer, for example, when the neighbor is
the previous hop of the packet, or when the reception reports
from the neighbor state so. When neither of the above is true,
the node leverages the delivery probabilities computed by the
routing protocol; it estimates the probability the neighbor has
the packet as the delivery probability between the packet’s
previous hop and that neighbor. The node then uses this
estimate to ensure that encoded packets are decodable by all
of their nexthops with high probability.

In particular, suppose the node encodesn packets together.
Let the probability that a nexthop has heard packeti be Pi .
Then, the probability,PD, that it can decode its native packet
is equal to the probability that it has heard all of then − 1
native packets XOR-ed with its own, i.e.,

PD = P1 × P2 × . . . × Pn−1.

Consider an intermediate step while searching for coding
candidates. We have already decided to XORn − 1 packets
together, and are considering XOR-ing thenth packet with
them. The coding algorithm now checks that, for each of the
n nexthops, the decoding probabilityPD, after XOR-ing the
nth packet with the rest stays greater than a thresholdG (the
default valueG = 0.8). If the above conditions are met, each
nexthop can decode its packet with at least probabilityG.
Finally, we note that for fairness we iterate over the set of
neighbors according to a random permutation.

Formally, each node maintains the following data structures.

• Each node has a FIFO queue of packets to be forwarded,
which we callthe output queue.

• For each neighbor, the node maintains twoper-neighbor
virtual queues, one for small packets (e.g., smaller than 100
bytes), and the other for large packets. The virtual queues
for a neighborA contain pointers to the packets in the output
queue whose nexthop isA.

• Additionally, the node keeps a hash table,packet info, that
is keyed on packet-id. For each packet in the output queue,
the table indicates the probability of each neighbor having
that packet.

Whenever the MAC signals a sending opportunity, the node
executes the procedure illustrated in Alg. 1. The greedy strat-
egy depicted in this algorithm has a computational complexity
that is linear in the number of active neighbors of a node.

B. Packet Decoding

Packet decoding is simple. Each node maintains aPacket
Pool, in which it keeps a copy of each native packet it

1 Coding Procedure
Pick packetp at the head of the output queue.
Natives= {p}
Nexthops= {nexthop(p)}
if size(p) > 100 bytesthen

which queue = 1
else

which queue = 0
end if
for Neighbor i = 1 to M do

Pick packetpi , the head of virtual queueQ(i,which queue)
if ∀n ∈ Nexthops∪{i}, Pr[n can decodep⊕ pi] ≥ G then

p = p⊕ pi

Natives = Natives∪{pi}
Nexthops = Nexthops∪{i}

end if
end for
which queue = !whichqueue
for Neighbor i = 1 to M do

Pick packetpi , the head of virtual queueQ(i,which queue)
if ∀n ∈ Nexthops∪{i}, Pr[n can decodep⊕ pi] ≥ G then

p = p⊕ pi

Natives = Natives∪{pi}
Nexthops = Nexthops∪{i}

end if
end for
return p

has received or sent out. The packets are stored in a hash
table keyed on packet id (see Table I), and the table is
garbage collected every few seconds. When a node receives
an encoded packet consisting ofn native packets, the node
goes through the ids of the native packets one by one, and
retrieves the corresponding packet from its packet pool if
possible. Ultimately, it XORs then − 1 packets with the
received encoded packet to retrieve the native packet meant
for it.

C. Pseudo-broadcast

The 802.11 MAC has two modes: unicast and broadcast.
Since COPE broadcasts encoded packets to their next hops,
the natural approach would be to use broadcast. Unfortunately,
this does not work because of two reasons: poor reliability and
lack of backoff.

Specifically, in the 802.11 unicast mode, packets are imme-
diately ack-ed by their intended nexthops. The 802.11 protocol
ensures reliability by retransmitting the packet at the MAC
layer for a fixed number of times until a synchronous ack is
received. Lack of an ack is interpreted as a collision signal, to
which the sender reacts by backing off exponentially, thereby
allowing multiple nodes to share the medium.

In contrast, 802.11 broadcast lacks both reliability and
backoff. A broadcast packet has many intended receivers, and
it is unclear who should ack. In the absence of the acks, the
broadcast mode offers no retransmissions and consequently
very low reliability. Additionally, a broadcast source cannot
detect collisions, and thus does not back off. If multiple
backlogged nodes share the broadcast channel, and each of
them continues sending at the highest rate, the resulting
throughput is therefore very poor, due to high collision rates.

IEEE/ACM TRANSACTIONS ON NETWORKING 7

Our solution is pseudo-broadcast, which piggybacks on
802.11 unicast and benefits from its reliability and backoff
mechanism. Pseudo-broadcast unicasts packets that are meant
for broadcast. The link-layer destination field is set to theMAC
address of one of the intended recipients. An XOR-header is
added after the link-layer header, listing all nexthops of the
packet, Since all nodes are set in the promiscuous mode, they
can overhear packets not addressed to them. When a node
receives a packet with a MAC address different from its own,
it checks the XOR-header to see if it is a nexthop. If so,
it processes the packet further, else it stores the packet ina
buffer as an opportunistically received packet. As all packets
are sent using 802.11 unicast, the MAC can detect collisions
and backoff properly.

Pseudo-broadcast is also more reliable than simple broad-
cast. The packet is retransmitted multiple times until its
designated MAC receiver receives the packet and acks it, or the
number of retries is exceeded. A desirable side effect of these
retransmissions is that nodes that are promiscuously listening
to this packet have more opportunities to hear it. Pseudo-
broadcast, however, does not completely solve the reliability
problem, which we address in the next section.

D. Hop-by-hop ACKs and Retransmissions

(a) Why hop-by-hop ACKs? Encoded packets require all
nexthops to acknowledge the receipt of the associated native
packet for two reasons. First, encoded packets are headed to
multiple nexthops, but the sender gets synchronous MAC-layer
ACKs only from the nexthop that is set as the link layer
destination of the packet (as explained in the previous section).
There is still a probability of loss to the other nexthops from
whom it does not get synchronous ACKs. Second, COPE may
optimistically guess that a nexthop has enough informationto
decode an XOR-ed packet, when it actually does not.

The standard solution to wireless losses is to mask error-
induced drops by recovering lost packets locally through
acknowledgments and retransmissions [39], [40]. COPE too
addresses this problem using local retransmissions; the sender
expects the nexthops of an XOR-ed packet to decode the XOR-
ed packet, obtain their native packet, and ack it. If any of the
native packets is not ack-ed within a certain interval, the packet
is retransmitted, potentially encoded with another set of native
packets.

(b) Asynchronous Acks and Retransmissions:How should
we implement these hop-by-hop ACKs? For non-coded pack-
ets, we simply leverage the 802.11 synchronous ACKs. Unfor-
tunately, extending this synchronous ACK approach to coded
packets is highly inefficient, as the overhead incurred from
sending each ack in its own packet with the necessary IP and
WiFi headers would be excessive. Thus, in COPE encoded
packets are ack-ed asynchronously.

When a node sends an encoded packet, it schedules a
retransmission event for each of the native packets in the
encoded packet. If any of these packets is not ack-ed withinTa

seconds, the packet is inserted at the head of the output queue
and retransmitted. (Ta is slightly larger than the round trip time

Fig. 4—COPE Header. The first block identifies the native packets
XOR-ed and their nexthops. The second block contains reception
reports. Each report identifies a source, the last IP sequence
number received from that source, and a bit-map of most
recent packets seen from that source. The third block contains
asynchronous acks. Each entry identifies a neighbor, an end point
for the ACK map, and a bit-map of ack-ed packets.

of a single link.) Retransmitted packets may get encoded with
other packets according to the scheme in§V-A.

A nexthop that receives an encoded packet decodes it
to obtain its native packet, and immediately schedule an
ack event. Before transmitting a packet, the node checks its
pending ack events and incorporates the pending acks in the
COPE header. If the node has no data packets to transmit, it
sends the ACKs in periodic control packets–the same control
packets used to send reception reports.

E. Preventing TCP Packet Reordering

Asynchronous ACKs can cause packet reordering, which
may be confused by TCP as a sign of congestion. Thus,
COPE has anordering agent, which ensures that TCP packets
are delivered in order. The agent ignores all packets whose
final IP destinations differ from the current node, as well
as non-TCP packets. These packets are immediately passed
to the next processing stage. For each TCP flow ending at
the host, the agent maintains a packet buffer and records the
last TCP sequence number passed on to the network stack.
Incoming packets that do not produce a hole in the TCP
sequence stream are immediately dispatched to the transport
layer, after updating the sequence number state. Otherwise,
they are withheld in the buffer till the gap in the sequence
numbers is filled, or until a timer expires.

VI. I MPLEMENTATION DETAILS

COPE adds special packet headers and alters the control
flow of the router to code and decode packets. This section
describes both parts.

A. Packet Format

COPE inserts a variable-length coding header in each
packet, as shown in Fig. 4. If the routing protocol has its
own header (e.g., Srcr [32]), COPE’s header sits between the
routing and the MAC headers. Otherwise, it sits between the
MAC and IP headers. Only the shaded fields in Fig. 4 are

IEEE/ACM TRANSACTIONS ON NETWORKING 8

 Encoded?

Can send

yes

no

Schedule
retransmissions

Add reception reports

To wireless device

Add acks to header

Dequeue head of
Output Queue

Encode if
possible

 Encoded?

Packet
arrival

yes

no

Decode and schedule acks

Extract acks meant for me
Update retransmission events

yes
no

Enqueue in
Output Queue

Deliver
to host

Extract Reception Reports
Update Neighbor’s State

 Am I nexthop?

 Decodable?

 Am I destination?

yes

yes

Add to Packet Pool

Add to Packet Pool

(a) Sender side (b) Receiver side

Fig. 5—Flow chart for our COPE Implementation.

required in every COPE header. The COPE header adds less
than 5% overhead to each packet. The coding header contains
the following 3 blocks.

(a) Ids of the coded native packets:The first block
records meta-data to enable packet decoding. It starts with
ENCODED NUM, the number of native packets XOR-ed to-
gether. For each native packet, the header lists itsID, which is
a 32-bit hash of the packet’s source IP address and IP sequence
number. This is followed by the MAC address of the native
packet’sNexthop. When a node hears an XOR-ed packet,
it checks the list ofNexthops to determine whether it is
an intended recipient for any of the native packets XOR-ed
together, in which case it decodes the packet, and processesit
further.

(b) Reception reports: Reception reports constitute the sec-
ond block in the XOR header, as shown in Fig. 4. The
block starts with the number of the reports in the packet,
REPORT NUM. Each report specifies the source of the reported
packetsSRC IP. This is followed by the IP sequence number
of the last packet heard from that sourceLast PKT, and a
bit-map of recently heard packets. For example, a report of the
form {128.0.1.9, 50, 10000001} means that the last
packet this node has heard from source128.0.1.9 is packet
50, and it has also heard packets 42 and 49 from that source
but none in between. The above representation for reception
reports has two advantages: compactness and effectiveness. In
particular, the bit-map allows the nodes to report each packet
multiple times with minimal overhead. This guards against
reception reports being dropped at high congestion.

(c) Expressing asynchronous acks compactly and ro-
bustly: To ensure ack delivery with minimum overhead,
we use cumulative acks. Since they implicitly repeat ack
information, cumulative acks are robust against packet drops.
Each node maintains a per-neighbor 16-bit counter, called

Neighbor Seqno Counter. Whenever the node sends a
packet to that neighbor, the counter is incremented and its
value is assigned to the packet as a local sequence number,
Local PKT SEQ NUM. The two neighbors use this sequence
number to identify the packet. Now, a node can use cumulative
acks on a per-neighbor basis. Each coded packet contains an
ack header as shown in Fig. 4. The ack block starts with the
number of ack entries, followed by the packet local sequence
number. Each ack entry starts with a neighbor MAC address.
This is followed by a pointer to tell the neighbor where the
cumulative acks stop, and a bit-map indicating previously
received and missing packets. For example, an entry of{A,
50, 01111111} acks packet 50, as well as the sequence
43-49, from neighborA. It also shows that packet 42 is still
missing. Note that though we use cumulative acks, we do not
guarantee reliability at the link layer. In particular, each node
retransmits a lost packet a few times (default is 2), and then
gives up.

B. Control Flow

Fig. 5 abstracts the architecture of COPE. On the sending
side, (shown in Fig. 5(a)), whenever the MAC signals an
opportunity to send, the node takes the packet at the head of
its output queue and hands it to the coding module (§V-A). If
the node can encode multiple native packets in a single XOR-
ed version, it has to schedule asynchronous retransmissions.
Either way, before the packet can leave the node, pending
reception reports and acks are added.

On the receiving side, (shown in Fig. 5(b)), when a packet
arrives, the node extracts any acks sent by this neighbor to
the node. It also extracts all reception reports and updatesits
view of what packets its neighbor stores. Further processing
depends on whether the packet is intended for the node. If
the node is not a nexthop for the packet, the packet is stored
in the Packet Pool. If the node is a nexthop, it then checks
if the packet is encoded. If it is, the node tries to decode by
XOR-ing the encoded packet with the native packets it stores
in its Packet Pool. After decoding it acks this reception to the
previous hop and stores the decoded packet in the Packet Pool.
The node now checks if it is the ultimate destination of the
packet, if so it hands the packet off to the higher layers of the
network stack. If the node is an intermediate hop, it pushes
the packet to the output queue. If the received packet is not
encoded, the packet is simply stored in the Packet Pool and
processed in the same fashion as a decoded packet.

VII. EXPERIMENTAL RESULTS

This section uses measurements from a 20-node wireless
testbed to study both the performance of COPE and the
interaction of network coding with the wireless channel and
higher-layer protocols. Our experiments reveal the following:
• When the wireless medium is congested and the traffic

consists of many random UDP flows, COPE delivers a 3-4x
increase in the throughput of our wireless testbed.

• When the traffic does not exercise congestion control (e.g.,
UDP), COPE’s throughput improvement substantially ex-
ceeds the expected coding gain and agrees with the Cod-
ing+MAC gain.

IEEE/ACM TRANSACTIONS ON NETWORKING 9

• For a mesh network connected to the Internet via a gateway,
the throughput improvement observed with COPE varies
depending on the ratio of download traffic to upload traffic
at the gateway, and ranges from 5% to 70%.

• Hidden terminals create a high loss rate that cannot be
masked even with the maximum number of 802.11 re-
transmissions. In these environments, TCP does not send
enough to utilize the medium and does not create coding
opportunities. In environments with no hidden terminals,
TCP’s throughput improvement with COPE agrees with the
expected coding gain.

A. Testbed

(a) Characteristics: We have a 20-node wireless testbed that
spans two floors in our building connected via an open lounge.
The nodes of the testbed are distributed in several offices,
passages, and lounges. Paths between nodes are between 1
and 6 hops in length, and the loss rates of links on these
paths range between 0 and 30%. The experiments described
in this paper run on 802.11a a bit-rate of 6Mb/s. Running the
testbed on 802.11b is impractical because of a high level of
interference from the local wireless networks.

(b) Software: Nodes in the testbed run Linux. COPE is
implemented using the Click toolkit [41]. Our implementation
runs as a user space daemon, and sends and receives raw
802.11 frames from the wireless device using a libpcap-like
interface. The implementation exports a network interfaceto
the user that can be treated like any other network device
(e.g., eth0). The implementation is agnostic to upper and
lower layer protocols, and can be used by various protocols
including UDP and TCP.

(c) Routing: Our testbed nodes run the Srcr implementa-
tion [32], a state-of-the-art routing protocol for wireless mesh
networks. The protocol uses Djikstra’s shortest path algorithm
on a database of link weights based on the ETT metric [32].
The router output queue is bounded at 100 packets.
(d) Hardware: Each node in the testbed is a PC equipped
with an 802.11 wireless card attached to an omni-directional
antenna. The cards are based on the NETGEAR 2.4 & 5
GHz 802.11a/g chipset. They transmit at a power level of 15
dBm, and operate in the 802.11 ad hoc mode, with RTS/CTS
disabled as in the default MAC.

(e) Traffic Model: We use a utility program called
udpgen [42] to generate UDP traffic, andttcp [43] to gener-
ate TCP traffic. We either use long-lived flows, or many shorter
flows that match empirical studies of Internet traffic [44], [45],
i.e., they have Poisson arrivals, and a Pareto file size with the
shape parameter set to 1.17.

B. Metrics

Our evaluation uses the following metrics.

• Network Throughput:the measured total end-to-end data
throughput, i.e., the sum of the data throughput of all flows
in the network as seen by their corresponding applications.
The overhead incurred by the extra coding headers/control
packets is therefore taken into account.

• Throughput Gain: the ratio of the measured network
throughputs with and without COPE. We compute the
throughput gain from two consecutive experiments, with
coding turned on, then off.

C. COPE in gadget topologies

We would like to compare COPE’s actual throughput gain
with the theoretical gains described in§IV, and study whether
it is affected by higher layer protocols. We start by lookingat
a few toy topologies with good link quality (medium loss rate
after MAC retries< 1%), and no hidden terminals.

1) Long-Lived TCP Flows:We run long-lived TCP flows
over 3 toy topologies: Alice-and-Bob, the “X”, and the cross
topologies depicted in Figs. 1 and 3. Fig. 6 plots the CDFs of
the TCP throughput gain measured over 40 different runs. For
the Alice-and-Bob topology the gain, shown in Fig. 6(a), the
median gain is close to the theoretical coding gain of 1.33. The
difference of 5−8% is due to the overhead of COPE’s headers,
as well as asymmetry in the throughput of the two flows,
which prevents the router from finding a codemate for every
packet. Similarly, for the “X”-topology, the gain in Fig. 6(b)
is comparable to the optimal coding gain of 1.33. Finally,
Fig. 6(c) shows the throughput gain for the cross topology with
TCP. The gains are slightly lower than the expected coding
gain of 1.6 because of header overhead, imperfect overhearing,
and a slight asymmetry in the throughputs of the four flows.

The above experimental results reveal that when the traffic
exercises congestion control, the throughput gain corresponds
to the coding gain, rather than the Coding+MAC gain. The
congestion control protocol, built into TCP, naturally matches
the input rate at the bottleneck to its draining rate. When
multiple long-lived TCP flows get bottlenecked at the same
router, the senders back off and prevent excessive drops,
leaving only pure coding gains.

2) UDP Flows: We repeat the above experiments with UDP
and evaluate the throughput gains. Fig. 7 plots a CDF of the
UDP gain with COPE for the Alice-and-Bob, the “X”, and
the cross topologies. The figure shows that the median UDP
throughput gains for the three topologies are 1.7, 1.65, and
3.5 respectively.

Interestingly, the UDP gains are much higher than the
TCP gains; they reflect the Coding+MAC gains for these
toy topologies. Recall from§IV that the coding gain arises
purely from the reduction in the number of transmissions
achieved with COPE. Additionally, coding compresses the
bottleneck queues, preventing downstream congested routers
from dropping packets that have already consumed bandwidth,
and producing a Coding+MAC gain. In§IV, we have shown
that the theoretical Coding+MAC gains for the above toy
topologies are 2, 2, and 4 respectively. These numbers are
fairly close to the numbers we observe in actual measurements.

One may wonder why the measured throughput gains are
smaller than the theoretical Coding+MAC gain bounds. The
XOR headers add a small overhead of 5-8%. However, the
difference is mainly due to imperfect overhearing and flow
asymmetry. Specifically, the nodes do not overhear all trans-
mitted packets. Further, some senders capture the wireless

IEEE/ACM TRANSACTIONS ON NETWORKING 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 1.3 1.4 1.5 1.6 1.7

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

(a) TCP gain in the Alice-and-Bob topology (b) TCP gain in theX-topology (c) TCP gain in the cross topology
Fig. 6—CDF of throughput gains obtained with COPE, for long-lived TCP flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 1.4 1.6 1.8 2 2.2

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2 1.4 1.6 1.8 2 2.2

C
um

ul
at

iv
e

fr
ac

tio
n

Throughput Gain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

(a) UDP gain in the Alice-and-Bob topology (b) UDP gain in theX-topology (c) UDP gain in the cross topology

Fig. 7—CDF of throughput gains obtained with COPE, for UDP flows.

channel sending more traffic in a particular direction, which
reduces coding opportunities and overall gain.

In practice, traffic is a combination of congestion-controlled
and uncontrolled flows. Further, most TCP flows are short-
lived and do not fully exercise congestion control during slow-
start.Thus, one would expect COPE’s gains to be higher than
those observed with long-lived TCP and lower than those
observed with UDP. Indeed, we have run experiments for
the Alice-and-Bob scenario with short-lived TCP flows with
Poisson arrivals and Pareto transfer size. Depending on the
flow inter-arrival times, the measured throughput gains vary
between the coding gain and the Coding+MAC gain.

D. COPE in an Ad Hoc Network

How does COPE perform in a wireless mesh network?
We have advocated a simple approach to wireless network
coding where each node relies on its local information to detect
coding opportunities, and when possible XORs the appropriate
packets. However, it is unclear how often such opportunities
arise in practice, and whether they can be detected using only
local information. Thus, in this section, we run experiments on
our 20-node testbed to gauge the throughput increase provided
by COPE in an ad hoc network.

1) TCP: We start with TCP flows that arrive according to
a Poisson process, pick sender and receiver randomly, and
transfer files whose sizes follow the distribution measuredon
the Internet [45].

Surprisingly, in our testbed, TCP does not show any signifi-
cant improvement with coding (the average gain is 2-3%). The
culprit is TCP’s reaction to collision-related losses. There are a
number of nodes sending packets to the bottleneck nodes, but
they are not within carrier sense range of each other, resulting
in the classic hidden terminals problem. This creates many
collision-related losses that cannot be masked even with the
maximum number of MAC retries. To demonstrate this point,
we repeat the TCP experiments with varying number of MAC
retransmissions with RTS/CTS enabled. Note that disabling
RTS/CTS exacerbates the problem further. Fig. 8 plots the end-
to-end loss rates for TCP flows as a function of the number of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14 16

Lo
ss

 F
ra

ct
io

n

No. of MAC retries

Loss rate with TCP

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

No. of MAC retries

Average Queue Size at bottleneck

Fig. 8—End-to-end loss rate and average queue size at the
bottlenecks for the TCP flows in the testbed. Loss rates are as
high as 14% even after 15 MAC retries; TCP therefore performs
poorly. The queues at the bottlenecks almost never build up
resulting in very few coding opportunities and virtually no gains.

MAC retransmissions.These experiments have COPE turned
off. Even after 15 MAC retries (the maximum possible) the
TCP flows experience 14% loss. As a result, the TCP flows
suffer timeouts and excessive back-off, and are unable to ramp
up and utilize the medium efficiently. Fig. 8 plots the average
queue sizes at the bottleneck nodes.1 The bottleneck nodes
never see enough traffic to make use of coding; most of their
time is spent without any packets in their queues or just a
single packet. Few coding opportunities arise, and hence the
performance is the same with and without coding.

Collision-related losses are common in wireless networks
and recent work has studied their debilitating effect on
TCP [46], [47]. Making TCP work in such a setting would
imply solving the collision problem; such a solution is beyond
the scope of this paper.

Would TCP be able to do better with COPE if we eliminated
collision-related losses? We test the above hypothesis by per-
forming the following experiment. We compress the topology
of the testbed by bringing the nodes closer together, so that
they are within carrier sense range. We artificially impose the
routing graph and inter-node loss rates of the original testbed.
The intuition is that the nodes are now within carrier sense
range and hence can avoid collisions. This will reduce the
loss rates and enable TCP to make better use of the medium.
We repeat the above experiment with increasing levels of

1The few nodes connecting the two floors are where the flows intersect;
they are main bottlenecks in our testbed.

IEEE/ACM TRANSACTIONS ON NETWORKING 11

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

T
C

P
 G

oo
dp

ut
 in

 M
b/

s

Offered load in Mb/s

With COPE
Without COPE

Fig. 9—COPE provides 38% increase in TCP goodput when the
testbed topology does not contain hidden terminals.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20 22 24

N
et

w
or

k
T

hr
ou

gh
pu

t i
n

M
b/

s

Offered load in Mb/s

With COPE
Without COPE

Fig. 10—COPE can provide a several-fold (3-4x) increase in the
throughput of wireless Ad hoc networks. Results are for UDP
flows with randomly picked source-destination pairs, Poisson
arrivals, and heavy-tail size distribution.

congestion obtained by decreasing the inter-arrival timesof
the TCP flows. Fig. 9 plots the network TCP goodput with
and without COPE as a function of the demand. For small
demands, COPE offers a slight improvement since coding
opportunities are scarce. As the demands increase, network
congestion and coding opportunities increase, leading to higher
goodput gains. As congestion increases beyond a certain level,
the throughput levels off, reflecting the fact that the network
has reached its capacity and cannot sustain additional load. At
its peak, COPE provides 38% improvement over no coding.
The medium loss rates after retransmissions are negligible. The
TCP flows are therefore able to use the medium efficiently,
providing coding opportunities and throughput gains.

2) UDP: We repeat the large scale testbed experiments with
UDP. The flows again arrive according to a Poisson process,
pick sender and receiver randomly, and transfer files whose
sizes follow the distribution measured on the Internet [45].
We vary the arrival rates of the Poisson process to control
the offered load. For each arrival rate, we run 10 trials, with
coding on and then off (for a total of 500 experiments), and
compute the network throughput in each case.

Fig. 10 shows that COPE greatly improves the throughput
of these wireless networks, by a factor of 3-4x on average. The
figure plots the aggregate end-to-end throughput as a function
of the demands, both with COPE and without. At low demands

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20 24

P
er

ce
nt

ag
e

Offered Load (Mb/s)

Packets coded due to Guessing

Fig. 11—Percentage of packets coded in the testbed due to
guessing, as a function of offered load, for the set of experiments
in Fig. 10.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

P
er

ce
nt

ag
e

No. of packets coded together

Coded packets

Fig. 12—Distribution of number of packets coded together in the
test bed at the peak point of Fig. 10.

(below 2Mb/s), coding opportunities are scarce, and COPE
performs similarly to no coding. As demands increase, both
network congestion and the number of coding opportunities
increase. In such dense networks, the performance without
coding deteriorates because of the high level of contentionand
consequent packet loss due to collisions. In contrast, coding
reduces the number of transmissions, alleviates congestion,
and consequently yields higher throughput.

It is interesting to examine how much of the coding is due
to guessing, as opposed to reception reports. Fig. 11 plots
the percentage of packets that have been coded because of
guessing for the experiments in Fig.10. It is calculated as
follows: If n packets are coded together, and at mostk packets
could be coded using reception reports alone, thenn − k
packets are considered to be coded due to guessing. The figure
shows that the benefit of guessing varies with demands. At low
demands, the bottleneck nodes have small queues, leading toa
short packet wait time. This increases dependence on guessing
because reception reports could arrive too late, after the
packets have been forwarded. As demands increase, the queues
at the bottlenecks increase, resulting in longer wait times,
and consequently allowing more time for reception reports
to arrive. Hence, the importance of guessing decreases. As
demands surge even higher, the network becomes significantly
congested, leading to high loss rates for reception reports.
Hence, a higher percentage of the coding decisions is again
made based on guessing.

Let us now examine in greater detail the peak point in
Fig. 10, which occurs when demands reach 5.6 Mb/s. Fig. 12
shows the PDF of the number of native packets XOR-ed at the
bottleneck nodes (i.e., the nodes that drop packets). The figure
shows that, on average, nearly 3 packets are getting coded
together. Due to the high coding gain, packets are drained

IEEE/ACM TRANSACTIONS ON NETWORKING 12

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t G

ai
n

Ratio of uplink to downlink traffic

Throughput Gain

Fig. 13—COPE’s throughput gain as a function of the ratio of
uplink to downlink traffic at in a congested meshaccessnetwork.

much faster from the queues of the bottleneck nodes. The
result is an average throughput gain of 3-4x.

E. COPE in a Mesh Access Network

There is growing interest in providing cheap Internet access
using multi-hop wireless networks that connect to the rest of
the Internet via one or more gateways/access points [1], [48],
[49]. We evaluate COPE in such a setting, where traffic is
flowing to and from the closest gateway. We divide the nodes
in the testbed into 4 sets. Each set communicates with the
Internet via a specific node that plays the role of a gateway.
We use UDP flows,2 and control the experiments by changing
the ratio of upload traffic to download traffic. Fig. 13 plots the
throughput gains as a function of this ratio.

The throughput gain increases as the fraction of uplink
traffic increases. When the amount of uplink traffic is small,
gains are correspondingly modest; around 5−15%. As uplink
traffic increases, gains increase to 70%. COPE’s throughput
gain relies on coding opportunities, which depend on the
diversity of the packets in the queue of the bottleneck node.
For example, in the Alice-and-Bob topology, if only 10% of
the packets in the bottleneck queue are from Alice and 90%
from Bob, then coding can at best sneak Alice’s packets out on
Bob’s packets. Hence, as the ratio of uplink traffic increases,
the diversity of the queues at bottlenecks increases, more
coding opportunities arise, and consequently higher throughput
gains are obtained.

F. Fairness

The access network experiment above illuminates the effect
fairness has on coding opportunities. An important source of
unfairness in wireless networks is the comparative quality
of the channels from the sources to the bottleneck, usually
referred to as thecapture effect. For example, in the Alice and
Bob experiment, if the channel between Alice and the router
is worse than that between Bob and the router, Alice might be
unable to push the same amount of traffic as Bob. Although
the 802.11 MAC should give a fair allocation to all contenders,
the sender with the better channel (here Bob) usually captures
the medium for long intervals. The routing protocol tries to
discount the capture effect by always selecting the stronger
links; but in practice, capture always happens to some degree.

2As mentioned earlier, in the uncompressed testbed, TCP backs off exces-
sively because of collision-based losses from hidden terminals, and does not
send enough to fully utilize the medium.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Ratio of distances of edge nodes from the relay

Throughput(Mb/s)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

F
ra

c
ti
o
n

Ratio of distances of edge nodes from the relay

Fairness index
Fraction of coded packets

Fig. 14—Effect of unequal channel qualities on coding opportuni-
ties and throughput gain in the Alice-and-Bob topology. COPE
aligns the fairness and efficiency objectives. Increased fairness
increases coding opportunities and hence improves the aggregate
throughput.

We study the effect of capture on COPE by intentionally
stressing the links in the Alice and Bob topology. We set it
up such that both Alice and Bob are equidistant from the
router, and compute the total network throughput. We then
gradually move Alice’s node away from the router, and repeat
the experiment and the measurements.

Fig. 14 shows the network throughput as a function of
the ratio of Alice’s and Bob’s distance to the router. It also
shows the percentage of coded packets and thefairness index,
computed as the ratio of Alice’s throughput to Bob’s. As Alice
moves further away, Bob increasingly captures the channel,
reducing fairness, coding opportunities, and the aggregate
network throughput. Interestingly, without coding, fairness and
efficiency are conflicting goals; throughput increases if the
node with the better channel captures the medium and sends
at full blast. Coding, however, aligns these two objectives;
increasing fairness increases the overall throughput of the
network.

VIII. D ISCUSSIONAND CONCLUSION

Finally, we would like to comment on the scope of COPE.
The present design targets stationary wireless mesh networks,
where the nodes are not resource-constrained. More generally,
COPE can be used in multi-hop wireless networks that satisfy
the following:
• Memory:COPE’s nodes need to store recently heard packets

for future decoding. Only packets in flight are used in
coding; there is no need to store packets that have already
reached their destination. Consequently, the storage require-
ment should be slightly higher than a delay-bandwidth
product. (For e.g., an 11 Mb/s network with a 50ms RTT
has a delay-bandwidth product of 70 KB.)

• Omni-directional antenna:Opportunistic listening requires
omni-directional antennas to exploit the broadcast property.

• Power requirements:Our current design of COPE does not
optimize power usage and assumes the nodes are not energy
limited.
The ideas in COPE may be applicable beyond WiFi mesh

networks. Note that COPE can conceptually work with a
variety of MAC protocols including WiMax and TDMA. One
may envision modifying COPE to address the needs of sensor
networks. Such a modification would take into account that
only a subset of the sensor nodes is awake at any point of
time and can participate in opportunistic listening. Sensor
nodes may also trade-off saved transmissions for reduced
battery usage, rather than increased throughput. Additionally,

IEEE/ACM TRANSACTIONS ON NETWORKING 13

COPE may be useful for cellular relays. Deploying cellular
base stations is usually expensive. A cheap way to increase
coverage is to deploy relay nodes that intervene between the
mobile device and the base station [50], creating a multi-hop
cellular backbone. COPE would allow cellular relays to use
the bandwidth more efficiently. Indeed, after the publication
of COPE, we have learned that Ericsson has independently
proposed a design for cellular relays with a subset of COPE’s
functionality, where the cellular relay XORs only duplex flows,
as in the Alice-and-Bob scenario [50]. This scheme can be
extended to make full use of the ideas embedded in COPE.

Our community knows a few fundamental approaches that
can improve wireless throughput, including more accurate con-
gestion control, better routing, and efficient MAC protocols.
We believe that COPE is an important step forward in our
understanding of the potential of wireless networks because
it presents a new orthogonal axis that can be manipulated
to extract more throughput; namely, how to maximize the
amount of data delivered in a single transmission. This is
coding, which is an old theme, traditionally used at the
physical and application layers. But COPE and a few other
recent projects [16], [51] introduce coding to the networking
community as a practical tool that can be integrated with
forwarding, routing, and reliable delivery.

REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” inSIGCOMM, vol. 34,
no. 4, August 2004.

[2] Y. Wu, P. A. Chou, and S. Y. Kung, “Information Exchange inWireless
Networks with Network Coding and Physical-layer Broadcast,” MSR-
TR-2004-78.

[3] T. Ho and R. Koetter, “Online incremental network codingfor multiple
unicasts,” inDIMACS Working Group on Network Coding, January 2005.

[4] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” in IEEE Transactions on Information Theory, vol. 46, no. 4, July
2000, pp. 1204–1216.

[5] S. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,”in IEEE
Transactions on Information Theory, vol. 49, no. 2, February 2003, pp.
371–381.

[6] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–795,
October 2003.

[7] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger, “On randomized
network coding,” in41st Annual Allerton Conference on Communica-
tion, Control, and Computing, October 2003.

[8] S. Deb, M. Effros, T. Ho, D. R. Karger, R. Koetter, D. S. Lun,
M. Médard, and N. Ratnakar, “Network coding for wireless applications:
A brief tutorial,” in IWWAN, 2005.

[9] Y. Wu, P. Chou, Q. Zhang, K. Jain, W. Zhu, and S. Kung, “Network
planning in wireless ad hoc networks: a cross-layer approach,” pp. 136–
150, January 2005.

[10] Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-energy multicast in
mobile ad hoc networks using network coding,”IEEE Transactions on
Communications, vol. 53, no. 11, pp. 1906–1918, November 2005.

[11] J. Widmer, C. Fragouli, and J. LeBoudec, “Energy-efficient broadcasting
in wireless ad-hoc networks,” inNetCod 2005.

[12] Y. Sagduyu and A. Ephremides, “Joint scheduling and wireless network
coding,” in NetCod 2005.

[13] Y. Chen, S. Kishore, and J. Li, “Wireless diversity through network
coding,” WCNC, vol. 3, no. 5, pp. 1681–1686, 2006.

[14] X. Bao and J. Li, “On the outage properties of adaptive network coded
cooperation (ancc) in large wireless networks,” inICASSP, vol. 4, May
2006.

[15] A. A. Hamra, C. Barakat, and T. Turletti, “Network coding for wireless
mesh networks: A case study,” inWoWMoM, June 2006.

[16] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading struc-
ture for randomness in wireless opportunistic routing,” inSIGCOMM,
vol. 37, no. 4, August 2007.

[17] D. S. Lun, N. Ratnakar, R. Koetter, M. Médard, E. Ahmed,and H. Lee,
“Achieving minimum cost multicast: A decentralized approach based on
network coding,” inIEEE INFOCOM 05, 2005.

[18] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiencyof linear coding
in network information flow,” in IEEE Transactions on Information
Theory, vol. 51, no. 8, August 2005, pp. 2745–2759.

[19] Z. Li and B. Li, “Network coding: The case for multiple unicast
sessions,” inAllerton Conference on Communications, 2004.

[20] X. Bao and J. Li, “Matching code-on-graph with network-on-graph:
Adaptive network coding for wireless relay networks,” in43rd Annual
Allerton Conference on Communication, Control, and Computing, 2005.

[21] Y. Sagduyu and A. Ephremides, “Network coding in wireless queueing
networks: Tandem network case,” inISIT, July 2006, pp. 192–196.

[22] ——, “Crosslayer design for distributed mac and networkcoding in
wireless ad hoc networks,” inISIT, September 2005, pp. 1863–1867.

[23] S. Katti, H. S. Rahul, W. Hu, D. Katabi, M. Médard, and J.Crowcroft,
“Xors in the air: Practical wireless network coding,” inSIGCOMM,
vol. 36, no. 4, August 2006.

[24] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou,
“The local mixing problem,” inInformation Theory and Applications
Workshop. San Diego, CA, Feb. 2006.

[25] S. Rayanchu and S. S. S. Banerjee, “An analysis of wireless network
coding for unicast sessions: The case for coding-aware routing,” in IEEE
INFOCOM, May 2007, pp. 1028–1036.

[26] J. Liu, D. Goeckel, and D. Towsley, “Bounds on the gain ofnetwork
coding and broadcasting in wireless networks,” inIEEE INFOCOM,
May 2007, pp. 724–732.

[27] P. Popovski and H. Yomo, “Bi -directional amplificationof throughput
in a wireless multi-hop network,” inVTC, 2006.

[28] T. Aulin and M. Xiao, “A physical layer aspect of networkcoding
with statistically independent noisy channels,” inIEEE International
Conference on Communications, vol. 9, no. 4, June 2006, pp. 3996–
4001.

[29] S. Zhang, S. C. Liew, and P. P. Lam, “Physical-layer network coding,”
in MobiCom, September 2006.

[30] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:
Analog network coding,” inACM SIGCOMM, vol. 37, no. 4, August
2007.

[31] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” inMobiCom,
San Diego, California, September 2003.

[32] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
evaluation of an unplanned 802.11b mesh network,” inMobiCom,
August 2005.

[33] R. Draves, J. Padhye, and B. Zill, “Comparison of Routing Metrics for
Multi-Hop Wireless Networks,” inSIGCOMM, vol. 34, no. 4, August
2004.

[34] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan, “WTCP: A reliable transport protocol for wireless wide-
area networks,”Wireless Networks, vol. 8, no. 2-3, pp. 301–316, 2002.

[35] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless
networks,” inSIGCOMM, vol. 35, no. 4, August 2005.

[36] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle sense: an
optimal access method for high throughput and fairness in rate diverse
wireless lans,” inSIGCOMM, vol. 35, no. 4, August 2005.

[37] Z. Li and B. Li, “Network Coding in Undirected Networks,” in CISS,
2004.

[38] “Internet packet size distributions: Some observations,”
http://netweb.usc.edu/ rsinha/pkt-sizes/.

[39] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.Katz,
“A comparison of mechanisms for improving tcp performance over
wireless links,” inIEEE/ACM Transactions on Networking, vol. 5, no. 6,
December 1997.

[40] p. a. IEEE 802.11 WG, “Wireless lan medium access control (mac) and
physical layer (phy) specifications,”Standard Specification,IEEE, 1999.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,”ACM Transactions on Computer Systems, vol. 18,
no. 3, August 2000.

[42] “udpgen,” http://pdos.csail.mit.edu/click/ex/udpgen.html.
[43] “ttcp,” http://ftp.arl.mil/ftp/pub/ttcp/.
[44] V. Paxson and S. Floyd, “Wide-area traffic: the failure of poisson

modeling,” in IEEE/ACM Transactions on Networking, vol. 3, no. 3,
June 1995, pp. 226–244.

[45] M. E. Crovella, M. S. Taqqu, and A. Bestavros, “Heavy-tailed probability
distributions in the World Wide Web,” inA Practical Guide To Heavy
Tails, R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds. New York:
Chapman and Hall, 1998, ch. 1, pp. 3–26.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[46] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of
multihop wireless channel on tcp throughput and loss,” inINFOCOM,
vol. 3, April 2003, pp. 1744–1753.

[47] C. cheng Chen, E. Seo, H. Kim, and H. Luo”, “Self-learning collision
avoidance for wireless networks,” inINFOCOM, April 2006, pp. 1–12.

[48] P. Bhagwat, B. Raman, and D. Sanghi, “Turning 802.11 inside-out,” in
HotNets, 2003.

[49] “Nokia rooftop wireless routing,” white Paper.
[50] “Definition and assessment of relay based cellular deployment concepts

for future radio scenarios considering 1st protocol characteristics. Chap-
ter 5,” https://www.ist-winner.org/DeliverableDocuments/D3.4.pdf.

[51] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein, “Growth codes:
Maximizing sensor network data persistence,” inSIGCOMM, vol. 36,
no. 4, August 2006.

APPENDIX

A. Proof of Lemma 4.1
Proof: We first prove the upper bound of 2. Note that if the

intermediate node codesN native packets together, these packets have
to be toN different next-hops, by the coding rule of§III(b). In the
absence of opportunistic listening, the only routing neighbor that has
a packet is the previous hop of that packet. Suppose the intermediate
hop codes≥ 2 packets from the same neighbor. All other neighbors
must have≤ N − 2 packets in the encoded packet, which violates
the coding rule. As a result, the intermediate hop can code atmost
one packet from a neighbor. Without opportunistic listening, this is
the only native packet in the encoded packet that this neighbor has.
Invoking the coding rule, this implies that the intermediate hop can
code at most 2 packets together. This implies that the total number
of transmissions in the network can at most be halved with coding,
for a coding gain of 2.

Indeed, this gain is achievable in the chain ofN links in Fig. 3(a).
This topology is an extension of the Alice-and-Bob example where
N = 2. The no-coding case requires a total of 2N transmissions to
deliver a packet from Alice to Bob, and vice-versa. On the other hand,
in the presence of coding, each of theN−1 intermediate nodes on the
path can transmit information simultaneously to neighborson either
side by coding the two packets traversing in opposite directions, for
a total ofN + 1 transmissions. The coding gain in this case is2N

N+1 ,
which tends to 2 as the chain length grows.

B. Proof of Lemma 4.2
Proof: We assume that the network uses the 802.11 MAC, which

allocates a fair share to all active nodes. As proved above, in the
absence of opportunistic listening, a node can code at most 2packets
together. Hence, a bottleneck node can drain its packets atmost twice
as fast, bounding the Coding+MAC gain at 2. This gain is achieved
even in the simple Alice-and-Bob experiment as explained above
(longer chains result in the same Coding+MAC gain).

C. Proof of Lemma 4.3
Proof: Consider the wheel topology with radiusr in Fig. 3(d)

with N nodes uniformly placed on the circumference, and one node
at the center of the circle. We assume that the nodes use the 802.11
MAC, which allocates a fair share of the medium to all nodes.
Assume that when a node transmits, all other nodes in the circle
overhear this transmission, except for the diametrically opposed node
(i.e., the radio range is 2r − ǫ, where ǫ ≈ 0). Suppose now that
there are flows between every pair of diametrically opposed nodes.
Note that nodes on either end of a diameter cannot communicate
directly, but can communicate using a two-hop route throughthe
middle node. In fact, this route is the geographically shortest route
between these nodes. In the absence of coding, a single flow requires
1 transmission from an edge node, and 1 transmission from themiddle
node. This adds to a total of 1 transmission per edge node, and
N transmissions for the middle node, across all packets. Since the
MAC gives each node only a1

N+1 share of the medium, the middle
node is the bottleneck in the absence of coding. However, COPE

with opportunistic listening allows the middle node to codeall the
N incoming packets and fulfill the needs of all flows with just one
transmission, thereby matching its input and output rates.Hence, the
Coding+MAC gain isN, which grows without bound with the number
of nodes.

Sachin Katti received the B.Tech. degree in Elec-
trical Engineering from the Indian Institute of Tech-
nology, in 2003. He received the M.S. degree in
Computer Science from the MIT in 2005. He is
currently pursuing his Ph.D. degree in computer sci-
ence at MIT. His research interests include wireless
networks, coding theory, and distributed systems.

Hariharan Rahul received his B.Tech. from the
Indian Institute of Technology in 1997, and his M.S.
from MIT in 1999, both in computer science. He
worked at Akamai Technologies, and is currently
pursuing his Ph.D. Degree in Computer Science
from MIT. His research interests are in Internet
performance measurement, wireless networks, and
distributed systems. He has won the President of In-
dia gold medal at IIT, and the Professional Services
excellence award at Akamai.

Wenjun Hu is a Ph.D. student at the University of
Cambridge Computer Laboratory. She has received
a BA in Computer Science from the University of
Cambridge in 2003. Her research interests are in
the area of wireless and mobile networking. For her
thesis work she is focusing on applying network
coding to wireless mesh networks.

Dina Katabi is a Sloan Associate Professor in
the Electrical Engineering and Computer Science
department at MIT. She received her M.S. and Ph.D.
degrees from MIT, in 1998 and 2003. Her work
focuses on wireless networks, network security, rout-
ing, and distributed resource management. She has
been awarded an NSF CAREER award in 2005,
a Sloan Fellowship award in 2006, and the NBX
Career Development chair in 2006. Her doctoral dis-
sertation won an ACM Honorable Mention award.

Muriel M édard is the Edgerton Associate Professor
in the EECS department at MIT and the Associate
Director of LIDS. She received B.S. degrees in
EECS and in Mathematics in 1989, a B.S. degree in
Humanities in 1990, a M.S. degree in EE 1991, and a
Sc D. degree in EE in 1995, all from MIT. Professor
Medard’s interests are in the areas of network coding
and reliable communications. She was awarded an
NSF Career Award in 2001, the IEEE Leon K.
Kirchmayer Prize Paper Award in 2002, and the
Edgerton Faculty Achievement Award in 2004.

Jon Crowcroft is the Marconi Professor of Net-
worked Systems in the Computer Laboratory, of the
University of Cambridge. Prior to that he was profes-
sor of networked systems at UCL in the Computer
Science Department. He is a Fellow of the ACM, a
Fellow of the British Computer Society and a Fellow
of the IEE and a Fellow of the Royal Academy of
Engineering, as well as a Fellow of the IEEE.

