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Abstract

Given a public-key infrastructure (PKI) and digital signatures, it is possible to construct
broadcast protocols tolerating any number of corrupted parties. Existing protocols, however,
do not distinguish between corrupted parties who do not follow the protocol, and honest parties
whose secret (signing) keys have been compromised but continue to behave honestly. We explore
conditions under which it is possible to construct broadcast protocols that still provide the usual
guarantees (i.e., validity/agreement) to the latter.

Consider a network of n parties, where an adversary has compromised the secret keys of up
to tc honest parties and, in addition, fully controls the behavior of up to ta other parties. We
show that for any fixed tc > 0 and any fixed ta, there exists an efficient protocol for broadcast if
and only if 2ta +min(ta, tc) < n. (When tc = 0, standard results imply feasibility for all ta < n.)
We also show that if tc, ta are not fixed, but are only guaranteed to satisfy the above bound, then
broadcast is impossible to achieve except for a few specific values of n; for these “exceptional”
values of n, we demonstrate broadcast protocols. Taken together, our results give a complete
characterization of this problem.

1 Introduction

Broadcast protocols allow a designated party (the dealer) to distribute an input value to a set of
parties such that (1) if the dealer is honest, all honest parties output the dealer’s value (validity),
and (2) even if the dealer is dishonest, the outputs of all honest parties agree (agreement).
Broadcast protocols are fundamental for distributed computing and secure computation: they are
crucial for simulating a broadcast channel over a point-to-point network, and thus form a critical
sub-component of various higher-level protocols.

Classical results of Pease, Shostak, and Lamport [11, 9] show that broadcast is achievable in a
synchronous network of n parties if and only if the number of corrupted parties t satisfies t < n/3.
To go beyond this bound, some form of setup is required. The most commonly studied setup
assumption is the existence of a public-key infrastructure (PKI) such that each party Pi has a
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public signing key pki known to all other parties. (Of course, this is only interesting if we assume
the existence of secure digital signatures [6]). In this model, broadcast is possible for t < n [11, 9, 2].

With few exceptions [4, 7] (see below), prior work in the PKI model treats each party as
either totally honest, or as completely corrupted and under the control of a single adversary; the
assumption is that the adversary cannot forge signatures of any honest parties. In many situations
it makes sense to consider a middle ground: parties who honestly follow the protocol but whose
signatures might be forged (e.g., because their signing keys have been compromised). Most existing
work treats any such party Pi as corrupt, and provides no guarantees for Pi in this case: the output
of Pi may disagree with the output of other honest parties, and validity is not guaranteed if Pi is
the dealer. Clearly, it would be preferable to ensure agreement and validity for honest parties who
have simply had the misfortune of having their signatures forged.

Here, we consider broadcast protocols providing exactly these guarantees. Specifically, say ta
parties in the network are actively corrupted; as usual, such parties may behave arbitrarily and
we assume their actions are coordinated by a single adversary A. We also allow for tc parties who
follow the protocol honestly, but whose signatures can be forged by A; this is modeled by simply
giving A their secret keys. We refer to such honest-behaving parties as compromised, and require
agreement and validity to hold even for compromised parties.

Say ta, tc, n satisfy the threshold condition if 2ta + min(ta, tc) < n. We show:

1. For any ta, tc, n satisfying the threshold condition, there is an efficient protocol achieving the
notion of broadcast outlined above.

2. When the threshold condition is not satisfied, broadcast protocols meeting our notion of
security are impossible (with the exception of the “classical” case where tc = 0, in which case
standard results imply feasibility).

3. Except for a few “exceptional” values of n, there is no fixed n-party protocol that tolerates
all ta, tc satisfying the threshold condition with respect to n. For the exceptional values of n,
we show protocols that do tolerate any ta, tc satisfying the threshold condition.

Taken together, our results provide a complete characterization of the problem for threshold adver-
saries. (Subsequent to our work, Hirt and Zikas [8] extended our results to the case of more-general
access structures.)

Motivating the problem. Compromised parties are most naturally viewed as honest parties
whose secret keys have been obtained by the adversary, e.g., because a user’s secret key was weak,
or because an adversary hacked into a user’s system and obtained their secret key (but subsequently
the honest party’s computer was re-booted and now behaves correctly). Exactly this scenario is
addressed by proactive cryptosystems [10] in a somewhat different context.

Our work also provides guarantees in case an honest user’s signature might be forged (whether
or not the adversary learns the user’s secret key). Signature forgery can potentially occur due to
cryptanalysis, poor implementation of cryptographic protocols, or side-channel attacks. In all these
cases, an adversary might be able to forge signatures of a small number of honest parties without
being able to forge signatures of everyone.

Prior work. Gupta et al. [7] also consider the problem of designing broadcast protocols providing
agreement and validity for honest-behaving parties whose secret keys have been compromised, and
claim results similar to ours. Our results improve upon theirs in several respects. For starters,
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their positive result appears to be flawed1; in any case, the protocol they present has complexity
exponential in n, whereas the protocol we show in this paper has complexity polynomial in n.
Although Gupta et al. also claim impossibility when 2ta + min(ta, tc) ≥ n, our impossibility result
is simpler and stronger in that it holds relative to a weaker adversary.2 Finally, Gupta et al. treat
ta, tc as known and do not consider the question of designing a fixed protocol achieving broadcast
for any ta, tc satisfying the threshold condition (as we do in the third result mentioned above).

Fitzi et al. [4] consider broadcast in a model where the adversary can either corrupt a few players
and forge signatures of all parties, or corrupt more players but forge no signatures; a statement
of their result is given here as Theorem 11. Our work addresses the intermediate cases, where an
adversary might be able to forge signature of some honest parties but not others.

Organization. Section 2 introduces our model and formal definition of broadcast in our setting. In
Section 3 we show that for every ta, tc, n satisfying the threshold condition there exists an efficient
protocol for broadcast. We show our impossibility results in Section 4: namely, that broadcast is
impossible whenever ta, tc, n do not satisfy the threshold condition (except when tc = 0), and —
other than for certain exceptional values of n — there does not exist a fixed protocol achieving
broadcast for all ta, tc satisfying the threshold condition. In Section 5 we give positive results for
the exceptional values of n. Although dealing with these “outliers” may seem like a minor point,
the exceptional values of n are all small and so may arise in practice.

2 Model and Definitions

We consider the standard setting in which n players communicate in synchronous rounds via au-
thenticated channels in a fully connected, point-to-point network. (See below for further discussion
regarding the assumption of authenticated channels.) We assume a public-key infrastructure (PKI),
established as follows: each honest party Pi runs some key-generation algorithm Gen (specified by
the protocol) to obtain a public key pki along with a corresponding secret key ski. Then all parties
begin running the protocol holding the same vector of public keys (pk1, . . . , pkn), and with each Pi

holding ski.
A party that is actively corrupted (or “Byzantine”) may behave arbitrarily. All other parties

are called honest, though we further divide the set of honest parties into those who have been
compromised and those who have not been compromised, as discussed below. We view the set of
actively corrupted players as being under the control of a single adversary A coordinating their
actions. We always assume such parties are rushing, and may wait to see the messages sent by
honest parties in a given round before deciding on their own messages to send in that round.
Actively corrupted parties may choose their public keys arbitrarily and even based on the public
keys of honest parties. We continue to assume, however, that all honest parties hold the same
vector of public keys.

Some honest parties may be compromised ; if Pi is compromised then the adversary A is given
Pi’s secret key ski. We stress that compromised parties follow the protocol as instructed: the only
difference is that A is able to forge signatures on their behalf. On the other hand, we assume A is
unable to forge signatures of any honest players who have not been compromised.

1The issue is that their analysis does not take into account the possibility that an honest (but compromised) party
may receive a valid signature, signed under its own key, of a message it has not signed before.

2In [7], the adversary is assumed to have access to the random coins used by the compromised parties when
running the protocol, whereas we do not make this assumption.
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We assume authenticated point-to-point channels between all honest parties, even those who
have been compromised. In other words, although the adversary can forge the signature of an
honest party Pi who has been compromised, it cannot falsely inject a point-to-point message on
Pi’s behalf. This assumption is reasonable since different cryptographic keys (other than parties’
signing keys) could be used for authenticating point-to-point communication; in small-scale net-
works, authenticated communication could even be established via physical means. Without the
assumption of authenticated channels, no meaningful results are possible.

Definition 1 A protocol for parties P = {P1, . . . , Pn}, where a dealer D ∈ P holds an initial
input m ∈M, achieves broadcast if the following hold:

Validity If the dealer is honest, then all honest parties output m.

Agreement All honest parties output the same value.

We stress that “honest” includes honest parties who have been compromised.

Although the above refers to an arbitrary input m ∈ M for the dealer, we assume for simplicity
that the dealer’s input is a bit b. Broadcast for arbitrary-length messages can be obtained from
binary broadcast using standard techniques.

An adversary A is called a (ta, tc)-adversary if A actively corrupts up to ta parties and addi-
tionally compromises up to tc of the honest parties. In a network of n players, we call A a threshold
adversary if A chooses ta, tc subject to the restriction 2ta + min(ta, tc) < n, actively corrupts up
to ta parties, and compromises up to tc honest parties.

3 Broadcast for (ta, tc)-Adversaries

In this section, we prove the following result:

Theorem 2 Fix n, ta, tc. If tc = 0 or 2ta + min(ta, tc) < n, there exists an n-party protocol
achieving broadcast in the presence of a (ta, tc)-adversary.

When tc = 0 no signatures can be forged, and so a standard protocol for authenticated broadcast
suffices. If ta ≤ tc then 3ta < n and the parties can run a standard (unauthenticated) broadcast
protocol where the PKI is not used at all. The challenge is thus to design a protocol for 0 < tc < ta,
and we deal with this case in the remainder of the section.

In fact, we show how to achieve weak broadcast for 2ta + tc < n. Weak broadcast is a relaxation
of broadcast where validity holds as before, but agreement is weakened to require only that if any
honest party outputs a value b ∈ {0, 1} then every other honest party outputs either b or ⊥. Since
it is known [5, 4] that weak broadcast implies broadcast unconditionally (i.e., without using a PKI
at all) when 2ta < n, this proves our desired result.

Theorem 3 For any n, ta, tc with 2ta + tc < n, the protocol in Figure 1 achieves weak broadcast in
the presence of a (ta, tc)-adversary.

Proof: We first prove validity. If D is honest and not compromised, then in round 1 each honest
party Pi 6= D receives (b, σD) with VrfypkD

(b, σD) = 1. So in round 2 this means that Pi receives
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Let P = {P1, . . . , Pn} denote the set of parties. Let D ∈ P denote the dealer, b ∈ {0, 1} its input,
and pkD, skD its public and secret keys.

Round 1: D computes σD ← SignskD
(b) and sends (b, σD) to every party.

Round 2: Each party Pi (other than D) does the following: let (b′, σD) be the message that Pi

received from D in the previous round. Compute σi ← Signski
(b′‖σD) and send (b′, σD, i, σi)

to all other parties.

Round 3: (c, σD, j, σj) is a valid c-tuple for Pj if (1) VrfypkD
(c, σD) = 1; (2) Pj 6= D; and

(3) Vrfypkj
(c‖σD, σj) = 1. A valid tuple is a valid 0-tuple or 1-tuple for some Pj . Each

party Pi (other than D) sends to every other party all the valid tuples it received in the
previous round.

Output determination: D outputs b. For every other Pi, let (b, σD) be the message Pi received
from D in round 1. Pi outputs b if all the following hold: (1) VrfypkD

(b, σD) = 1; (2) Pi

received valid b-tuples for at least n − ta − 1 parties in round 2; and (3) Pi received valid
b̄-tuples for fewer than n− ta − 1 parties in round 3. In any other case, Pi outputs ⊥.

Figure 1: A protocol for weak broadcast, for fixed ta, tc with 2ta + tc < n.

valid b-tuples for at least the n− ta − 1 honest parties excluding D. Since D’s signature cannot be
forged, Pi receives no valid b̄-tuples in round 3. We conclude that Pi outputs b.

The argument is similar if D is honest but compromised. Again, in round 1 each honest
party Pi 6= D receives (b, σD) from D with VrfypkD

(b, σD) = 1; in round 2, Pi receives valid b-tuples
for at least the n− ta− 1 honest parties excluding D. Now, however, since the adversary can forge
signatures of D and tc − 1 other honest parties, Pi may receive valid b̄-tuples for up to ta + tc − 1
parties in round 3. But ta + tc − 1 < n− ta − 1, so Pi still outputs b.

Finally, we prove weak agreement. Say some honest Pi outputs a bit b. This means that Pi

must have received valid b-tuples for at least n− ta − 1 parties in round 2. Since Pi forwards these
to all other parties, any other honest party Pj receives valid b-tuples for at least n− ta − 1 parties
in round 3, and so cannot possibly output b̄.

4 Impossibility Results

In this section we show two impossibility results. First, we show that there is no protocol achieving
broadcast in the presence of a (ta, tc)-adversary when 2ta +min(ta, tc) ≥ n and tc > 0, thus proving
that Theorem 2 is tight. We then consider the case when ta, tc are not fixed in advance, but instead
all that is guaranteed is that 2ta + min(ta, tc) < n. (I.e., we seek a single protocol that works for
all values of ta, tc satisfying this condition.) We show that in this setting broadcast is impossible
for all but a few exceptional values of n.
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Π1,0" Π1,1"

Π3"Π2"

Figure 2: A modified network with two copies Π1,0,Π1,1 of P1’s program Π1. There is no direct
interaction between Π1,0 and Π3, or between Π1,1 and Π2.

4.1 The Three-Party Case

We first present a key lemma that will be useful for the proofs of both the results described above.
Our proof of the lemma follows the presentation in [3] which considers a different security model.

Lemma 4 There is no 3-party protocol among a set of parties {P1, P2, P3} that achieves broadcast
when P1 acts as the dealer and the adversary A can choose any one of the following corruption
patterns:

• Actively corrupt P1.

• Actively corrupt P2, and compromise the secret key of P1.

• Actively corrupt P3, and compromise the secret key of P1.

Proof: Fix some protocol Π, and let Π1,Π2,Π3 denote the program specified by Π for parties
P1, P2, P3 respectively.

We imagine running Π in the modified network shown in Figure 2. Here, two independent copies
Π1,0,Π1,1 of Π1 are run in the following way. All messages sent by Π1,0 to P3 are discarded, while
all messages sent to P2 are delivered to Π2. Any messages expected from P3 are replaced with null
messages. Similarly, all messages sent by Π1,1 to P2 are discarded, while all messages sent to P3

are delivered to Π3. Any messages expected from P2 are replaced with null messages. Messages
sent by Π2 to P1 are routed to Π1,0; thus, Π1,1 does not receive any messages directly from Π2.
Similarly, all messages sent by Π3 to P1 are now routed to Π1,1, and so Π1,0 does not receive any
messages directly from Π3. Programs Π2 and Π3 interact with each other just as they would in
a real network. We stress that Π1,0 and Π1,1 use the same public/secret keys, namely, the keys
belonging to P1.

Claim 5 There exists an adversary A that actively corrupts P1 and such that the joint view of P2

and P3 interacting with A in the real network is identically distributed to the joint view of Π2 and
Π3 in the modified network.

Proof: See Figure 3. A simply simulates the behavior of Π1,0 and Π1,1. That is, A internally
runs (independent) programs Π1,0 and Π1,1. The messages A sends to P2 (resp., P3) are those sent
by Π1,0 to P2 (resp., Π1,1 to P3); the messages A receives from P2 (resp., P3) are delivered to Π1,0

(resp., Π1,1).
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Π1,0" Π1,1"

Π3"Π2"

Figure 3: An adversary corrupting P1 and interacting with P2 and P3 in the real network can
simulate Π1,0 and Π1,1 interacting with Π2 and Π3.

Claim 6 There exists an adversary A that actively corrupts P2 and compromises P1 and such that
the joint view of P1 and P3 interacting with A in the real network is identically distributed to the
joint view of Π1,1 and Π3 in the modified network.

Proof: See Figure 4. A has sk1 and sk2 and so can internally run Π1,0 and Π2, forwarding
messages between them internally. A always sends null messages to (the real) P1, and ignores all
messages from P1. The messages A sends to P3 are those sent by Π2 to Π3, and messages from P3

are delivered to Π2.

By an analogous argument, we have:

Claim 7 There exists an adversary A that actively corrupts P3 and compromises P1 and such that
the joint view of P1 and P2 interacting with A in the real network is identically distributed to the
joint view of Π1,0 and Π2 in the modified network.

We will now focus on an execution in the modified network. Say Π1,0 has input 0 and Π1,1 has
input 1. Since Π guarantees validity, Claim 6 implies that Π3 must output 1 and, similarly, Claim 7
implies that Π2 must output 0. But then Claim 5 shows that Π does not achieve agreement.

Π1,0" Π1,1"

Π3"Π2"

Figure 4: An adversary corrupting P2, compromising P1, and interacting with P1 and P3 in the
real network can simulate Π2 and Π1,0 interacting with Π1,1 and Π2.
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4.2 Impossibility of Broadcast when 2ta + min(ta, tc) ≥ n and tc > 0

In this section, we extend the three-party impossibility result to the general case using a standard
player-partitioning argument.

Theorem 8 Fix n ≥ 3 and ta, tc with tc > 0 and 2ta +min(ta, tc) ≥ n. There is no n-party protocol
achieving broadcast in the presence of a (ta, tc)-adversary.

Proof: Partition P = {P1, . . . , Pn} into three sets P1,P2,P3 such that P1 contains min(ta, tc, n−2)
parties (note that P1 is non-empty), and P2,P3 each contain at least one and at most ta parties.
Such a partition is possible given the constraints.

Assume the existence of an n-party protocol Π (for n ≥ 3) achieving broadcast in the presence of
a (ta, tc)-adversary. We construct a three-party broadcast protocol Π′ by having Pi (for i ∈ {1, 2, 3})
internally simulate an execution of Π by the parties in Pi, in the obvious way. (The public key of
each party in Π′ now consists of multiple public keys of parties in Π. But nothing in the definition
of the PKI model requires public keys of parties to have any particular form.)

Π′ is secure against an adversary who actively corrupts P1, as this corresponds to actively
corrupting at most min(ta, tc, n−2) ≤ ta parties in Π. Protocol Π′ is also secure against an adversary
who actively corrupts P2 and compromises the secret key of P1, as this corresponds to actively
corrupting at most ta parties and compromising the secret key of at most min(ta, tc, n − 2) ≤ tc
parties in Π. Similarly, Π′ is secure against an adversary who actively corrupts P3 and compromises
the secret key of P1. But this contradicts Lemma 4.

4.3 Impossibility of Broadcast with a Threshold Adversary

We now turn to the case of a threshold adversary. Recall that in this setting the exact values of ta
and tc used by the adversary are not known; we only know that they satisfy 2ta+min(ta, tc) < n (and
we allow tc = 0). In what follows, we show that broadcast is impossible if n /∈ {2, 3, 4, 5, 6, 8, 9, 12}.
For the “exceptional” values of n, we demonstrate feasibility in Section 5.

Theorem 9 If n ≤ 2
⌊

n−1
3

⌋
+

⌊
n−1

2

⌋
, then there is no n-party protocol achieving broadcast in

the presence of a threshold adversary. (The given bound on n holds for all n > 1 except n ∈
{2, 3, 4, 5, 6, 8, 9, 12}.)

Proof: Once again, we use a player-partitioning argument. Partition P = {P1, . . . , Pn} into three
non-empty sets P1,P2,P3 such that P1 contains at most

⌊
n−1

2

⌋
parties, and P2,P3 contain at most⌊

n−1
3

⌋
parties. Such a partition is possible given the bound on n.

Assume the existence of an n-party protocol Π achieving broadcast in the presence of a threshold
adversary. We construct a three-party broadcast protocol Π′ by having Pi (for i ∈ {1, 2, 3})
internally simulate an execution of Π by the parties in Pi, in the obvious way.

Π′ is secure against an adversary who actively corrupts P1, as this corresponds to actively
corrupting at most ta =

⌊
n−1

2

⌋
parties in Π (and so 2ta + min(ta, tc) = 2ta < n). Protocol Π′ is also

secure against an adversary who actively corrupts P2 and compromises the secret key of P1, as this
corresponds to actively corrupting at most ta =

⌊
n−1

3

⌋
parties and compromising the secret key of

at most tc =
⌊

n−1
2

⌋
parties in Π (and so 2ta + min(ta, tc) = 3ta < n). Similarly, Π′ is secure against

an adversary who actively corrupts P3 and compromises the secret key of P1. But this contradicts
Lemma 4.
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5 Handling the Exceptional Values of n

We refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n. (These are the only positive,
integer values of n for which Theorem 9 does not apply.) We show for all the exceptional values
of n an n-party protocol achieving broadcast in the presence of a threshold adversary. Recall
that a threshold adversary can choose to corrupt ta parties, and compromise the secret keys of an
additional tc parties, for any ta, tc satisfying 2ta + min(ta, tc) < n.

The cases n ∈ {2, 3, 4}. These cases are all handled relatively easily. For n = 2 we must have ta = 0
and so broadcast is trivial to achieve. For n = 3 we can just run any protocol for authenticated
broadcast; either (ta, tc) = (1, 0), in which case no honest parties’ signatures can be forged and so
broadcast is achieved, or else ta = 0, in which case the ability to forge signatures is of no use to
the adversary (recall we assume that all point-to-point links are authenticated). For n = 4 we have
ta ≤ 1 and tc ≤ n. Since ta < n/3, here we may use any protocol for standard (unauthenticated)
broadcast. Summarizing:

Theorem 10 For n ∈ {2, 3, 4} there is an n-party protocol achieving broadcast in the presence of
a threshold adversary.

The case n = 5. Here we may rely on the result of Fitzi et al. [4], which we re-state for convenience
using our notation:

Theorem 11 ([4]) Fix any n, t, T with T < n/2 and T + 2t < n. Then there exists an n-party
protocol that achieves broadcast in the presence of either a (T, 0)-adversary or a (t, n−t)-adversary.

Setting t = 1 and T = 2, this theorem implies a 5-party protocol that achieves broadcast in the
presence of a threshold adversary. (Indeed, for a threshold adversary attacking a 5-party protocol
either ta = 2 and tc = 0 or ta ≤ 1 and tc ≤ n.)

Corollary 12 There is a 5-party protocol achieving broadcast in the presence of a threshold adver-
sary.

The case n = 6. For n = 6 we reduce to the case n = 5. Specifically, take the following protocol Π:
The dealer signs its input b, sends b and its signature to everyone else, and terminates with output b.
Each of the remaining parties then broadcasts what they received from the dealer using the 5-party
protocol from Corollary 12. Let a b-signature be a valid signature of the dealer on the bit b. Each
party Pi (other than the dealer) decides on its output as follows: If there is only one value b for
which Pi has received a b-signature, then Pi outputs b. Otherwise, Pi outputs the value b for which
the number of broadcast b-signatures is maximized. (Output 0 in case of a tie.)

For a threshold adversary either ta = 2 and tc ≤ 1, or ta ≤ 1 and tc ≤ 6. If the dealer is honest
and not compromised, clearly all honest parties will output the dealer’s input b. In any other case,
the corruption pattern among the five other parties (i.e., excluding the dealer) must satisfy the
threshold condition (for those n = 5 parties); thus, broadcast is achieved in the second stage and
agreement follows. Validity when the dealer is honest but compromised is implied by the fact that
a majority of the five other parties are honest. We conclude:

Theorem 13 There is a 6-party protocol achieving broadcast in the presence of a threshold adver-
sary.
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The cases n ∈ {8, 9}. We first prove the following claim:

Claim 14 Fix any n, t, T with T < n/2 and T +2t < n. Then there exists an n-party protocol with
the following properties:

• If the dealer is honest and not compromised, and at most T other parties are corrupted and all
other parties’ keys are compromised, then all honest parties output the dealer’s input. (I.e.,
validity holds.)

• If the dealer is honest and compromised, and at most t parties are corrupted and all other
parties’ keys are compromised, then all honest parties output the dealer’s input. (I.e., validity
holds.)

• If T parties are corrupted and all parties’ keys are compromised, weak agreement holds among
the honest parties. (That is, if any honest party outputs b ∈ {0, 1} then every other honest
party outputs either b or ⊥.)

Proof: We use the protocol from [4]; only our analysis differs. Let b denote the dealer D’s input.
In the protocol only D signs anything; let a b-signature be a valid signature of D on the bit b. The
protocol proceeds as follows:

Round 1: D computes σD ← SignskD
(b) and sends (b, σD) to all parties.

Round 2: Each party Pi (other than D) does the following: let (b, σD) be the message that Pi

received from D in the previous round. Echo this message to all other parties.

Output determination: Every party Pi (including D) decides as follows:

1. If Pi received b and a b-signature from D and at least n − t − 1 other parties, then
output b.

2. Otherwise, if Pi received b and a b-signature from D and at least n−T −1 other parties,
and no b̄-signature, then output b.

3. Otherwise, output ⊥.

Note that key compromise is irrelevant except for possible compromise of D. The first two
claims of the theorem are immediate. For the final claim, say Pi outputs a bit b and consider
another honest party Pj . (Note that either Pi or Pj may be the dealer.) If Pi outputs b because of
condition (1) this means Pi received b-signatures from at least n − t parties overall. But then Pj

received b-signatures from at least n−t−T parties, and hence b̄-signatures from at most t+T < n−t
parties overall. Moreover, Pj received at least one b-signature (from Pi). So Pj cannot output b̄.

On the other hand, say Pi outputs b because of condition (2). We need to show that Pj does
not output b̄ by condition (2). (The case of condition (1) is already taken care of in the previous
paragraph.) But since Pi received b-signatures from at least n − T parties overall, Pj received a
b-signature from at least n− 2T ≥ 1 party.

Returning to the case of n = 8 and a threshold adversary, let Πbc denote the protocol implied
by Claim 14 for n = 8, T = 3, and t = 2 and consider the following 8-party protocol:

Round 1: D computes σD ← SignskD
(b) and sends (b, σD) to all parties.

10



Round 2: Each Pi (other than D) does the following: let (b, σD) be the message Pi received
from D. Compute σi ← Signski

(b‖σD) and broadcast (b, σD, i, σi) using Πbc.

Round 3: (c, σD) is a valid c-tuple for D if VrfypkD
(c, σD) = 1. The tuple (c, σD, j, σj) is a valid

c-tuple for Pj if (1) VrfypkD
(c, σD) = 1; (2) Pj 6= D; and (3) Vrfypkj

(c‖σD, σj) = 1. A valid
tuple is a valid 0-tuple or 1-tuple for some Pj (including possibly D). Each party sends to
every other party all the valid tuples it received in previous rounds.

Output determination: Each Pi decides on its output as follows:

1. If Pi received valid b-tuples for at least six parties in rounds 1 and 2, then output b.

2. Otherwise, if Pi received valid b-tuples for at least five parties in rounds 1 and 2, and
valid b̄-tuples for at most four parties in round 3, output b.

3. Otherwise, if Pi received valid b-tuples for at least four parties in rounds 1 and 2, and
no valid b̄-tuples in round 3, output b.

4. Otherwise, output ⊥.

We show that Π achieves weak broadcast; results of [5, 4] then imply a protocol for broadcast.

Theorem 15 The 8-party protocol described above achieves weak broadcast in the presence of a
threshold adversary.

Proof: For a threshold adversary, either ta = 3, tc ≤ 1 or ta ≤ 2, tc ≤ n. We consider these cases
separately.

Say (ta, tc) = (3, 1). By Claim 14, Πbc achieves validity when an honest and non-compromised
party acts as the dealer, and weak agreement otherwise. If D with input b is honest and not
compromised, then each honest party receives a valid b-tuple for D in round 1, and for at least
three other honest and non-compromised parties in round 2; it receives no valid b̄-tuples in round 3.
If D is honest and compromised, then each honest party receives a valid b-tuple from D in round 1,
and for at least four other parties in round 2; moreover, it obtains valid b̄-tuples for at most four
parties in round 3. Thus, validity always holds. To prove weak agreement, say honest Pi outputs b
and consider another honest party Pj . If Pi outputs b due to condition (1) then Pi has received
valid b-tuples for at least five parties in round 2; weak agreement of Πbc then implies that Pj has
received b̄-tuples for at most two parties in round 2, and thus at most three in rounds 1 and 2, and
so cannot output b̄. If Pi outputs b due to condition (2), then Pi has received valid b-tuples for at
least five parties in rounds 1 and 2, which it sends to Pj in round 3. So Pj does not output b̄. A
similar argument holds if Pi outputs b due to condition (3).

Assume next that (ta, tc) = (2, n−2). By Claim 14 we have that Πbc achieves validity whenever
an honest party acts as the dealer, and weak agreement otherwise. If D is honest with input b, then
each honest party receives b-tuples from at least six parties in rounds 1 and 2 and so outputs b.
Weak agreement holds by the same argument as above.

Corollary 16 There is an 8-party protocol achieving broadcast in the presence of a threshold ad-
versary.
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For the case of n = 9, we reduce to the case n = 8. Specifically, take the following 9-party
protocol: The dealer signs its input b, sends b and its signature to everyone else, and terminates
with output b. Each of the remaining parties then broadcasts what they received from the dealer
using the 8-party protocol implied by Corollary 16. (D is not involved in these executions.) Let a
b-signature be a valid signature by D on the bit b. Each Pi (other than the dealer) decides on its
output as follows: If there is only one value b for which Pi received a b-signature, then Pi outputs b.
Otherwise, Pi outputs the value b for which the number of broadcast b-signatures is maximized
(or 0 in case of a tie).

For a threshold adversary either ta = 4, tc = 0, or ta = 3, tc ≤ 2, or otherwise ta ≤ 2, tc ≤ n. If
the dealer is honest and not compromised, clearly all honest parties will output the dealer’s input b.
In any other case, the corruption pattern among the remaining parties (i.e., excluding the dealer)
must satisfy the threshold condition for those 8 parties; thus, broadcast is achieved in the second
stage and agreement follows. When the dealer is honest but compromised we have tc ≥ 1 and so
ta ≤ 3; validity is then implied by the fact that a majority of the 8 parties other than the dealer
are honest.

Theorem 17 There is a 9-party protocol achieving broadcast in the presence of a threshold adver-
sary.

The case n = 12. The final case is handled using a variant of the protocol from Figure 1:

Round 1: D computes σD ← SignskD
(b) and sends (b, σD) to every party.

Round 2: Each party Pi (other than D) does the following: let (b′, σD) be the message that Pi

received from D in the previous round. Compute σi ← Signski
(b′‖σD) and send (b′, σD, i, σi)

to all other parties.

Round 3: (c, σD, j, σj) is a valid c-tuple for Pj if (1) VrfypkD
(c, σD) = 1; (2) Pj 6= D; and

(3) Vrfypkj
(c‖σD, σj) = 1. A valid tuple is a valid 0-tuple or 1-tuple for some Pj . Each

party Pi (other than D) sends to every other party all the valid tuples it received in the
previous round.

Output determination: D outputs b. For every other Pi, let (b′, σD) be the message Pi received
from D in round 1. Pi outputs b′ if VrfypkD

(b′, σD) = 1 and one of the following conditions
holds:

1. Pi received valid b′-tuples for at least 8 parties in round 2;

2. Pi received valid b′-tuples for at least 7 parties in round 2, and valid b̄′-tuples for at most
6 parties in round 3;

3. Pi received valid b′-tuples for at least 6 parties in round 2, and no valid b̄′-tuples in
round 3.

Theorem 18 The 12-party protocol described above achieves weak broadcast in the presence of a
threshold adversary.

Proof: For a threshold adversary, either ta = 5, tc ≤ 1, or ta = 4, tc ≤ 3, or ta = 3, tc ≤ n.
Say D is honest with input b. Then all honest parties receive b and a valid signature on b from D

in round 1. If ta = 3 then all honest parties receive valid b-tuples for at least 8 parties in round 2.
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If (ta, tc) = (4, 3) then all honest parties receive valid b-tuples for at least 7 parties in round 2, and
receive valid b̄-tuples for at most 6 parties in round 3. If (ta, tc) = (5, 1) then all honest parties
receive valid b-tuples for at least 6 parties in round 2, and receive valid b̄-tuples for no parties in
round 3. Thus, validity holds in every case.

Assume D is corrupt. To prove weak agreement, say an honest party Pi outputs b and consider
another honest party Pj . If Pi outputs b due to condition (1) then Pi received valid b-tuples for at
least 8 parties in round 2; thus, Pj receives at least 8− 4 = 4 valid b-tuples in round 2 (recall that
D is corrupt, so at most 4 of the remaining parties can be corrupt) and so at most 7 valid b̄-tuples
in that round. Since Pi sends its valid tuples to Pj , we see that Pj receives at least 8 valid b-tuples
in round 3 and so cannot output b̄.

If Pi outputs b due to condition (2) then we need to show that Pj cannot output b̄ due to
conditions (2) or (3). In this case Pi received valid b-tuples for 7 parties in round 2, but since it
sends these to Pj we see that Pj cannot output b̄. The case where Pi outputs b due to condition (3)
is analogous.

Once again, using [5, 4] this gives:

Corollary 19 There is a 12-party protocol achieving broadcast in the presence of a threshold ad-
versary.
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