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Abstract

We consider the classical problem of synchronous broadcast with dishonest majority, when
a public-key infrastructure and digital signatures are available. In a surprising result, Hirt and
Zikas (Eurocrypt 2010) recently observed that all existing protocols for this task are insecure
against an adaptive adversary who can choose which parties to corrupt as the protocol progresses.
Moreover, they prove an impossibility result for adaptively secure broadcast in their setting.

We argue that the communication model adopted by Hirt and Zikas is unrealistically pes-
simistic. We revisit the problem of adaptively secure broadcast in a more natural synchronous
model (with rushing), and show that broadcast is possible in this setting for an arbitrary num-
ber of corruptions. Our positive result holds under a strong, simulation-based definition in the
universal-composability framework.

We also study the impact of adaptive attacks on protocols for secure multi-party computation
where broadcast is used as a sub-routine.

1 Introduction

Broadcast [14, 12] is a fundamental primitive in fault-tolerant distributed computing. It also serves
as an important subcomponent of most multi-party cryptographic protocols. Indeed, cryptographic
protocols are typically designed and analyzed under the assumption that a broadcast channel is
available, but in almost any real-world scenario the broadcast channel needs to be realized using
a broadcast protocol. Fortunately, known composition results (including, most powerfully, those
within the universal composability (UC) framework [3]) imply that this approach is sound : namely,
given a protocol Π proven secure under the assumption that a broadcast channel exists, and then
instantiating the broadcast channel using a secure broadcast protocol bc, the composed protocol
Πbc is guaranteed to be secure when run over a point-to-point network.

The construction of broadcast protocols has a long history, starting from the seminal work of
Pease, Shostak, and Lamport [14, 12] who showed that broadcast (and the closely related primitive
known as consensus or Byzantine agreement) is possible if and only if the number of corrupted
parties t is strictly less than 1/3 of the total number of parties n. (Here and throughout the paper,
we assume a synchronous model of communication.) This holds in the “plain model” with no
additional setup, but it is known that the bound on the tolerable number of corrupted parties can
be exceeded if a public-key infrastructure (PKI) and digital signatures are available to the parties.
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In this setting, it is possible to construct broadcast protocols resilient to a computationally bounded
adversary corrupting t < n of the parties [9].1 In what follows, we always have in mind this setting
when we speak of protocols tolerating t ≥ n/3 corrupted parties.

As far as questions of feasibility are concerned, broadcast had appeared to be a solved problem.
A recent result by Hirt and Zikas [11] therefore came as quite a surprise. They studied the problem
of designing broadcast protocols with security against adaptive adversaries who can choose which
parties to corrupt during the course of the protocol (cf. [5]). Hirt and Zikas showed explicit attacks
against all existing broadcast protocols when t ≥ n/3 and, moreover, proved the impossibility of
realizing adaptively secure broadcast with corruption threshold t > n/2. (They gave constructions
of adaptively secure protocols for the regime n/3 ≤ t ≤ n/2.) Their work calls into question the
feasibility of realizing adaptively secure multi-party computation (MPC) for t > n/2 in point-to-
point networks.

A closer look at the Hirt-Zikas result shows that they make a very strong assumption regarding
the adversary (or, alternately, a very weak assumption regarding the communication network):
namely, they assume the adversary has the ability to corrupt parties in the middle of a round,
in between sending messages to two other parties in the network. Specifically, their impossibility
result crucially relies on the fact that the following sequence of events can occur when an honest
party P sends its messages in some round:

1. The adversary (who has already corrupted some of the other players) receives the message(s)
sent to it by P .

2. Based on this, the adversary then decides whether to corrupt P .

3. If the adversary corrupts P , it can then send messages of its choice (on behalf of P ) to the
remaining parties in the same round.

While the above is consistent with theoretical models for asynchronous cryptographic protocols, as
well as some previous treatments of adaptive security in the synchronous setting (e.g., [3]), allowing
such adversarial behavior seems unrealistically pessimistic: in the real world, implementing such
an attack would require either an exceedingly fast adversary or an extremely slow network. A
more realistic model of synchronous communication (see, e.g., [2]) is one in which messages sent by
honest parties within any given round are delivered atomically to all other parties.2

Importantly, however, the attacks that were demonstrated by Hirt and Zikas [11] on existing
broadcast protocols remain valid even if we assume atomic message delivery. Consider, for example,
the authenticated broadcast protocol of Dolev and Strong [9] where, at a high level, in the first
round the sender digitally signs and sends his message to all the other parties, while in subsequent
rounds parties append their signatures and forward the result. Roughly, if any party ever observes
valid signatures of the sender on two different messages then that party forwards both signatures
to all other parties and disqualifies the sender (and all parties output some default message). The
Hirt-Zikas attack against this protocol works as follows: a corrupted party P in the network waits
to receive the initial message from the (uncorrupted) sender. If P likes the message sent by the

1With a different sort of initial setup, broadcast resilient to an unbounded adversary corrupting t < n of the
parties is also possible [16].

2We still allow rushing, meaning that corrupted parties may receive their messages in some round before having
to send any of their own. This reflects the fact that corrupted parties can choose to delay their own communication.
However, it seems unrealistic to assume that honest parties would delay sending any of their own messages.

2



sender then P runs the protocol honestly. If P does not like the message sent by the sender then
P adaptively corrupts the sender, uses the sender’s signing key to generate a valid signature on
another message (in the next round), and thus ensures that the sender will be disqualified and the
default message used.

While this outcome might be acceptable with respect to a property-based definition (since the
sender is corrupted by the end of the protocol in the second case), the outcome is not something
that should be possible with respect to a simulation-based definition (since corruption of the sender
depends on the sender’s initial input). Realizing the latter, stronger definition is a natural goal;
moreover, a simulation-based definition is especially critical for broadcast which is typically used
as a sub-protocol within some larger protocol.

Given that the Hirt-Zikas attack applies even when atomic message delivery is assumed, one
might wonder whether their impossibility result holds in that model as well. Alternately, one may
be willing to give up on “full” broadcast and hope that some weaker form of broadcast might be
sufficient to achieve secure MPC for t > n/2. (Indeed, in the presence of a dishonest majority the
standard definitions of secure MPC give up on guaranteed output delivery, so in particular secure
MPC for t > n/2 does not imply broadcast for t > n/2.) These are the questions with which we
concern ourselves in this paper.

1.1 Our Results

As our main result, we show that the Hirt-Zikas impossibility result does not apply in the syn-
chronous model with atomic message delivery. That is, we show a construction of an adaptively
secure broadcast protocol tolerating an arbitrary number of corruptions in this communication
model. We prove security of our protocol within the UC framework [3], under the usual assump-
tions that a PKI and digital signatures are available. We stress that we require only a standard
PKI where each party chooses their public key and all other parties know it; in particular, we do
not require the stronger “registered public key” model considered in [1].

The main idea for avoiding the Hirt-Zikas attack is to design a protocol where the adversary
does not learn the (honest) sender’s message until agreement has already been reached; that way,
the adversary must make its decision as to whether or not to corrupt the sender independently of
the sender’s input. This suggests the following two-stage approach: First, the signer broadcasts a
commitment to its message; once agreement is reached, the signer then decommits. While this does
prevent the above attack, it also introduces a new problem when we try to prove security, since
the simulator must commit to the sender’s message before knowing what the sender’s message is!
(Since the sender might still get corrupted in the middle of the protocol, it also does not work for
the simulator to obtain the output of the broadcast functionality before starting the simulation.)
This could be handled by using a universally composable commitment scheme (e.g., [6]), which
satisfies even stronger properties, but we would prefer to avoid the stronger setup assumptions that
are required for constructing universally composable commitments [6].

Instead, we show that a very weak form of commitment suffices to make the approach sound.
Specifically, we use commitment schemes that (informally) are hiding and binding for an honest
sender, but where binding can be (easily) violated by a dishonest sender. To see why this works,
note that the only time binding is needed is when the adversary corrupts the sender after the
sender has already committed to its message. Since the sender in that case was honest at the time
the commitment was generated, the binding property holds and the adversary will not be able to
change the committed value. On the other hand, the simulator can behave as a dishonest sender and
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generate a commitment that it can later open to any desired value, and in particular to the sender’s
true input in case the sender remains uncorrupted until the end of the protocol. We show that
commitment schemes with the desired properties can be constructed from one-way functions (which
are, in turn, implied by digital signature schemes); thus, in summary, we obtain an adaptively
secure, universally-composable broadcast protocol assuming a PKI and digital signatures.

We also study the impact of adaptive attacks on secure multi-party computation protocols
(where broadcast is commonly used as a subcomponent), and establish the variants of broadcast
that are needed in this setting. Interestingly, we show that the full functionality of broadcast is not
needed in order to obtain secure MPC for t ≥ n/2; instead, a weaker form of broadcast — which
can be realized even in the Hirt-Zikas communication model — suffices.

1.2 Organization of the Paper

In Section 2 we present our network model and elaborate on simulation-based definitions of security.
Section 3 defines various notions of broadcast, and contains our construction of adaptively secure
broadcast. We discuss the consequences for adaptively secure multi-party computation in Section 4.

2 Preliminaries

2.1 Network Model

We consider a network with synchronous communication, where there is a set of n players (prob-
abilistic polynomial-time Turing machines) P = {P1, P2, · · · , Pn} connected by point-to-point au-
thenticated channels. Each round of the protocol proceeds as follows. The honest parties send
their messages for that round, and these messages are received by all parties (both honest and
corrupted). The adversary may then choose to corrupt additional players, and then it sends mes-
sages on behalf of the parties who were corrupted at the beginning of that round. (This models
a rushing adversary.) When it is done, the adversary must then “advance the clock” to the next
round. We allow the adversary to corrupt any t < n of the parties, and to behave in an arbitrary
(“Byzantine”) manner.

We stress that our model is different from that considered by Hirt and Zikas [11], where in each
round the honest parties’ messages are first delivered to the corrupted parties only and then the
adversary is allowed to corrupt additional parties and decide what messages to send on behalf of
those parties to other honest players. In contrast, we assume that honest parties’ messages are
delivered “atomically”, which is equivalent to assuming that adversarial corruption cannot occur
in the time interval between when a message is sent and when it is received. We sometimes refer
to our model as “atomic”, and to the Hirt-Zikas model as “non-atomic”.

2.2 Simulation-Based Security

We use a simulation-based definition of security, which is in line with work in the area of cryptographic-
protocol design but which differs from most of the classical work on Byzantine agreement and
broadcast. Simulation-based definition are formulated by defining an “ideal” version of some de-
sired functionality that is implemented by a trusted third-party; a protocol is secure if the protocol
“emulates” this ideal world no matter what the adversary does. One advantage of a simulation-
based approach is that it simultaneously captures all the properties that are guaranteed by the ideal
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world, without having to enumerate some list of desired properties. Simulation-based definitions
are also useful for applying composition theorems that enable proving security of protocols that use
other protocols as sub-routines.

We formulate our simulation-based definitions by presenting appropriate functionalities within
the UC framework. We give a brief introduction to this model, and refer readers elsewhere for more
details [3]. The basic entities involved are players P1, . . . , Pn, an adversaryA, and an “environment”
Z. The environment Z gives inputs to and receives outputs from all the players; it also interacts
with A in an arbitrary way throughout its execution. In the ideal world, the parties and Z all
interact via an ideal functionality F : the parties send their inputs to (with corrupted parties sending
anything they like) and receive outputs from F , and A interacts with F as specified by F itself.
We let idealF ,A,Z(n) denote the output of Z in this case. In the real world, the parties run some
protocol π with the corrupted parties behaving arbitrarily as directed by A. We let realπ,A,Z(n)
denote the output of Z in that case. A protocol π securely realizes the functionality F if for any
probabilistic polynomial-time (ppt) real-world adversaryA there exists a ppt ideal-world adversary
S (often called a simulator) such that for all ppt environments Z the following is negligible:

|Pr[realπ,A,Z(n) = 1]− Pr[idealF ,S,Z(n) = 1]| .

Say we want to design a protocol for some functionality F . It is often helpful to design and
reason about this in a hybrid world where the parties can run a protocol π while at the same time
having access to some ideal functionality G. We let hybridGπ,A,Z(n) denote the output of Z in
that case, and say that π securely realizes F in the G-hybrid model if for any ppt hybrid-world
adversary A there exists a ppt ideal-world adversary S such that for all ppt environments Z we
have

∣∣∣Pr[hybridGπ,A,Z(n) = 1]− Pr[idealF ,S,Z(n) = 1]
∣∣∣. In the UC framework, the following useful

composition result holds: if π securely realizes F in the G-hybrid model, and ρ is any protocol that
securely realizes G, then the composed protocol πρ securely realizes F (in the real world).

3 Adaptively Secure Broadcast

In Section 3.1 we propose two definitions of broadcast: a “strong” definition that corresponds to the
intuitive notion of broadcast, and a “relaxed” definition that corresponds to the type of broadcast
shown to be possible in the non-atomic communication model considered by Hirt and Zikas. (Recall
that the stronger notion of broadcast was shown to be impossible in the non-atomic setting.) In
Section 3.2 we introduce a special type of commitment scheme, and we show how to construct such
schemes in Section 3.2.1. In Section 3.3 we show how to use such commitments to realize adaptively
secure broadcast in the atomic communication model.

3.1 Definitions

Classical results show that broadcast (or even relaxed broadcast) cannot be realized for t ≥ n/3
corrupted parties in a “plain model”, and so some setup must be considered if we wish to go beyond
this bound. As stated in the Introduction, we will assume a PKI and digital signatures. Within
the UC framework, this is modeled by the certificate functionality FCERT introduced in [4]. This
functionality provides both message-signing capability as well as binding between a signature and a
party in the network, and thus simultaneously captures both the presence of a PKI and the ability
to issue signatures.
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Functionality FBC

The functionality interacts with an adversary S and a set P = {P1, . . . , Pn} of parties.

• Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi,m) to all parties in P and to S.

Figure 1: The broadcast functionality.

Our definitions of broadcast are induced by ideal functionalities in the UC framework. Namely,
we say a protocol π achieves (strong) broadcast if it securely realizes the functionality FBC shown in
Figure 1; it achieves relaxed broadcast if it securely realizes the functionality FRBC given in Figure 2.
Our definition of broadcast is essentially standard, though one can also consider a definition where
the sender’s message m is not revealed to S. (I.e., our definition does not guarantee secrecy for m;
note that this only makes a difference when S corrupts no parties.) Our definition of relaxed
broadcast is from [11].

Functionality FRBC

The functionality interacts with an adversary S and a set P = {P1, . . . , Pn} of parties.

1. Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi, m) to S.

2. Upon receiving m′ from S, do:

• If Pi is corrupted, send (Bcast, sid, Pi, m′) to all parties in P;

• If Pi is not corrupted, send (Bcast, sid, Pi, m) to all parties in P.

Figure 2: The relaxed broadcast functionality.

It is instructive to examine the two functionalities in light of the Hirt-Zikas attack. Observe
that FBC does not allow their attack (and so any protocol securely realizing FBC must not be
susceptible to the attack) since the adversary cannot change the sender’s message m unless the
adversary corrupts the sender Pi in advance, before it learns m. On the other hand, FRBC allows
their attack: this is so because the adversary can first learn m (in step 1) and then decide whether
to corrupt the sender Pi based on that information; if the adversary decides to corrupt P1 then the
adversary is allowed change the message that will be received by all the other parties in step 2.

The following result was proved in [11]:

Lemma 3.1 The Dolev-Strong protocol [9] securely realizes FRBC in the FCERT-hybrid model
against an adaptive adversary corrupting any t < n parties.

In fact, the above result holds even in the non-atomic communication model.
It is also possible to define a stronger variant of FRBC, called F+

RBC, that more closely corre-
sponds to what is actually accomplished by the Hirt-Zikas attack. The difference between FRBC

and F+
RBC is that the latter only allows the adversary to have m′ =⊥. That is, the adversary

is allowed to adaptively corrupt the sender (based on the sender’s original message) and thereby
cause agreement on an error, but is unable to cause agreement on some other valid message. F+

RBC
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can be realized fairly easily in the FRBC-hybrid model using the commitment scheme defined in
the following section. Alternately, it can be realized directly in the FCERT-hybrid model using an
appropriate variant of the Dolev-Strong protocol. We omit the details.

3.2 Honest-Binding Commitment Schemes

Commitment schemes are a standard cryptographic tool. Roughly, a commitment scheme allows
a sender S to generate a commitment com to a message m in such a way that (1) the sender can
later open the commitment to the original value m (correctness); (2) the sender cannot generate a
commitment that can be opened to two different values (binding); and (3) the commitment reveals
nothing about the sender’s value m until it is opened (hiding). For our application, we need a
variant of standard commitments that guarantees binding when the sender is honest but ensures
that binding can be violated if the sender is dishonest. (In the latter case, we need some additional
properties as well; these will become clear in what follows.) Looking ahead, we will use such
commitment schemes to construct a broadcast protocol in the following way: the sender will first
generate and send a commitment to its message, and then send the decommitment information
needed to open the commitment. In the simulation for the case when the sender Pi starts out
uncorrupted, we will have the simulator S generate a commitment dishonestly. This will give S
the flexibility to break binding and open the commitment to any desired message (if needed), while
also being able to ensure binding (when desired) by claiming that it generated the commitment
honestly. We defer the details to the next section.

We consider only non-interactive commitment schemes. For simplicity, we define our schemes
in such a way that the decommitment information consists of the sender’s random coins ω that it
used when generating the commitment.

Definition 1 A (non-interactive) commitment scheme for message space {Mk} is a pair of ppt
algorithms S, R such that for all k ∈ N, all messages m ∈ Mk, and all random coins ω it holds
that R(m,S(1k,m; ω), ω) = 1.

A commitment scheme for message space {Mk} is honest-binding if it satisfies the following:

Binding (for an honest sender) For all ppt algorithms A (that maintain state throughout their
execution), the following is negligible in k:

Pr
[

m ← A(1k);ω ← {0, 1}∗;
com ← S (1k,m;ω); (m′, ω′) ← A(com, ω)

: R(m′, com, ω′) = 1
∧

m′ 6= m

]
.

Equivocation There is an algorithm S̃ = (S̃1, S̃2) such that for all ppt A (that maintain state
throughout their execution) the following is negligible:

∣∣∣∣∣
Pr

[
m ← A(1k);ω ← {0, 1}∗; com ← S (1k,m; ω) : A(1k, com, ω) = 1

]

−Pr
[
(com, st) ← S̃1(1k);m ← A(1k);ω ← S̃2(st,m) : A(1k, com, ω) = 1

]
∣∣∣∣∣ .

Equivocation implies the standard hiding property, namely, that for all ppt algorithms A (that
maintain state throughout their execution) the following is negligible:

∣∣∣∣Pr
[
(m0,m1) ← A(1k); b ← {0, 1}; com ← S (1k,mb) : A(com) = b

]
− 1

2

∣∣∣∣ .
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We also observe that if (com, ω) are generated by (S̃1, S̃2) for some message m as in the definition
above, then binding still holds: namely, no ppt adversary given m, com, ω can find (m′, ω′) with
m′ 6= m such that R(m′, com, ω′) = 1.

3.2.1 Constructing Honest-Binding Commitment

We show two constructions of honest-binding commitment schemes. The proofs that these schemes
satisfy Definition 3.2 are relatively straightforward, and are therefore omitted.

The first construction, based on the commitment scheme of Naor [13], relies on the minimal as-
sumption that one-way functions exist. We describe the scheme for committing single-bit messages,
though it could be extended to arbitrary length messages in the obvious way. In the following, G
is a length-tripling pseudorandom generator.

S (1k,m; ω)
parse ω as crs‖r,
with |crs| = 3k
and |r| = k

c := G(r)⊕ (crs ·m)
com := (crs, c)
return com

R(m, (crs, c), ω)
parse ω as crs‖r,
with |crs| = 3k
and |r| = k

if c
?= G(r)⊕ (crs ·m)

return 1
else return 0

S̃1(1k)
r0, r1 ← {0, 1}k

crs := G(r0)⊕G(r1)
c := G(r0)
com := (crs, c)
st := (r0, r1, com)
return (com, st)

S̃2(st, m)
parse st as (r0, r1, com)
parse com as (crs, c)
if m

?= 0
ω := crs‖r0

else
ω := crs‖r1

return ω

Next, we show an efficient scheme that allows for direct commitments to strings. This construc-
tion, based on the Pedersen commitment scheme [15], relies on the discrete-logarithm assumption.
In the following, we let G be a cyclic group of order q, with generator g ∈ G. (For simplicity, we
view (G, q, g) as public parameters, though they could just as well be generated by the sender.)

S (1k,m; ω)
Parse ω as h‖x,
with h ∈ G
and x ∈ Zq

return com := (h, gmhx)

R(m, com, ω)
Parse ω as h‖x,
with h ∈ G and x ∈ Zq

if com
?= (h, gmhx)

return 1
else return 0

S̃1(1k)
r, y ← Zq

com := (gr, gy)
return (com, (r, y))

S̃2((r, y),m)

if r
?= 0 return ⊥

x := (y −m) · r−1 mod q
return ω := gr‖x
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3.3 An Adaptively Secure Broadcast Protocol

In this section we show a protocol that securely realizes FBC in the FCERT-hybrid model, in the
presence of t < n adaptive corruptions. The challenge of realizing FBC, and the property that
is exactly exploited in the Hirt-Zikas attack on existing protocols, is that when the sender is
uncorrupted then the adversary should not learn the sender’s message unless all honest parties
will (eventually) agree on that message (cf. Figure 1). In [11], the authors construct a broadcast
protocol for t < n/2 by having the sender use verifiable secret sharing (VSS) to “commit” to its
message before revealing it. (For t = n/2 they use a slight variant of this idea.) This approach
works even in the non-atomic communication setting; however, it requires at least half of the parties
to be honest.

Our approach is to use computationally secure commitment schemes in place of VSS. That is,
we first have the sender announce a commitment to its message; once agreement on this commit-
ment is reached, the sender then decommits. (We add an additional stage in which the sender’s
decommitment is “echoed” by all parties; this prevents a dishonest sender from sending valid de-
commitment information to some honest parties but not others.) In order to simulate this protocol,
we have the sender use honest-binding commitments as introduced in the previous section.

The details of our protocol πBC are presented in Figure 3. We describe our protocol in the FRBC-
hybrid model. Since FRBC can be securely realized in the FCERT-hybrid model (cf. Lemma 3.1),
this implies that FBC can be securely realized in the FCERT-hybrid model as well.

Theorem 3.2 If (S, R) is an honest-binding commitment scheme, then πBC securely realizes FBC

in the FRBC-hybrid model against an adaptive adversary corrupting any t < n of the parties.

The above theorem holds in the atomic communication model considered in this paper; protocol
πBC does not securely realize FBC in the non-atomic communication model of [11]. (Indeed, by
the impossibility result proven in [11], it cannot.) Atomic communication is used crucially in the
second stage of our protocol when the sender transmits decommitment information to all the parties.
(Observe this is the only step in our protocol in which parties communicate directly, rather than
via the ideal functionality FRBC.) If non-atomic communication were assumed, then the adversary
could learn the decommitment information (and thus the sender’s message) first, and then decide
to corrupt the sender and not transmit the decommitment information to any of honest parties.

Proof Let A be an active, adaptive adversary that interacts with players running the above
protocol in the FRBC-hybrid model. We construct an adversary (simulator) S running in the
ideal world with access to functionality FBC, such that no ppt environment Z can distinguish
whether it is interacting with A and parties running πBC in the FRBC-hybrid model, or whether
it is interacting with S and (dummy) parties communicating directly with FBC. The simulator S
starts by internally invoking the adversary A, and forwarding all messages between A and Z in
the usual way. The simulator will simulate both the ideal functionality FRBC for A, as well as an
execution of protocol πBC.

In our description of S, we distinguish two cases depending on whether or not the sender Pi is
corrupted at the outset.

Case 1: We first treat the easier case where Pi is corrupted at the outset. Here, A corrupts Pi

(in the hybrid world) and so S corrupts Pi (in the ideal world). Any additional corruptions that A
requests during its execution can be easily simulated by S, so we do not mention them.
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Protocol πBC

The protocol is carried out among a set P = {P1, . . . , Pn} of parties. For notational
convenience, we let Pi denote the sender (though in fact any party can act as sender).
We let (S, R) be a non-interactive commitment scheme.

• Stage 1: Upon receiving input (Bcast, sid,m) from the environment Z, the
sender Pi chooses random ω ← {0, 1}∗, computes com := S (1k,m; ω), and sends
(Bcast, sid, com) to FRBC. Let com∗ denote the value received by the honest parties
in this stage (note that this value is the same for all honest parties).

• Stage 2: Upon receiving (Bcast, sid, Pi, com) from FRBC, the sender Pi sends (m, ω)
to every other party over point-to-point channels.

• Stage 3: The following is done by each party Pj ∈ P: Let (mj , ωj) denote the
value that Pj received from Pi in stage 2. (If Pj receives nothing, it takes (mj , ωj)
as some default values.) Pj sends (Bcast, sid, (mj , ωj)) to FRBC.

• Stage 4: Each party Pj receives messages {(Bcast, sid, Pk, (mk, ωk))}Pk∈P from
FRBC, taking (mk, ωk) as some default values if nothing is received (note that the
(mk, ωk) values are the same for all honest parties). Each party Pj then decides on
its output as follows: Let valid = {k ∈ {1, . . . , n} | R(mk, com∗, ωk) = 1}. If valid is
empty, then output some default value. Otherwise, let k∗ be the smallest value in
valid and output mk∗ .

Figure 3: A protocol realizing FBC in the FRBC-hybrid model.

When Z provides input to Pi, this input is read by S who forwards it to A. Then A be-
gins running the first stage of πBC (on behalf of the corrupted Pi) by specifying some message
(Bcast, sid, com∗) to send to FRBC. The simulator S stores com∗, and simulates the response
of FRBC by giving (Bcast, sid, Pi, com∗) to A (and all corrupted parties). Next, A (now executing
the second stage of πBC) decides on messages (mj , ωj) to send to each honest party Pj on behalf
of Pi. In response, S simulates the third stage of πBC by giving (Bcast, sid, Pj , (mj , ωj)) to A for
every honest party Pj . For each such Pj , the adversary A may then choose to (corrupt Pj and)
replace (mj , ωj) by some other message (m′

j , ω
′
j). Once A has sent some (m′

j , ω
′
j) to the appropriate

instance of FRBC for all Pj , the simulator simulates the output of FRBC for all corrupted parties in
the obvious way. Finally A, executing the third stage of πBC on behalf of the remaining corrupted
parties, specifies messages (Bcast, sid, (m′

j , ω
′
j)) that each such party Pj should send to FRBC.

S now has values (mk, ωk) for every Pk ∈ P, defined by the output of each appropriate (sim-
ulated) instance of FRBC in the (simulated) third stage of the protocol. S defines a set valid and
determines k∗,mk∗ as prescribed by the protocol. It then sends (Bcast, sid,mk∗) (on behalf of Pi)
to its own ideal functionality FBC.

It is not hard to see that S provides a perfect simulation. The view of A is clearly identical
whether it is running in the FRBC-hybrid model or whether it is being run as a sub-routine by S
in the ideal world with access to FBC. As for the outputs of the honest parties (i.e., those that
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are honest by the end of the protocol execution), note that if A were running in the FRBC-hybrid
model then every honest party Pj would receive com∗ in the first stage and {(mk, ωk)}Pk∈P in the
third stage, and would thus decide on output mk∗ exactly as S does. Since S sends mk∗ to FBC,
the output of each honest party in the ideal world is also mk∗ . We remark that the fact that the
commitment scheme is not binding (for a malicious sender) is irrelevant here.

Case 2: We now turn to the more difficult case where Pi is not corrupted at the outset. As
before, adaptive corruptions of parties other than Pi can be handled easily, so we do not mention
it. Corruption of Pi will, however, be explicitly mentioned.

S begins by computing (com, st) ← S̃1(1k). It then simulates the first stage of πBC (on behalf
of the honest Pi) by giving to A the message (Bcast, sid, Pi, com) on behalf of FRBC. At this point,
A can choose whether to corrupt Pi or not, and we further divide our description of S depending
on which is the case.

If A requests to corrupt Pi, then S corrupts Pi and waits until it receives input (Bcast, sid,m)
from Z. At that point, S computes ω ← S̃2(st,m) and gives m and ω to A as the state of Pi.
The remainder of the simulation then proceeds exactly as in the case when Pi was corrupted at the
outset. (Note in particular that A may choose to change com to some other value com∗.)

If A does not corrupt Pi, then S waits until it receives a message (Bcast, sid, Pi,m) from its
ideal functionality FBC. (Note that at this point, the output of every honest party in the ideal
world is m.) S then computes ω ← S̃2(st,m), and simulates the second phase of the protocol by
sending (m,ω) to every corrupted party. The remainder of the protocol is simulated in the obvious
way, essentially the same as before (with the only difference being that it provides state m,ω to A
if Pi is ever corrupted).

In this case, S provides a computationally indistinguishable simulation for Z. The only differ-
ence between the view of A in the above simulation and the view of A when it is running in the
FRBC-hybrid model is with regard to (com, ω): in the former case these are produced using (S̃1, S̃2),
whereas in the latter case these are produced using the honest sender algorithm. Definition 3.2
guarantees that these distributions are computationally indistinguishable. As for the outputs of
the honest parties, if Pi is corrupted during stage 1 then the argument is as given previously. If
Pi is not corrupted during stage 1, then we need to argue that with all but negligible probability
every honest party would output m in that case in the FRBC-hybrid world (since, as noted above,
every honest party outputs m in that case in the ideal world). This follows from the honest-binding
property of Definition 3.2.

4 Adaptively Secure MPC

In the previous section we showed a protocol (call it bc) that securely realizes the broadcast func-
tionality FBC in the presence of an adaptive adversary corrupting any number of parties. Given
any protocol π (e.g., the one of [7]) for securely computing some function f in the presence of
an adaptive adversary corrupting any number of parties in the FBC-hybrid model (i.e., protocol π
assumes an ideal broadcast channel), the composed protocol πbc securely computes f in the pres-
ence of an adaptive adversary corrupting any number of parties in the FCERT-hybrid model, using
point-to-point communication only. The above is stated in the UC framework, but an analogous
composition theorem could be stated with respect to “stand-alone” notions of security as well [2].
(We refer the reader to [10] for detailed definitions of security for MPC with dishonest majority.)
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Even given the above, it is interesting to explore whether adaptively secure MPC can be achieved
in the weaker FRBC-hybrid model, for at least two reasons:

• If we take as our communication model the non-atomic, point-to-point model of Hirt-Zikas,
it is impossible to realize FBC when t > n/2. Thus, if we want to realize adaptively secure
MPC for t > n/2 in this communication model, some other approach is needed.

• Even in the atomic communication model, one may prefer to base adaptively secure MPC on
relaxed broadcast rather than broadcast since protocols for the former may be more efficient
than protocols for the latter.

Note that, in the case of dishonest majority, adaptively secure MPC does not imply adaptively
secure broadcast because the usual notions of security for MPC do not guarantee output delivery
or fairness (see [10] for a more extensive treatment) — these properties are, in general, not achiev-
able [8] — whereas definitions of security for broadcast do require guaranteed output delivery. In
particular, the Hirt-Zikas impossibility result for adaptively secure broadcast in the non-atomic
communication model says nothing about the feasibility of adaptively secure MPC in that setting.

Although we cannot claim that all adaptively secure MPC protocols using broadcast remain
secure when broadcast is replaced with relaxed broadcast, specific protocols from the literature do
remain secure in that case. Once again, we focus on protocols in the UC framework, though we
expect these results would extend to protocols in the “stand-alone” setting as well.

Specifically, consider the adaptively secure MPC protocol π of Canetti, Lindell, Ostrovsky, and
Sahai [7], which relies on a broadcast channel. We first observe that the protocol remains secure
even in the non-atomic communication model. In either communication model, the protocol also
remains secure if the broadcast channel is replaced with relaxed broadcast. At a high level, the
reason is that the messages that are broadcast are always commitments to some values, except in
the last round where the broadcast messages reveal the output. The ability to corrupt a sender
based on the message being broadcast is “useless” in the former case; in the latter case such an
attack corresponds to preventing output delivery/violating fairness, something which is permitted
by the definitions of security when there is a dishonest majority. We remark that the advantage of
using relaxed broadcast as opposed to the “echo broadcast” protocol from [10] is that the former
ensures agreement on abort.

Even given the above, there are several reasons to securely realize FBC rather than be contended
with FRBC. First, one may be interested in broadcast itself, rather than as a sub-protocol for some
larger task. Furthermore, there is an advantage to working with FBC in that it can be safely used
to instantiate the broadcast channel in arbitrary protocols, so one can avoid having to examine
protocols on a case-by-case basis to determine whether FRBC suffices.

Note: The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the US Army Research
Laboratory, the US Government, the UK Ministry of Defence, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Government purposes.
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