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Abstract. Motivated by the recent progress in improving efficiency of
secure computation, we study cut-and-choose oblivious transfer—a ba-
sic building block of state-of-the-art constant round two-party secure
computation protocols that was introduced by Lindell and Pinkas (TCC
2011). In particular, we study the question of realizing cut-and-choose
oblivious transfer and its variants in the OT-hybrid model. Towards this,
we provide new definitions of cut-and-choose oblivious transfer (and its
variants) that suffice for its application in cut-and-choose techniques for
garbled circuit based two-party protocols. Furthermore, our definitions
conceptually simplify previous definitions including those proposed by
Lindell (Crypto 2013), Huang et al., (Crypto 2014), and Lindell and Riva
(Crypto 2014). Our main result is an efficient realization (under our new
definitions) of cut-and-choose OT and its variants with small concrete
communication overhead in an OT-hybrid model. Among other things
this implies that we can base cut-and-choose OT and its variants under a
variety of assumptions, including those that are believed to be resilient to
quantum attacks. By contrast, previous constructions of cut-and-choose
OT and its variants relied on DDH and could not take advantage of OT
extension. Also, our new definitions lead us to more efficient construc-
tions for multistage cut-and-choose OT—a variant proposed by Huang
et al. (Crypto 2014) that is useful in the multiple execution setting.

Keywords: Cut-and-choose oblivious transfer, OT extension, concrete efficiency.

1 Introduction

Secure two-party computation is rapidly moving from theory to practice. While
the basic approach for semi-honest security, garbled circuits [33], is extensively
studied and is largely settled, security against malicious players has recently
seen significant improvements. The main technique for securing garbled circuit
protocols against malicious adversaries is cut-and-choose, formalized and proven
secure by Lindell and Pinkas [23]. A line of work [23, 24, 31, 11, 26, 22] has focused
on reducing the concrete overhead of the cut-and-choose approach: it is possible
to guarantee probability of cheating ≤ 2−σ using exactly σ garbled circuits.
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The above works have been motivated by the impression that the major over-
head of secure two-party computation arises from the generation, transmission,
and evaluation of garbled circuits (especially for functions having large circuit
size). Indeed, the work of Frederiksen and Nielsen [7] showed that the cost of the
circuit communication and computation for oblivious two-party AES is approxi-
mately 80% of the total cost; likewise, Kreuter et al. [19] showed that the circuit
generation and evaluation for large circuits takes 99.999% of the execution time.

Recent works of [10, 21] consider the multiple-execution setting, where two
parties compute the same function on possibly different inputs either in parallel
or sequentially. These works show that to evaluate the same function t times, it
is possible to reduce the number of garbled circuits to O(σ/ log t). In concrete
terms, this corresponds to a drastic reduction in the number of garbled circuits.
For instance when t = 3500 and for σ = 40, the work of [10, 21] shows a cut-
and-choose technique that reduces the number of garbled circuits to less than 8
per execution. Thus it is reasonable to say that the overhead due to generation,
transmission, and evaluation of garbled circuits has been significantly reduced.

However, state-of-the-art two-party secure computation protocols, both in
the single-execution setting [22] and in the multiple-execution setting [10], suffer
from major overheads due to use of public key operations for two reasons:

Use of DDH-based zero-knowledge protocols to enforce circuit-generator’s
input consistency.

Use of DDH-based cut-and-choose oblivious transfer protocols [24, 22, 10, 21,
5] to avoid “selective failure” attacks.

Of greater concern is the fact that these state-of-the-art protocols are unlikely
to perform well in settings where the inputs of even one of the parties are large
(because they use public key operations proportional to the total size of inputs
of both parties). It is worthwhile to note that although techniques, most notably
amortization via oblivious transfer (OT) extension [12, 14, 29], exist to reduce
the number of public key operations required at least for one of the parties, the
state-of-the-art two-party secure computation protocols simply are not able to
take advantage of these amortization techniques.

If one restricts their attention to constant-round protocols with good concrete
efficiency there are very few alternatives [23, 26] that require reduced number
of public key operations. For instance the protocols of [23, 26] use public key
operations only for the (seed) OTs (which can be amortized using OT extension).
Furthermore, at least in the single execution setting, the techniques of [23, 26] can
be easily merged with state-of-the-art cut-and-choose techniques to reduce the
number of public key operations. However, this results in a considerable overhead
in the communication complexity (by factor σ) for proving input consistency of
the circuit generator. More importantly the techniques of [23, 26] do not adapt
well to the state-of-the-art cut-and-choose techniques for the multiple executions
setting, and require strong assumptions such as a programmable random oracle.
Specifically, the “XOR-tree encoding schemes” technique employed in [23, 26]
to avoid the selective failure attack no longer appears to work with standard
garbling techniques. On the other hand, a natural generalization of cut-and-
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choose OT, namely multistage cut-and-choose OT proposed in [21, 10] can handle
the selective failure attack in the multiple executions setting (cf. Section 1.2).

Unfortunately the only known constructions of cut-and-choose OT as well as
its variants rely on DDH and consequently use public key operations proportional
to the size of the cut-and-choose OT instance. This is further amplified by the
fact that known cut-and-choose OT protocols require regular exponentiations
which are more expensive relative to even fixed-base exponentiations. (Note that
on the other hand the DDH-based zero-knowledge protocols to ensure input
consistency used in [22, 24] require only fixed-base exponentiations.)

Our contributions. In this paper, we study cut-and-choose OT and its variants
as independently interesting primitives. Motivated by the discussion above, our
main goal will be to reduce the number of public key operations required to real-
ize a cut-and-choose OT instance, while minimizing the concrete communication
complexity. Towards this, we propose a new formulation of cut-and-choose OT
and its variants that (1) is sufficient for its application to design secure two-
party computation protocols, (2) allows a realization in an OT-hybrid model
(as opposed to specific public key cryptosystems, and also provides alternative
realizations which are resistant to quantum attacks), and (3) can be realized
with low communication complexity in both concrete terms (roughly factor 4
overhead) as well as asymptotic terms. Furthermore, our formulation provides
new insights into the design of multistage cut-and-choose OT protocols resulting
in new constructions of the same that offer factor t (where t is the number of
executions) improvement over prior work [10]. Note that the benefits of amorti-
zation in the multiple execution setting kick in for large t (e.g., 10X improvement
when t = 106). Hence our protocols can offer significant gains in efficiency. Con-
ceptually, our work can be considered as

pinning down the exact formulation of cut-and-choose OT and its variants
that suffices for its applications.

basing cut-and-choose OT on a wide variety of assumptions (including LWE,
RSA, DDH).

showing how to efficiently “extend” cut-and-choose OT (a la OT extension).

an approach for porting “XOR-tree encoding schemes” to work in the mul-
tiple execution setting while preserving their efficiency.

Our new formulation of cut-and-choose OT has the following aspects:

Treats cut-and-choose OT (and its variants) as a reactive functionality. This
allows us to construct efficient protocols for multistage cut-and-choose OT.

Requires ideal process simulation for corrupt receiver but only privacy against
corrupt sender. This will allow us to realize cut-and-choose OT (and its vari-
ants) with low concrete communication complexity.

1.1 Cut-and-choose oblivious transfer and its variants

We provide an overview of cut-and-choose OT and its variants. In the following,
let λ (resp. σ) denote the computational (resp. statistical) security parameter.

Cut-and-choose oblivious transfer. Cut-and-choose oblivious transfer
(CCOT) [24], denoted Fccot (see Figure 1) is an extension of standard OT.
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The sender inputs n pairs of strings, and the receiver inputs n selection bits to
select one string out of each pair of sender strings. However, the receiver also
inputs a set J of size n/2 that consists of indices where it wants both the sender’s
inputs to be revealed. Note that for indices not contained in J , only those sender
inputs that correspond to the receiver’s selection bits are revealed.
Remark 1. Using a PRG it is possible to obtain OT on long strings given ideal
access to OT on short strings of length λ [12]. This length extension technique is
applicable to cut-and-choose and its variants. Furthermore, for applications to
secure computation, sender input strings (i.e., garbled circuit keys) are of length
λ. Therefore, we assume wlog that sender input strings are all of length λ.

Inputs:

– S inputs n pairs of strings (x1,0, x1,1), . . . , (xn,0, xn,1) ∈ {0, 1}λ × {0, 1}λ.
– R inputs a set of indices J ⊆ [n] of size n/2, and selection bits {bj}j 6∈J .

Outputs: If J is not of size n/2, then S and R receive ⊥ as output.

– For every j ∈ J , party R receives (xj,0, xj,1).
– For every j 6∈ J , party R receives xj,bj .

Fig. 1. The cut-and-choose OT functionality Fccot from [24].

Batch single-choice CCOT. In applications to secure computation, one needs
single-choice CCOT, where the receiver is restricted to inputting the same selec-
tion bit in all the n/2 instances where it receives exactly one out of two sender
strings. Furthermore, it is crucial that the subset J input by the receiver is
the same across each instance of single-choice CCOT. This variant, called batch
single-choice CCOT can be efficiently realized under DDH [24].

Modified batch single-choice CCOT. Lindell [22] presented a variant of
batch single-choice CCOT, denoted F?ccot, to address settings where the receiver’s
input set J may be of arbitrary size (i.e., not necessarily n/2). In addition to
obtaining one of the sender’s inputs, the receiver also obtains a “check value”
for each index not in J . This variant can be realized under DDH [22].

Inputs:

– S inputs m sets of n pairs of strings X(1), . . . , X(m) where X(i) = ((x
(i)
1,0, x

(i)
1,1),

. . . , (x
(i)
n,0, x

(i)
n,1)), and t “check values” vectors Φ1 = (φ1

1, . . . , φ
1
n), . . . , Φt = (φt1,

. . . , φtn), where each x
(i)
j,b ∈ {0, 1}

λ and each φkj ∈ {0, 1}σ.
– R inputs pairwise non-intersecting sets of indices E1, . . . , Et ⊆ [n], and selec-

tion bit vectors b1 = (b1,1, . . . , b1,m), . . . ,bt = (bt,1, . . . , bt,m).

Outputs: S receives no output. Define J = [n]\∪k∈[t]Ek. R receives the following:

– For every j ∈ J , party R receives { (x
(i)
j,0, x

(i)
j,1) }i∈[m].

– For every k ∈ [t]: For each (unique) j ∈ Ek, party R receives {x(i)j,bk,i
}i∈[m],

and “check value” φkj .

I.e., R obtains {(x(1)j,0 , x
(1)
j,1), . . . , (x

(m)
j,0 , x

(m)
j,1 )}j∈J and {x(1)j,b1,1 , . . . , x

(m)
j,b1,m

}j∈E1 , . . . ,

{x(1)j,bt,1 , , . . . , x
(m)
j,bt,m

}j∈Et and check values {φ1
j}j∈E1 , . . . , {φtj}j∈Et .

Fig. 2. Multistage cut-and-choose OT functionality F?mcot [10, 21].
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Multistage CCOT. To handle the multiple (parallel) execution setting, a new
variant of F?ccot called batch single-choice multi-stage cut-and-choose oblivious
transfer was proposed in [10]. For sake of simplicity, we refer to this primitive as
multistage cut-and-choose oblivious transfer and denote it by F?mcot. At a high
level, this variant differs from F?ccot in that the receiver can now input multiple
sets E1, . . . , Et (where J is now implicitly defined as [n]\∪k∈[t]Ek), and make in-
dependent selections for each E1, . . . , Et. In fact the above definition reflects the
cut-and-choose technique employed in [10, 21] for the multiple execution setting.
The technique proceeds by first choosing a subset of the n garbled circuits to be
checked, and then partitioning the remaining garbled circuits into t evaluation
“buckets”. An information-theoretic reduction of F?mcot to t instances of F?ccot
with total communication cost O(nt2λ) was shown in [10].

For lack of space, we present only the multistage cut-and-choose OT func-
tionality in Figure 2. Note that F?mcot generalizes modified batch single-choice
CCOT of [22] (simply by setting t = 1) as well as batch single-choice CCOT
of [24] (by setting t = 1 and forcing |J | = n/2 and setting all φkj values to 0σ).

1.2 Selective failure attacks

In garbled circuit protocols, OT is used to enable the circuit generator (referred
to as the sender) S to transfer input keys for the garbled circuit corresponding
to the circuit evaluator (referred to as the receiver) R’s inputs. However, when S
is malicious, this can lead to a “selective failure” attack. To explain this problem
in more detail, consider the following näıve scheme. For simplicity assume that
R has only one input bit b. Let the keys corresponding to R’s input be (xj,0, xj,1)
in the j-th garbled circuit. In the following, let com be a commitment scheme.

S sends (com(x1,0), com(x1,1)), . . . , (com(xn,0), com(xn,1)) to R.

S and R participate in a single instance of FOT where S’s input ((d1,0, . . . ,
dn,0), (d1,1, . . . , dn,1)) where dj,c is the decommitment corresponding to
com(xj,c), and R’s input is b. R obtains (d1,b, . . . , dn,b) from FOT.

Then R sends check indices J ⊆ [n] to S.

S sends {dj,0, dj,1}j∈J to R.

The selective failure attack operates in the following way: S supplies
(d1,0, . . . , dn,0), (d′1,1, . . . , d

′
n,1) where di,0 is a valid decommitment for com(xi,0)

while d′i,1 is not a valid decommitment for com(xi,1). Then when R sends check
indices, S responds with {dj,0, dj,1}j∈J where dj,0 and dj,1 are valid decommit-
ments for com(xj,0) and com(xj,1) respectively. Suppose R’s input equals 0. In
this case, R does not detect any inconsistency, and continues the protocol, and
obtains output. Suppose R’s input equals 1. Now R will not obtain xj,1 for all
j ∈ [n] since it receives invalid decommitments. If R aborts then S knows that
R’s input bit equals 1. In any case, R cannot obtain the final output. I.e., the
ideal process and the real process can be distinguished when R’s input equals 1,
and the protocol is insecure since S can force an abort depending on R’s input.
Approaches based on “XOR-tree encoding schemes”. The first solution
to the selective failure attack was proposed in [15, 6, 23] where the idea was to
randomly encode R’s input and then augment the circuit with a supplemental
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subcircuit (e.g., “XOR-tree”) that performs the decoding to compute R’s actual
input. Note that the “selective failure”-type attack can still be applied by S but
the use of encoding ensures that the event that R aborts due to the attack is al-
most statistically independent of its actual input. The basic XOR-tree encoding
scheme incurs a multiplicative overhead of σ in the number of OTs and increases
the circuit size by σ XOR gates. The “random combinations” XOR-tree encod-
ing [23, 30, 25] incurs a total overhead of m′ = max(4m, 8σ) in the number of
OTs where m is the length of R’s inputs, and an additional 0.3mm′ XOR gates.
(Note that use of the free-XOR technique [18] can lead to nullifying the cost of
the additional XOR gates.) [13] uses σ-wise independent generators to provide
a rate-1 encoding of inputs which can be decoded using an NC0 circuit.

Approaches based on CCOT. CCOT forces S to “commit” to all keys cor-
responding to R’s input and reveals a subset of these keys corresponding to R’s
input but without the knowledge of which subset of keys were revealed. This
allows us to intertwine the OT and the circuit checks and avoids the need to
augment the original circuit with a supplemental decoding subcircuit. I.e., se-
lective failure attacks are “caught” along with check for incorrectly constructed
circuits, and this results in a simpler security analysis.

Approaches for the multiple execution setting. While either approach
seems sufficient to solve the selective failure attack, the CCOT based approach
offers a qualitative advantage in the multiple parallel execution setting. First let
us provide an overview of the cut-and-choose technique in the multiple execution
setting [10, 21]. S sends n garbled circuits, and R picks a check set J ⊆ [n]. The
garbled circuits corresponding to check sets will eventually be opened by S.
The garbled circuits which are not check circuits are randomly partitioned into
t evaluation “buckets” denoted by E1, . . . , Et. We now explain the difficulty in
adapting XOR-tree encoding schemes to this cut-and-choose technique.

Observe that when using standard garbling schemes [33, 23] in a 2-party
garbled circuits protocol, the OT step needs to be carried out before the garbled
circuits are sent. This is necessary for the simulator to generate correctly faked
garbled circuits (using R’s inputs extracted from the OT) in the simulation for
corrupt R. For simplicity assume that R has exactly one input bit (which may
vary across different executions). Now when using XOR-tree encoding schemes
we need to enforce that in each execution, R inputs the same choice in all the
OTs. Batching the OTs together for each execution can be implemented if S
knows which circuits are going to be evaluation circuits for each execution, but R
cannot reveal which circuits are evaluation circuits because this allows a corrupt
S to transmit well-formed check circuits and ill-formed evaluation circuits. Thus
it is unclear how to apply the XOR-tree encoding schemes and ensure that
corruptR chooses the same inputs for the evaluation circuits within an execution.

A generalization of CCOT called multistage CCOT (Figure 2) is well-suited
to the multiple parallel execution setting. Indeed, multistage CCOT F?mcot takes
as inputs (1) from S: all input keys corresponding to R’s inputs in each of the
n garbled circuits, and (2) from R: the sets E1, . . . , Et along with independent
choice bits for each of the t executions. Thus F?mcot avoids the selective failure
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attack in the same way as CCOT does it in the single execution setting. Further,
it ensures that R is forced to choose the same inputs within each execution.

Remark 2. Surprisingly, CCOT has a significant advantage over XOR-tree en-
coding schemes only in the parallel execution setting. In the sequential execution
setting, it is unclear how to use CCOT since R’s inputs for each of its executions
are not available at the beginning of the protocol. It appears necessary to do
the OT for each execution after all the garbled circuits are sent. Then one may
use adaptively secure garbling schemes [3, 2] (e.g., in the programmable random
oracle model) to enable the simulator to generate correctly faked garbled circuits
in the simulation for corrupt R. Assuming that the garbling is adaptively secure,
XOR-tree encoding schemes suffice to circumvent the selective failure attack in
the multiple sequential setting. This also applies to the multiple parallel setting.

1.3 Overview of definitions and constructions

As mentioned in the Introduction, all known constructions of CCOT rely on
DDH and thus make heavy use of public key operations. A natural approach to
remedy the above situation is try and construct CCOT in a OT-hybrid model
and then use OT extension techniques [12, 29].
Basing CCOT on OT. A first idea is to use general OT-based 2PC (e.g., [14])
to realize CCOT but it is not clear if this would result in a CCOT protocol with
good concrete efficiency. Note that the circuit implementing CCOT has very
small depth, and that S’s inputs are of length O(nλ) while R’s is of length O(n)
(where the big-Oh hides small constants). Protocols of [23, 26] do not perform
well since there’s a multiplicative overhead of (at least) λσ over the instance size
(i.e., O(nλ)) simply because of garbling (factor λ) and cut-and-choose (factor
σ). Protocols of [24, 22, 10] already rely on CCOT and the instance size of CCOT
required inside these 2PC protocols are larger than the CCOT instance we wish
to realize. Since the circuit has very small constant depth it is possible to employ
non-constant round solutions [29] but this still incurs a factor λ overhead due
to use of authenticated OTs. Employing information-theoretic garbled circuit
variants [15, 17] in the protocols of [23, 26] still incur a factor σ overhead due to
cut-and-choose. In summary, none of the above are satisfactory for implementing
CCOT as they incur at least concrete factor min(λ, σ) multiplicative overhead.

To explain the intuition behind our definitions and constructions, we start
with the seemingly close relationship between CCOT and 2-out-of-3 OT. At
first glance, it seems that it must be easy to construct CCOT from 2-out-of-3
OT. For example, for each index, we can let S input the pair of real input keys
along with a “dummy check value” as its 3 inputs to 2-out-of-3 OT, and then
let R pick two out of the three values (i.e., both keys if it’s a check circuit, or
the dummy check value along with the key that corresponds to R’s real input).
There are multiple issues with making this idea work in the presence of malicious
adversaries. Perhaps the most important issue is that this idea still wouldn’t help
us achieve our goal of showing a reduction from CCOT to 1-out-of-2 OT. More
precisely, we do not know how to construct efficient protocols for 2-out-of-3 OT
from 1-out-of-2 OT. Consider the following toy example for the same.
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Inputs: S holds (x0, x1, x2) and R holds b1 ∈ {0, 2}, b2 ∈ {1, 2}.
Toy Protocol:

S sends (x0, x2) to FOT and R sends b1 to FOT.

S sends (x1, x2) to FOT and R sends b2 to FOT.

Outputs: S outputs nothing. R outputs xb1 , xb2 .

The problem with the protocol above is that simulation extraction will fail with
probability 1/2 since a malicious S may input different values for x2 in each of
the two queries to FOT. Note that even enforcing S to send h = H̃(x2) to R
where H̃ is a collision-resistant hash function (or an extractable commitment)
does not help the simulator. On the other hand this hash value does enable R to
detect an inconsistency if (1) S supplied two different values for x2 in each of the
two queries to FOT and (2) R picked the x2 value which is not consistent with
h. However, if R aborts on detection of inconsistency this leaks information.

Our main observation is that the attacks on the toy protocol are very similar
to the selective failure attacks discussed in Section 1.2. Motivated by this one
may attempt to use “XOR-tree encoding schemes” to avoid the selective failure
attacks, and attempt to construct CCOT directly from 1-out-of-2 OT. However,
note that the encoding schemes alone do not suffice to prevent selective failure
attacks; they need to be used along with a supplemental decoding circuit. Here
our main observation is that known encoding schemes (possibly with the excep-
tion of [32]) used to prevent selective failure attacks [23, 13] can be decoded using
(a circuit that performs) only XOR operations. Thus, one may use the free-XOR
technique [18] to get rid of the need for a supplemental decoding circuit, and
instead perform XOR operations directly on strings. Indeed the above idea can
be successfully applied to prevent selective failure attacks that could be mounted
on the toy protocol, and can also be extended to yield a protocol for CCOT. Al-
though the resulting CCOT protocol is simulatable against a malicious receiver,
unfortunately we do not know how to simulate a corrupt sender (specifically,
extract sender’s input).
Relaxing CCOT. Our main observation is that for application to 2PC, full
simulation against a corrupt sender is not required. It is only privacy that is
required. This is because S’s inputs to the 2PC are extracted typically via ZK (or
the mechanism used for input consistency checks), and the inputs to the CCOT
are just random garbled keys which are unrelated to its real input. Note that in
2PC protocols that use CCOT [24, 22, 10] the following three steps happen after
the CCOT protocol is completed: (1) S sends all the garbled circuits, and (2) then
R reveals the identity of the evaluation circuits, and (3) then S reveals its keys
corresponding to its input for the evaluation circuits. Consider the second step
mentioned above, namely that R reveals the identity of the evaluation circuits.
This is a relatively subtle step since a malicious R may claim (a) that a check
circuit is an evaluation circuit, or (b) that an evaluation circuit is a check circuit.
Both these conditions need to be handled carefully since in case (a) corrupt R,
upon receiving S’s input keys in step (3) will be able to evaluate the garbled
circuits on several inputs of its choice. Case (b) is problematic while simulating
a corrupt R as the simulator does not know which circuits to generate correctly
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and which ones to fake. Therefore, 2PC protocols that use CCOT require R to
“prove” the identity of the check/evaluation circuits. In [22, 10], this is done via
“check values” and “checkset values”. We use similar ideas in our protocols: if
j ∈ [n] is such that j 6∈ J , then R receives some dummy check value φj , and if
j ∈ J then R receives “checkset values” xj,0, xj,1 which correspond to S’s inputs.
Thus, R can prove the identity of check/evaluation circuits simply by sending
the “check values” {φj}j 6∈J and “checkset values” {xj,0, xj,1}j∈J . Observe that
this step does not reveal any information about R’s input bits {bj}j 6∈J to S. To
do this, we would need to include a “reveal” step.

Motivated by the discussions above, we formulate a new definition for CCOT
and its variants. Our definitions pose CCOT and its variants as reactive func-
tionalities, and in particular include a “reveal phase” where R’s evaluation set
[n] \ J is simply revealed to S by the functionality. More precisely, in the re-
veal phase we allow R to decide whether it wants to abort or reveal J . Note
that for the case of F?mcot, the evaluation sets E1, . . . , Et is revealed to S by the
functionality. This in particular allows us to eliminate the “check values” in the
definitions of F?ccot [22] and F?mcot [10], and allows us to present protocols for (the
reactive variant of) F?mcot that is more efficient than prior constructions [10]. We
formulate CCOT as a reactive functionality because step (1) where S sends all
the garbled circuits happens immediately after the CCOT step and before step
(2) where R reveals the identity of the evaluation circuits. It is easy to see that
this relaxed formulation suffices for applications to secure computation.

Discussion. Such relaxed definitions, in particular requiring only privacy against
corrupt sender, is not at all uncommon for OT and its variants (cf. [1, 28]) or
PIR (cf. [20, 4]). Similarly, [8] propose “keyword OT” protocols in a client-server
setting, and require one to simulate the server’s (which acts as the sender) view
alone, without considering its joint distribution with the honest clients output.
For another example, consider [11] who use a CDH-based OT protocol that
achieves privacy (but is not known to be simulatable) against a malicious sender,
and yet this suffices for their purposes to construct efficient 2PC protocols.

2 Definitions

We formulate CCOT and its variants as reactive functionalities and provide
relaxed definitions formally. Recall that the main differences from prior formu-
lations is that we require (1) only privacy against corrupt sender, and (2) R to
provide the check set J and evaluation sets E1, . . . , Et to S at the end of the
protocol. We emphasize that privacy against corrupt sender must hold even after
J,E1, . . . , Et is revealed. Due to space constraints we describe our new formu-
lation only for the case of multistage CCOT denoted F+

mcot in Figure 3. (The
extensions to all other variants is straightforward.)

We will be using the following definitions (loosely based on analogous def-
initions for keyword OT [8]) for CCOT as well as its variants. Therefore for
convenience we will define these as security notions for an arbitrary functional-
ity F , and then in our theorem statements we will refer to F as being CCOT or
one of its variants.
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Input phase:

– S inputs m sets of n pairs of strings X(1), . . . , X(m) where X(i) =
((x

(i)
1,0, x

(i)
1,1), . . . , (x

(i)
n,0, x

(i)
n,1)).

– R inputs pairwise non-intersecting sets of indices E1, . . . , Et ⊆ [n], and selec-
tion bits {bk,i}k∈[t],i∈[m].

Output phase: S receives no output. Define J = [n] \ ∪k∈[t]Ek.

– For every j ∈ J , party R receives { (x
(i)
j,0, x

(i)
j,1) }i∈[m].

– For every k ∈ [t]: For each (unique) j ∈ Ek, party R receives {x(i)j,bk,i
}i∈[m].

Reveal Phase. Upon receiving “reveal” from R, sender S receives E1, . . . , Et.

Fig. 3. The reactive multistage CCOT functionality F+
mcot.

Definition 1 (Correctness). If both parties are honest, then, after running
the protocol on inputs (X,Y ), the receiver outputs Z such that Z = F (X,Y ).

Definition 2 (Receiver’s privacy: indistinguishability). Let σ be a statis-
tical security parameter. Then, for any ppt S′ executing the sender’s part and
for any inputs X,Y, Y ′, the statistical distance between the views that S′ sees on
input X, in the case that the receiver inputs Y and the case that it inputs Y ′ is
bound by 2−σ+O(1).

Definition 3 (Sender’s privacy: comparison with the ideal model). For
every ppt machine R′ substituting the receiver in the real protocol, there exists a
ppt machine R′′ that plays the receiver’s role in the ideal implementation, such
that on any inputs (X,Y ), the view of R′ is computationally indistinguishable
from the output of R′′. (In the semi-honest model R′ = R.)

Definition 4. A protocol π securely realizes functionality F with sender-
simulatability and receiver-privacy if it satisfies Definitions 1, 2, and 3.

XOR-tree encoding schemes. Selective failure attacks essentially correspond
to letting a corrupt sender learn a disjunctive predicate of the receiver’s input.
We define an XOR-tree encoding scheme consisting of a tuple (En,De,En′,De′)
of randomized algorithms (implicitly parameterized with statistical security pa-
rameter σ, and possibly public randomness ω0) as satisfying:

1. Algorithm En takes input {(xi0, xi1)}i∈[m] and produces pairs of random λ-bit

strings {u`0, u`1}`∈[m′] s.t. for each `, `′ ∈ [m′], it holds that u`
′

0 ⊕u`
′

1 = u`0⊕u`1.
2. Algorithm En′ takes input b = (b1, . . . , bm) ∈ {0, 1}m and outputs {b′`}`∈[m′].
3. For every b = (b1, . . . , bm) ∈ {0, 1}m and every {(xi0, xi1)}i∈[m] it holds that

Pr

[
{b′`}`∈[m′] ← En′(b);
{(u`0, u`1)}`∈[m′] ← En({(xi0, xi1)}i∈[m])

: De({u`b′`}`∈[m′]) = {xibi}i∈[m]

]
= 1.

We sometimes abuse notation and allow De to take sets of pairs of strings as
input in which case we require that for every {(xi0, xi1)}i∈[m] it holds that

Pr

[
{(u`0, u`1)}`∈[m′] ← En({(xi0, xi1)}i∈[m]) :

De({(u`0, u`1)}`∈[m′]) = {(xi0, xi1)}i∈[m]

]
= 1.
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4. For every b, it holds that Pr[De′(En′(b)) = b] = 1.
5. Algorithms De,De′ can be implemented by using (a tree of) XOR gates only.
6. For every disjunctive predicate P (·), the following holds: (1) If P involves at

most σ − 1 literals, then Pr[P (En′(b)) = 1] is completely independent of b.
(2) Otherwise, Pr[P (En′(b)) = 1] ≥ 1− 2−σ+1.

7. For every {(xi0, xi1)}i∈[m] and for every (possibly unbounded) adversary A′

and for every {b′`}`∈[m′] ∈ {0, 1}m
′
, there exists a ppt algorithm S ′ such that

the following holds:

Pr[{(u`0, u`1)}`∈[m′] ← En({(xi0, xi1)}i∈[m]) : A′({b′`}`∈[m′], {u`b′`}`∈[m′]) = 1] =

Pr

[
(b1, . . . , bm)← De′({b′`}`∈[m′]);
{ũ`}`∈[m′] ← S ′({b′`}`∈[m′], {xibi}i∈[m])

: A′({b′`}`∈[m′], {ũ`}`∈[m′]) = 1

]
.

(This in particular, implies thatA obtains no information about {xi1−bi}i∈[m].)

Algorithms (En,De,En′,De′) for the basic XOR-tree encoding scheme [23]
are simple and implicit in our basic CCOT construction (cf. Figure 4). For
the random combinations XOR-tree encoding [23] algorithm En′ is simply a
random linear mapping (i.e., public randomness ω0 defines this random linear
mapping, see e.g., [23, 30] for more details). Finally, for the σ-wise independent
generators XOR-tree encoding the algorithm En′ depends on the generator (i.e.,
public randomness ω0 defines this generator) which can be implemented only
using XOR gates [27]. Note that in all of the above, En′ essentially creates a
(σ − 1)-independent encoding of its input, and thus Property 6 holds (see also
Lemma 1). In all our constructions, En simply maps its inputs to a pairs of
random strings such that the XOR of the two strings within a pair is always some
fixed ∆. Algorithms De,De′ are determinstic and function to simply reverse the
respective encoding algorithms En,En′. Note that De,De′ (acting respectively on
outputs of En,En′) are naturally defined by the supplemental decoding circuit
that decodes the XOR-tree encoding, and thus can be implemented using XOR
gates only. We point out that algorithm De′ is used only in the simulation to
extract R’s input from its XOR-tree encoded form. Finally, Property 7 is justified
by the fact that XOR-tree encoding schemes that are useful in standard two-
party secure computation protocols, the receiver R obtains only one of two keys
corresponding to the encoding (via OTs), and these keys reveal the output keys
of the supplemental decoding circuit (that correspond exactly to the output of
the decoding) and nothing else.

3 Constructions

CCOT from OT. See the protocol in Figure 4 for the CCOT protocol that uses
the basic XOR-tree encoding scheme of [23] in order to implement CCOT when
n = 1. The case when n ≥ 1 is handled by parallel repetition. While we prove
that the resulting CCOT protocol is simulatable against a malicious receiver,
unfortunately we do not know how to extract corrupt sender’s input. To see
this, note that a corrupt sender may supply values for some `, `′ ∈ [σ] values
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u`0, u
`
1, u

`′

0 , u
`′

1 such that u`0⊕u`1 6= u`
′

0 ⊕u`
′

1 . Needless to say, such a deviation is
caught by R when J 6= ∅. However, this deviation goes undetected when R’s
input J = ∅. Note that the simulator for a corrupt sender needs to extract S’s
input without knowing R’s input; however when S provides inconsistent inputs
to FOT, it is unclear how to extract S’s inputs. We prove that the protocol in
Figure 4 securely realizes Fccot with sender-simulatability and receiver-privacy.
We start by observing that correctness follows from inspection of the protocol.

Inputs: S holds (x0, x1) and R holds J ⊆ {1} and b1.
Protocol:

1. S chooses check value φ ∈ {0, 1}σ at random. Then S chooses
∆,∆′0,∆

′
φ, {(u`0, u`2)}`∈[σ] at random such that

⊕
`u
`
0 = x0⊕∆′0 and

⊕
`u
`
2 =

φ⊕∆′φ. Then S sets for all ` ∈ [σ], u`1 = u`0⊕∆.

2. R sets {(c`0, c`1)}`∈[σ] as follows:

If J 6= ∅, then set c`0 = c`1 = 0 for all ` ∈ [σ].

Else choose {b′`}`∈[σ] at random such that
⊕

`b
′
` = b1, and for each ` ∈ [σ]

set c`b′
`

= 0 and c`1−b′
`

= 1.

3. Then for ` ∈ [σ], S and R do the following:

S sends (u`0, u
`
2) to FOT, and R sends c`0 to FOT.

S sends (u`1, u
`
2) to FOT, and R sends c`1 to FOT.

Note R receives {(u`0, u`1)}`∈[σ] if J 6= ∅, and otherwise receives {(u`b′
`
, u`2)}`∈[σ].

4. S sends ∆′0,∆
′
1 = x0⊕x1⊕∆⊕∆′0,∆φ, and h = H(φ) to R.

5. If J 6= ∅, then R reconstructs x̃0 = ∆′0⊕
⊕

`u
`
0 and x̃1 = ∆′1⊕

⊕
`u
`
1. Else R

reconstructs x̃b1 = ∆′b1⊕
⊕

`u
`
b′
`

and φ̃ = ∆′φ⊕
⊕

`u
`
2.

6. R initializes J = J , Ψ = ∅, and Φ = ⊥, and then does the following:

If J 6= ∅ and if for all `, `′ ∈ [σ] it holds that u`0⊕u`1 = u`
′

0 ⊕u`
′

1 then R
sets Ψ = (x̃0, x̃1).

If J = ∅ and h = H(φ̃): R sets Φ = φ̃.

If (|J | = 1 and Ψ = ∅) or (|J | = 0 and Φ = ∅), then set J = Ψ = Φ = ∅.

Reveal: R sends (J, Ψ, Φ) to S, else sends ⊥. S aborts if these values are incon-
sistent with its inputs and check values.

Fig. 4. CCOT via the basic XOR-tree encoding scheme.

Simulating corrupt receiver. Assume that H is modeled as a (non-
programmable) random oracle. Acting as FOT the simulator does the following:

Chooses random ∆′, {u`0, u`2}`∈[σ] and sets for all ` ∈ [σ], value u`1 = u`0⊕∆′.
For each ` ∈ [σ], acting as FOT obtain values {c`0, c`1} and return answers
from {u`0, u`1, u`2} exactly as in the protocol.

If there exists ` ∈ [σ] such that c`0 = c`1 = 0, then set J = {1} and send J
to the trusted party and receive back (x0, x1). Now set ∆′0 = x0⊕

⊕
`u
`
0 and

∆′1 = x1⊕∆′⊕
⊕

`u
`
0. Pick random ∆′φ and random h′ ← {0, 1}λ. Finally,

send ∆′0, ∆
′
1, ∆

′
φ, h
′ to R.

Else if for all ` ∈ [σ], it holds that c`0 6= c`1, then for each ` ∈ [σ] compute
b′` such that c`b′`

= 0. Extract b′ =
⊕

`b
′
`. Set J = ∅, send (J, b = b′) to

the trusted party and receive back xb. If b = 0, set ∆′0 = x0⊕
⊕

`u
`
0. Else if
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b = 1, set ∆′1 = x1⊕∆′⊕
⊕

`u
`
0. Pick random ∆′1−b, ∆

′
φ ← {0, 1}λ, and set

h′ = H(∆φ⊕
⊕

`u
`
2). Finally, send ∆′0, ∆

′
1, ∆

′
φ, h
′ to R.

Else set J = ∅ and choose random b′ ← {0, 1} and send (J, b = b′) to
the trusted party. Receive back xb. If b = 0, set ∆′0 = x0⊕

⊕
`u
`
0. Else if

b = 1, set ∆′1 = x1⊕∆′⊕
⊕

`u
`
0. Pick random ∆′1−b, ∆

′
φ ← {0, 1}λ, and set

h′ = H(∆φ⊕
⊕

`u
`
2). Finally, send ∆′0, ∆

′
1, ∆

′
φ, h
′ to R.

In the reveal phase, if R sends (J ′, Ψ ′, Φ′) such that J ′ 6= J or the values
Ψ ′, Φ′ are not consistent with the values above, then abort the reveal phase.
Else, send “reveal” to the trusted party.

It is easy to see that the above simulation is indistinguishable from the real
execution. Indeed if there exists any ` such that c`0 = c`1 = 0, then in this case
corrupt R learns ∆ but does not obtain u`2. Therefore, in this case it misses at
least one additive share of φ and since h = H(φ) does not reveal information
(unless H is queried on φ), φ is statistically hidden from corrupt R. Thus, this
case corresponds to J 6= ∅ since R could potentially know both x0 and x1 (since
it knows ∆ and potentially at least one of u`0, u

`
1 for each ` ∈ [σ]) but not φ.

On the other hand, if for all ` ∈ [σ] it holds that c`0 6= c`1 then it is easy to
see that the extracted input b′ equals R’s input b1 and that the rest of the
simulation is indistinguishable from the real execution. Finally the remaining
case (i.e., there exists ` ∈ [σ] such that c`0 = c`1 = 1 and there does not exist
`′ ∈ [σ] such that c`

′

0 = c`
′

1 = 0) is when R obtains only φ and neither x0 nor
x1. This case is rather straightforward to handle; the simulator supplies J = ∅
(since R knows φ) and a random choice bit b′. This works because there exists
some ` ∈ [σ] such that R neither obtains u`0 nor u`1. As a result both x0 and x1
are information-theoretically hidden from it.
Privacy against corrupt sender. Note that except in the reveal phase, in-
formation flows only from S to R. If S is honest, then reveals made by R do
not leak any information. (Recall J is revealed to S in the real as well as the
ideal execution.) We have to show that even a corrupt S does not learn any
information about b1. Clearly when J 6= ∅, R’s actions are independent of its
input b1 and thus does not leak any information. On the other hand when J = ∅,
observe that R does not reveal x̃b1 , and thus S only learns whether Ψ = Φ = ∅ or
not. This translates to learning information about R’s input b1 only if for some
(possibly many) ` ∈ [σ], S provided (u`0, u

`
2) in one instance of FOT and (u`1, û

`
2)

in the other instance with u`2 6= û`2. This is because such a strategy would allow
S to learn whether R input c`0 = 1 (in which case R does not abort) or c`1 = 1
(in which case R does abort), and consequently leak information about b′` (i.e.,
depending on which of c`0, c

`
1 was 0 when J = ∅). More generally, such a strategy

allows S to learn any disjunctive predicate of R’s selections {c`0, c`1}`. To prove
that such a strategy does not help S we use the following easy lemma.

Lemma 1 ([13]). Let En′ : {0, 1}m → {0, 1}m′
be such that for any b ∈ {0, 1}m,

it holds that En′(b) is a κ-wise independent encoding of b. Then for every
disjunctive predicate P (·) the following holds: (1) If P involves at most κ lit-
erals, then Pr[P (En′(b)) = 1] is completely independent of b. (2) Otherwise,
Pr[P (En′(b)) = 1] ≥ 1− 2−κ.
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To apply the lemma in our context, note that En′ here corresponds to the
“XOR-tree encoding”, i.e,. encoding of b1 into {b′`}`. Clearly, En′ is a κ = (σ−1)-
wise independent encoding of b1. Thus we have that if S supplied inconsistent
values (i.e., u`2, û

`
2) in at most (σ − 1) instances, then the S does not learn any

information about b1 in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in σ) R will abort in the reveal phase (irrespective of R’s true input
b1). This concludes the proof of privacy against corrupt sender.

Inputs: S holds (x1,0, x1,1), . . . , (xn,0, xn,1) and R holds J ⊆ [n] and b1.
Protocol:

1. S does the following:

Choose {(∆′j,0,∆′j,φ)}j∈[n] uniformly at random from {0, 1}λ.

Choose {u`j,0}j∈[n],`∈[σ] at random such that for all j ∈ [n] it holds that⊕
`u
`
j,0 = xj,0⊕∆′j,0.

Choose φ1, . . . , φn, {u`j,2}j∈[n],`∈[σ] at random such that for all j ∈ [n] it
holds that

⊕
`u
`
j,2 = φj⊕∆′j,φ.

Choose {(K`,0,K`,1)}`∈[σ] at random where each K`,0,K`,1 ← {0, 1}λ.

Choose ∆1, . . . ,∆n ← {0, 1}λ at random and set u`j,1 = u`j,0⊕∆j .

2. R does the following:

Choose {b′`}`∈[σ] such that
⊕

`b
′
` = b1.

For each j ∈ [n], R sets {(c`j,0, c`j,1)}`∈[σ] as follows:

If j ∈ J , then set c`j,0 = c`j,1 = 0 for all ` ∈ [σ].

Else for each ` ∈ [σ] set c`j,b′
`

= 0 and c`j,1−b′
`

= 1.

3. For each ` ∈ [σ] do: S sends (K`,0,K`,1) to FOT and R sends b′` to FOT. R
receives {K`,b′

`
}`∈[σ] from FOT.

4. For each j ∈ [n] and each ` ∈ [σ]:

S sends (u`j,0, e
`
j,1 = Enc(K`,1, u

`
j,2)) to FOT, and R sends c`j,0 to FOT.

S sends (u`j,1, e
`
j,0 = Enc(K`,0, u

`
j,2)) to FOT, and R sends c`j,1 to FOT.

That is, R receives {(u`j,0, u`j,1)}`∈[σ] if j ∈ J , and otherwise receives
{(u`j,b′

`
, e`j,b′

`
)}`∈[σ].

5. For each j ∈ [n]: S sends ∆′j,0,∆
′
j,1 = xj,0⊕xj,1⊕∆j⊕∆′j,0,∆′j,φ, hj = H(φj)

to R.
6. For each j ∈ [n], R reconstructs the following:

If j ∈ J , then compute x̃j,0 = ∆′j,0⊕
⊕

`u
`
j,0 and x̃j,1 = ∆′j,1⊕

⊕
`u
`
j,1.

Else, compute x̃j,b1 = ∆′j,b1⊕
⊕

`u
`
j,b′

`
and φ̃j =

∆′j,φ⊕
⊕

`Dec(K`,b′
`
, ej,b′

`
),

7. R sets J = J , Ψ = ∅, and Φ = ∅, and does the following:

If ∀j ∈ J and if ∀`, `′ ∈ [σ] it holds that u`j,0⊕u`j,1 = u`
′
j,0⊕u`

′
j,1 then R

sets Ψ = {(x̃j,0, x̃j,1)}j∈J .

If for every j 6∈ J it holds that hj = H(φ̃j) then R sets Φ = {φ̃j}j 6∈J .

If (|J | > 0 and Ψ = ∅) or (|J | < n and Φ = ∅), then set J = Ψ = Φ = ∅.
Reveal phase: R sends (J, Ψ, Φ) to S. S aborts if these values are inconsistent
with its inputs and check values.

Fig. 5. Realizing single-choice CCOT in the FOT-hybrid model.
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Single-choice CCOT. Next, we consider the case of single-choice CCOT,
where S holds (x1,0, x1,1), . . . , (xn,0, xn,1) and R holds J ∈ [n] and a single choice
bit b1. At the end of the protocol, R receives {(xj,0, xj,1)}j∈J and {xj,b1}j 6∈J .
That is, this is exactly the same as CCOT except we enforce that R inputs the
same choice across all n pairs of strings held by S. Our protocol in Figure 5
enforces this using a symmetric-key encryption scheme denoted (Enc,Dec).

We prove that the protocol in Figure 5 securely realizes single-choice CCOT
with sender-simulatability and receiver-privacy. We start by observing that cor-
rectness follows from inspection of the protocol.

Simulating corrupt receiver. The simulation is quite similar to the simulation
of CCOT construction presented in Figure 4. Obviously the main difference now
is that R may attempt to use different b′` values for j, j′ ∈ [n] (where b′` is defined
as the value R inputs to FOT in Step 3). However the key observation is that
it receives only one key K`,b′`

in {K`,0,K`,1}. Therefore, even if it attempts to

deviate and and obtain e`j′,b′′`
for b′′` 6= b′`, it still cannot decrypt since it does

not possess the secret key K`,b′′`
. Semantic security of the encryption allows us

to argue that if such a deviation happens then the value of φj′ is hidden from S.
Therefore in this case, the simulator can simply add j′ to J , and the simulation
can be completed. It is instructive to note that when such a deviation happens,
R will be neither be able to provide {xj′,0, xj′,1} nor the value φj′ , and thus will
get rejected by S during the reveal phase.

We proceed to the formal simulation. Assume that H is modeled as a (non-
programmable) random oracle. Acting as FOT the simulator does the following:

Chooses random {∆′j}j∈[n], {K`,0,K`,1}`∈[σ], {u`j,0, u`j,2}j∈[n],`∈[σ] and sets

for all j ∈ [n], ` ∈ [σ], value u`j,1 = u`j,0⊕∆′j .
For each ` ∈ [σ], acting as FOT obtain values b′`, return key K`,b′`

, and set

e`j,b′`
= Enc(K`,b′`

, u`j,2), e`j,1−b′`
= Enc(K`,1−b′` ,0). Compute b′ =

⊕
`b
′
`.

For each j ∈ [n], ` ∈ [σ], acting as FOT obtain values {c`j,0, c`j,1} and return

answers using values u`j,0, u
`
j,1, e

`
j,b′`

, e`j,1−b′`
(computed as above) exactly as

in the protocol.

Initialize J = ∅. For each j ∈ [n]: If there exists ` ∈ [σ] such that c`j,0 =

c`j,1 = 0, then add j to J .

Initialize flag = 0. For each j 6∈ J : If there exists ` ∈ [σ] such that either
c`j,b′`

= 0 or c`j,1−b′`
= 1 do not hold, then add j to J and set flag = 1.

Send (J, b′) to the trusted-party and receive {xj,0, xj,1}j∈J and {xj,b′}j 6∈J .

For each j ∈ J , do: (1) set ∆′j,0 = xj,0⊕
⊕

`u
`
j,0 and ∆′j,1 = xj,1⊕∆′⊕

⊕
`u
`
j,0,

and (2) pick random ∆′j,φ and random h′j ← {0, 1}λ.

For each j 6∈ J , do: (1) if b′ = 0, set ∆′j,0 = xj,0⊕
⊕

`u
`
0, (2) else if b′ = 1, set

∆′j,1 = xj,1⊕∆′j⊕
⊕

`u
`
0, and (3) pick random ∆′j,1−b′ , ∆

′
j,φ ← {0, 1}λ, and

set h′j = H(∆′j,φ⊕
⊕

`u
`
j,2).

Send {∆′j,0, ∆′j,1, ∆′j,φ, h′j}j∈[n] to R.
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In the reveal phase, if flag = 1 or if R sends (J ′, Ψ ′, Φ′) such that J ′ 6= J
or the values Ψ ′, Φ′ are not consistent with the values above, then abort the
reveal phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j ∈ [n], ` ∈ [σ], it holds that c`j,0 = c`j,1 = 0, then R receives

both u`j,0 and u`j,1, and therefore knows ∆j . In this case, it is safe to presume
that R will end up knowing both xj,0 as well as xj,1 (since for any `′, if it receives

even one of u`
′

j,0, u
`′

j,1 it will know the other as well since it knows ∆j). Therefore,
S includes j in J and obtains both xj,0, xj,1 from the trusted party. Now S can
carry out the simulation whether or not R obtained both xj,0 and xj,1.

Next, suppose that for some j ∈ [n] such that for no ` ∈ [σ], it holds that
c`j,0 = c`j,1 = 0, and yet there exists some ` ∈ [σ] such that either c`j,b′`

= 0

or c`j,1−b′`
= 1 does not hold. In this case, it is easy to see that R will not be

able to produce both xj,0, xj,1 (since it is missing one of u`j,0, u
`
j,1) in the real

execution. Further, it can be shown that except with negligible probability R
cannot produce φj either. This is because (1) R does not obtain e`j,b′`

, and (2) R

has no information about the plaintext encrypted as e`j,1−b′`
, and (3) hj = H(φj)

does not reveal any information about φj except with statistically negligible
probability (i.e., unless H is queried on φj). Point (2) above trivially holds in the
simulation because e`j,1−b′`

encrypts 0 instead of u`j,2. On the other hand, in the

real execution, observe that R does not possess the key K`,1−b′` . It follows from
a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J ′, Ψ ′, Φ′) that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.

Finally, suppose that for every j ∈ [n], either (1) for all ` ∈ [σ] it holds that
c`j,0 = c`j,1 = 1, or (2) for all ` ∈ [σ] it holds that c`j,b′`

= 0 and c`j,1−b′`
= 1. This

indeed corresponds to honest behavior on the part of R. Specifically, in case (1),
we have j ∈ J , and in case (2), we have j 6∈ J . This is exactly how the simulator
constructs J . It remains to be shown that in this case, any reveal (J ′, Ψ ′, Φ′)
such that J ′ 6= J or Ψ ′, Φ′ is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j ∈ J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about φj (other than H(φj) which leaks no information unless H
is queried on φj). (b) Any j 6∈ J cannot be claimed by R to be in the checkset.
This is because in this case, R obtains exactly one of {u`j,0, u`j,1} for every ` ∈ [σ]
and thus is able to reconstruct at most one of {xj,0, xj,1}. This concludes the
proof of security against corrupt receiver.

Privacy against corrupt sender. The proof of privacy against corrupt sender
is very similar to the corresponding proof for (the basic) CCOT. Specifically, note
that except in the reveal phase, information flows only from S to R. Next note
that if S is honest, then the reveals made by R in the reveal phase do not leak
any information about R’s input b1. (Recall J is revealed to S in the real as well
as the ideal execution.) It remains to be shown that even a corrupt S does not
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learn any information about b1. Clearly for j ∈ J , R’s actions are independent of
its input b1 and thus does not leak any information. On the other hand for j 6∈ J ,
observe that R does not reveal x̃j,b1 (i.e., in the reveal phase), and thus the only
information learnt by S is whether Ψ = Φ = ∅ or not. This translates to learning
information about R’s input b1 only if for some (possibly many) j ∈ [n], ` ∈ [σ], S
provided (u`j,0, u

`
j,2) in one instance of FOT and (u`j,1, û

`
j,2) in the other instance

with u`j,2 6= û`j,2. This is because such a strategy would allow S to learn whether

R input c`j,0 = 1 (in which case R does not abort) or c`j,1 = 1 (in which case
R does abort), and consequently leak information about b′` (i.e., depending on
which of c`j,0, c

`
j,1 was 0 when j 6∈ J). More generally, such a strategy allows S

to learn any disjunctive predicate of R’s selections {c`j,0, c`j,1}`.
To prove that such a strategy does not help S we once again make use of

Lemma 1. As before, to apply the lemma in our context, note that En′ here
corresponds to the “XOR-tree encoding”, i.e,. encoding of b1 into {b′`}`. Clearly,
En′ is a κ = (σ − 1)-wise independent encoding of b1. Thus we have that if S
supplied inconsistent values (i.e., u`2, û

`
2) in at most (σ−1) instances, then S does

not learn any information about b1 in the reveal phase. Further, even if S sup-
plied inconsistent values in all instances, then with all but negligible probability
(exponentially negligible in σ) R will abort in the reveal phase (irrespective of
R’s true input b1). This concludes the proof of privacy against corrupt sender.

Batch single-choice CCOT. This functionality, which has actually been used
directly in 2PC constructions of [24] is our next stepping stone. (The description
can be obtained by modifying F?mcot Figure 2 by setting t = 1, setting |J | = n/2
and setting all φkj values to 0σ.) The construction of this primitive follows easily
merely by repeating the single-choice CCOT protocol batch-wise in parallel.
That is, in the m-th (parallel) execution, S and R participate in a single-choice

CCOT where S holds (x
(i)
1,0, x

(i)
1,1), . . . , (x

(i)
n,0, x

(i)
n,1) while R holds J ⊆ [n] and bi.

Obviously the main difficulty is in enforcing that R supplies the same check set
J in each execution. However, this is easily enforceable in the following way.
Recall that in the reveal phase of each execution of single-choice CCOT (which
are now executed in parallel), R will have to reveal (Ei, Ψi, Φi). In addition to
checking whether these values are consistent with its inputs and check value, S
additionally checks if Ei = Ei′ for every i, i′ ∈ [m].

Using more efficient “XOR-tree” encoding schemes. Observe that the construc-
tion for batch single-choice CCOT described above incurs a multiplicative over-
head of (exactly) σ simply because the underlying single-choice CCOT protocol
makes use of the basic XOR-tree encoding scheme. Fortunately, the batch setting
makes it possible to apply more sophisticated encodings whose overhead is much
lower. More concretely, using encoding schemes based on random combinations
approach [23], the overhead can be as low as an additional ≤ 6 · max(4m, 8σ)
while using encoding schemes based on σ-wise independent generators [13] one
can obtain rate-1/6 communication complexity (and likely to be practical when
m � σ). We show constructions of batch single-choice CCOT using abstract
encoding schemes.
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Inputs: S holds X(1), . . . , X(m) where X(i) = (x
(i)
1,0, x

(i)
1,1), . . . , (x

(i)
n,0, x

(i)
n,1); R holds

J ⊆ [n] and {bi}i∈[m].
Protocol:

1. R picks randomness ω0 for the encoding scheme and sends to S.
2. S does the following for each j ∈ [n]:

Choose ∆′j,φ, {(∆
(i)
j,0,∆

(i)
j,1)}i∈[m] uniformly at random.

Choose randomness ωj and compute {(u`j,0, u`j,1)}`∈[m′] ←
Enω0({(x(i)j,0⊕∆

(i)
j,0, x

(i)
j,1⊕∆

(i)
j,1)}i∈[m];ωj).

Choose φ1, . . . , φn, {u`j,2}j∈[n],`∈[m′] at random such that for all j ∈ [n] it
holds that

⊕
`u
`
j,2 = φj⊕∆′j,φ.

Choose {(K`,0,K`,1)}`∈[m′] at random where each K`,0,K`,1 ← {0, 1}λ.

3. R does the following:

Choose random ω′, compute {b′`}`∈[m′] ← En′ω0
((b1, . . . , bm);ω′).

For each j ∈ [n], R sets {(c`j,0, c`j,1)}`∈[m′] as follows:

If j ∈ J , then set c`j,0 = c`j,1 = 0 for all ` ∈ [m′].

Else for each ` ∈ [m′] set c`j,b′
`

= 0 and c`j,1−b′
`

= 1.

4. For each ` ∈ [m′]: S sends (K`,0,K`,1) to FOT and R sends b′` to FOT. R
receives {K`,b′

`
}`∈[m′] from FOT.

5. For each j ∈ [n] and each ` ∈ [m′]:

S sends (u`j,0, e
`
j,1 = Enc(K`,1, u

`
j,2)) to FOT, and R sends c`j,0 to FOT.

S sends (u`j,1, e
`
j,0 = Enc(K`,0, u

`
j,2)) to FOT, and R sends c`j,1 to FOT.

That is, R receives {(u`j,0, u`j,1)}`∈[m′] if j ∈ J , and otherwise receives
{(u`j,b′

`
, e`j,b′

`
)}`∈[m′].

6. For each j ∈ [n]: S sends {(∆(i)
j,0,∆

(i)
j,1)}i∈[m],∆

′
j,φ, hj = H(φj) to R.

7. For each j ∈ [n], R reconstructs the following:

If j ∈ J , then compute {(x̃(i)j,0⊕∆
(i)
j,0, x̃

(i)
j,1⊕∆

(i)
j,1)}i∈[m] ←

Deω0({(u`j,0, u`j,1)}`∈[m′]).

Else, compute {x̃(i)j,bi⊕∆
(i)
j,bi
}i∈[m] = Deω0({u`j,b′

`
}`∈[m′]) and φ̃j =

∆′j,φ⊕
⊕

`Dec(K`,b′
`
, ej,b′

`
).

8. R sets J = J , Ψ = ∅, and Φ = ∅, and does the following:

If ∀j ∈ J and if ∀`, `′ ∈ [m′] it holds that u`j,0⊕u`j,1 = u`
′
j,0⊕u`

′
j,1 then R

sets Ψ = {(x̃(i)j,0, x̃
(i)
j,1)}j∈J,i∈[m].

If for every j 6∈ J it holds that hj = H(φ̃j) then R sets Φ = {φ̃j}j 6∈J .

If (|J | > 0 and Ψ = ∅) or (|J | < n and Φ = ∅), then set J = Ψ = Φ = ∅.
Reveal phase: R sends (J, Ψ, Φ) to S. S aborts if these values are inconsistent
with its inputs and check values.

Fig. 6. Protocol πbat,sin
ccot realizing batch single-choice CCOT.
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We describe a protocol for Fbat,sin
ccot in the FOT-hybrid model that makes use

of an arbitrary XOR-tree encoding scheme in Figure 6. The protocol itself is
a straightforward extension combining ideas from protocols in Figures 4 and 5
while abstracting away the underlying encoding scheme. We now prove that
the protocol πbat,sin

ccot described in Figure 6 realizes batch single-choice CCOT
with sender-simulatability and receiver-privacy. We start by observing that cor-
rectness follows from correctness properties of the XOR-tree encoding schemes
(specifically, Property 3).
Simulating corrupt receiver. The simulation is quite similar to the simulation
of single-choice CCOT construction presented in Figure 5. Obviously the main
difference now is that we need to deal with encodings over R’s entire input.
We proceed to the formal simulation. Assume that H is modeled as a (non-
programmable) random oracle. S first receives public randomness ω0 for the
XOR-tree encoding scheme (En,De,En′,De′). Acting as FOT the simulator does
the following:

Samples for each j ∈ [n], uniform {(x̂(i)j,0, x̂
(i)
j,1)}i∈[m], uniformly random ωj

and computes {(u`j,0, u`j,1)}`∈[m′] ← Enω0
({(x̂(i)j,0, x̂

(i)
j,1)}i∈[m];ωj).

Chooses random {(K`,0,K`,1)}`∈[m′], {u`j,2}j∈[n],`∈[m′].

For each ` ∈ [m′], acting as FOT obtain values b′`, return key K`,b′`
, and set

e`j,b′`
= Enc(K`,b′`

, u`j,2), e`j,1−b′`
= Enc(K`,1−b′` ,0). Compute (b1, . . . , bm) =

De′({b′`}`∈[m′]).

For each j ∈ [n], ` ∈ [m′], acting as FOT obtain values {c`j,0, c`j,1} and return

answers using values u`j,0, u
`
j,1, e

`
j,b′`

, e`j,1−b′`
(computed as above) exactly as

in the protocol.

Initialize J = ∅. For each j ∈ [n]: If there exists ` ∈ [m′] such that c`j,0 =

c`j,1 = 0, then add j to J .

Initialize flag = 0. For each j 6∈ J : If there exists ` ∈ [m′] such that either
c`j,b′`

= 0 or c`j,1−b′`
= 1 do not hold, then add j to J and set flag = 1.

Send (J, {bi}i∈[m]) to the trusted party and receive back

{(x(i)j,0, x
(i)
j,1)}i∈[m],j∈J and {x(i)j,bi}i∈[m],j 6∈J .

For each j ∈ J , do: (1) for each i ∈ [m], set ∆̂
(i)
j,0 = x̂

(i)
j,0⊕x

(i)
j,0 and ∆̂

(i)
j,1 =

x̂
(i)
j,1⊕x

(i)
j,1, and (2) pick random ∆′j,φ and random h′j ← {0, 1}λ.

For each j 6∈ J , do: (1) for each i ∈ [m]: set ∆̂
(i)
j,bi

= x̂
(i)
j,bi
⊕x(i)j,bi and

pick random ∆̂
(i)
j,1−bi , and (2) pick random ∆′j,φ ← {0, 1}λ, and set h′j =

H(∆′j,φ⊕
⊕

`u
`
j,2).

For each j ∈ [n]: send {∆̂(i)
j,0, ∆̂

(i)
j,1}i∈[m], ∆

′
j,φ, h

′
j to R.

In the reveal phase, if flag = 1 or if R sends (J ′, Ψ ′, Φ′) such that J ′ 6= J
or the values Ψ ′, Φ′ are not consistent with the values above, then abort the
reveal phase. Else, send “reveal” to the trusted party.

We show that the simulation is indistinguishable from the real execution. First,
note that if for some j ∈ [n], ` ∈ [m′], it holds that c`j,0 = c`j,1 = 0, then R
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receives both u`j,0 and u`j,1, but does not obtain u`j,2. In this case, it is safe to

presume that R will end up knowing both x
(i)
j,0 as well as x

(i)
j,1 but R definitely

misses an additive share of (and consequently has no information about) φj .

Therefore, S includes j in J and obtains both x
(i)
j,0, x

(i)
j,1 from the trusted party.

This allows S to carry out a correct simulation irrespective of whether or not R

obtained both x
(i)
j,0 and x

(i)
j,1.

Next, suppose that for some j ∈ [n] such that for no ` ∈ [m′] it holds that
c`j,0 = c`j,1 = 0, and yet there exists some ` ∈ [m′] such that either c`j,b′`

= 0 or

c`j,1−b′`
= 1 does not hold. In this case, we claim that R will not be able to pro-

duce both x
(i)
j,0, x

(i)
j,1 in the real execution. This follows from the properties of the

XOR-tree encoding schemes and the fact that R misses one of u`j,0, u
`
j,1. Further,

it can be shown that except with negligible probability R cannot produce φj
either. This is because (1) R does not obtain e`j,b′`

, and (2) R has no information

about the plaintext encrypted as e`j,1−b′`
, and (3) hj = H(φj) does not reveal

any information about φj with statistically negligible probability (i.e., unless H
is queried on φj). Point (2) mentioned above trivially holds in the simulation
because e`j,1−b′`

encrypts 0 instead of u`j,2. On the other hand, in the real exe-

cution, observe that R does not possess the key K`,1−b′` . It then follows from
a straightforward reduction to the semantic security of the encryption scheme
that the real execution is indistinguishable from the simulation. In particular, in
this case R will not be able to produce (J ′, Ψ ′, Φ′) that will be accepted by S in
the real execution, and is equivalent to S sending abort in the ideal execution.

Finally, suppose that for every j ∈ [n], either (1) for all ` ∈ [m′] it holds that
c`j,0 = c`j,1 = 0, or (2) for all ` ∈ [m′] it holds that c`j,b′`

= 0 and c`j,1−b′`
= 1. This

indeed corresponds to honest behavior on the part of R. Specifically, in case (1),
we have j ∈ J , and in case (2), we have j 6∈ J . This is exactly how the simulator
constructs J . It remains to be shown that in this case, any reveal (J ′, Ψ ′, Φ′)
such that J ′ 6= J or Ψ ′, Φ′ is not consistent with the simulation will be rejected
by S in the real execution. This follows from: (a) Any j ∈ J cannot be claimed
by R to not be in the checkset. This is because in this case, R does not have any
information about φj (other than H(φj) which leaks no information unless H is
queried on φj). (b) Any j 6∈ J cannot be claimed by R to be in the checkset. This
is because in this case, R obtains exactly one of {u`j,0, u`j,1} for every ` ∈ [m′]
and thus by Property 7 of XOR-tree encoding schemes, is able to reconstruct at

most one of {x(i)j,0, x
(i)
j,1}.

Privacy against corrupt sender. The proof of privacy against corrupt sender
is very similar to the corresponding proof for (the basic) CCOT. Specifically, note
that except in the reveal phase, information flows only from S to R. Next note
that if S is honest, then the reveals made by R in the reveal phase do not leak
any information about R’s input b1, . . . , bm. (Recall J is revealed to S in the real
as well as the ideal execution.) It remains to be shown that even a corrupt S does
not learn any information about b1, . . . , bm. Clearly for j ∈ J , R’s actions are
independent of its inputs b1, . . . , bm and thus does not leak any information. On
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the other hand for j 6∈ J , observe that R does not reveal any information about

{x̃(i)j,bi}i∈[m] (i.e., in the reveal phase), and thus the only information learnt by S
is whether Ψ = Φ = ∅ or not. This translates to learning information about R’s
inputs b1, . . . , bm only if for some (possibly many) j ∈ [n], ` ∈ [σ], S provided
(u`j,0, u

`
j,2) in one instance of FOT and (u`j,1, û

`
j,2) in the other instance with

u`j,2 6= û`j,2. This is because such a strategy would allow S to learn whether R

input c`j,0 = 1 (in which case R does not abort) or c`j,1 = 1 (in which case R does
abort), and consequently leak information about b′` (i.e., depending on which of
c`j,0, c

`
j,1 was 0 when j 6∈ J). More generally, such a strategy allows S to learn

any disjunctive predicate of R’s selections {c`j,0, c`j,1}`.
To prove that such a strategy does not help S we make use of Property 6 of

XOR-tree encoding schemes. Thus we have that if S supplied inconsistent values
(i.e., u`2, û

`
2) in at most (σ− 1) instances, then S does not learn any information

about b1, . . . , bm in the reveal phase. Further, even if S supplied inconsistent
values in all instances, then with all but negligible probability (exponentially
negligible in σ) R will abort in the reveal phase (irrespective of R’s true input
b1, . . . , bm). This concludes the proof of privacy against corrupt sender.

It is easy to see that our construction of batch single-choice CCOT described
above is also a realization of modified batch single-choice CCOT.

Multistage CCOT. Note that now R has several evaluation sets E1, . . . , Et
(corresponding to t executions). To realize F+

mcot, we will rely on the protocol

πbat,sin
ccot designed for realizing Fbat,sin

ccot presented previously. Indeed as in the pro-

tocol designed in [10] we will run πbat,sin
ccot t times to obtain a protocol for F+

mcot.
Our protocol for F+

mcot is described in Figure 7. Unlike protocols for other vari-
ants of CCOT, here we improve over prior work by using the reactive function-
ality relaxation (as opposed to receiver-privacy relaxation) to obtain a simpler
protocol secure against corrupt receiver. Prior work [10] required an overhead of
t2 while our protocol requires only a factor t overhead. We prove that the proto-
col in Figure 7 securely realizes multistage CCOT with sender-simulatability and
receiver-privacy. We start by observing that correctness follows from correctness
of each instance of πbat,sin

ccot .

Simulating corrupt receiver. Using the simulator of πbat,sin
ccot , the simulator

S first extracts for all k ∈ [t], the check sets [n] \ E′k and the selection bits
bk,1, . . . , bk,m. Note that a malicious R may supply sets E′1, . . . , E

′
t that may

overlap. The simulation extraction for F?mcot first initializes each of E1, . . . , Et
to ∅, flag to 0 (flag = 1 indicates whether S will choose to abort in the reveal
phase), and proceeds as follows

– For every j ∈ [n] such that there exists unique α ∈ [t] such that j ∈ E′α,
then add j to Eα.

– For every j ∈ [n] such that there exists α, β ∈ [t] such that j ∈ E′α ∩ E′β ,
then add j to J and set flag = 1.

It is easy to see that E1, . . . , Et are disjoint sets. The simulator then sends
E1, . . . , Et (as obtained above), and the values {bk,i}k∈[t],i∈[m] (as obtained from
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the t invocations of the simulator of πbat,sin
ccot ) to the ideal functionality F+

mcot.
Then upon receiving R’s output from F+

mcot, S additively secret shares each val-
ues in R’s output to obtain t additive shares of each value, and then feeds the
k-th share of each value to the k-th copy of the invoked simulator for πbat,sin

ccot .

Then the simulator uses the k-th copy of the invoked simulator for πbat,sin
ccot to

complete the simulation of each of the t parallel instances of πbat,sin
ccot . Then in the

reveal phase, the simulator sends abort to F+
mcot if flag = 1. On the other hand

if flag = 0, then the simulator receives (E′′1 , . . . , E
′′
t , Ψ, Φ) from R. If E′′1 , . . . , E

′′
t

are pairwise nonintersecting, and further for every k ∈ [t] it holds that Ek = E′′k ,
then S sends reveal to F+

mcot, else sends abort. This completes the description
of the simulation. To see why the above simulation works, first note that each
of the t copies of the invoked simulator for πbat,sin

ccot (each of which independently

guarantee correct simulation of a single instance of πbat,sin
ccot ) are run on random

(t − 1)-wise independent values. Since S generates these (t − 1)-wise indepen-
dent values correctly using the output received from F+

mcot, it follows that the t

copies of the invoked simulator for πbat,sin
ccot taken together also guarantee correct

simulation of the protocol realizing F+
mcot. In particular, at the end of the output

phase, the view of the adversary in real protocol is indistinguishable from that in
the simulation. It then remains to be shown that (except with statistically negli-
gible probability) a corrupt R will not be able to reveal (E′′1 , . . . , E

′′
t , Ψ, Φ) that is

accepted by the sender in the real protocol and yet (E′′1 , . . . , E
′′
t ) 6= (E1, . . . , Et),

where E1, . . . , Et are the sets constructed by S as described above. This follows
from observing that for every j ∈ [n]:

If j ∈ E′α for some unique α ∈ [t], then R does not have any information

about φβj for any β 6= α. Thus, it can successfully reveal (E′′1 , . . . , E
′′
t ) with

j ∈ E′′β for β 6= α only with probability negligible in σ. More precisely in
this case R will not be able to provide Φβ consistent with (E′′1 , . . . , E

′′
t ).

That is if j ∈ E′α for some unique α ∈ [t], then for every reveal (E′′1 , . . . , E
′′
t )

that is accepted by the sender it must hold that j ∈ E′′α. Stated differently,
if for every j ∈ [n], there exists unique α ∈ [t] such that j ∈ E′α, then R
can successfully reveal (E′′1 , . . . , E

′′
t ) only for (E′′1 , . . . , E

′′
t ) = (E′1, . . . , E

′
t).

Recall that in this case, the simulator S set flag = 0 and thus will reveal
(E1, . . . , Et) = (E′1, . . . , E

′
t) in the reveal phase. Therefore, in this case it

holds that the real protocol is indistinguishable from the ideal simulation.

If j ∈ E′α ∩ E′β for α 6= β, then one of x
(i,β)
j,0 , x

(i,β)
j,1 (alternatively one of

x
(i,α)
j,0 , x

(i,α)
j,1 ) is information-theoretically hidden from R. Thus, it can suc-

cessfully reveal (E′′1 , . . . , E
′′
t ) with j ∈ E′′β (resp. j ∈ E′′α) only if it guesses

the missing value, i.e., with probability negligible in λ. More precisely in this
case R will not be able to provide Ψβ (resp. Ψα) consistent with (E′′1 , . . . , E

′′
t ).

In other words, if j ∈ E′α ∩E′β for α 6= β, then for every reveal (E′′1 , . . . , E
′′
t )

that is accepted by the sender it must hold that j 6∈ ∪kE′′k . Indeed, it can be
observed that any reveal by R will be rejected by S. In particular, R cannot
reveal j 6∈ ∪kE′′k either, since in this case it will be required to produce both

x
(i,k)
j,0 , x

(i,k)
j,1 for every k ∈ [t]. As pointed out earlier, R cannot do this except
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with negligible probability for k ∈ {α, β}. Recall that in this case, the sim-
ulator S set flag = 1 and thus will abort in the reveal phase. Therefore, in
this case it holds that the real protocol is indistinguishable from the ideal
simulation.

Privacy against corrupt sender. First observe that in the output phase of
each instance of πbat,sin

ccot information flows only from the sender to the receiver
during the output phase. Thus privacy at the end of the output phase trivially
holds, and in particular S has no information about the sets E1, . . . , Et. It re-
mains to be shown that the information revealed by R to S in the reveal phase
does not leak any information about R’s input bits b1, . . . ,bt. For simplicity, first
consider the case when S is honest. In this case, observe that in a given instance
of πbat,sin

ccot , say the k-th instance, R’s reveal message depends on input bk and
is independent of {bα}α6=k. Privacy then follows from the privacy guaranteed

by (each instance of) πbat,sin
ccot . On the other hand, when S is corrupt, R’s reveal

message in the k-th instance of πbat,sin
ccot depends on its input bk and whether S’s

cheating attempt (if any) was detected in any instance. Privacy follows from the

fact that each instance of πbat,sin
ccot preserves privacy of R’s inputs.

Inputs: S holds X(1), . . . , X(m) where X(i) = (x
(i)
1,0, x

(i)
1,1), . . . , (x

(i)
n,0, x

(i)
n,1). R holds

pairwise non-intersecting sets of indices E1, . . . , Et ⊆ [n] and selection bits b1 =
(b1,1, . . . , b1,m), . . . ,bt = (bt,1, . . . , bt,m).
Protocol:

1. S performs a t-out-of-t additive sharing of each x
(i)
j,b value. Denote the shares

of x
(i)
j,b by {x(i,k)j,b }k∈[t].

2. S and R participate in t parallel instances of protocol πbat,sin
ccot in the following

way: In the k-th instance:

S inputs X(1,k), . . . , X(m,k) where X(i,k) =
(x

(i,k)
1,0 , x

(i,k)
1,1 ), . . . , (x

(i,k)
n,0 , x

(i,k)
n,1 ) and internally uses “check values”

φk1 , . . . , φ
k
n.

R inputs [n] \Ek as the check set, along with selection bits bk,1, . . . , bk,m.

At the end of the output phase, R receives the following:

For each j ∈ [n] \ Ek the values {(x̃(i,k)j,0 , x̃
(i,k)
j,1 )}i∈[m] and “checkset

value” Ψk.

For each j ∈ Ek the values {x̃(i,k)j,bk,i
}i∈[m] and “check value” Φk.

3. R sets J = (E1, . . . , Et), Ψ = ∅, Φ = ∅, and does the following:

If there exists k ∈ [t] such that Ek 6= ∅ but Ψk = Φk = ∅ holds, then set
J = Ψ = Φ = ∅.
Else, set Ψ = {Ψk}k∈[t] and Φ = {Φk}k∈[t].

4. ∀k ∈ [t], ∀j ∈ Ek, ∀i ∈ [m], R reconstructs x
(i)
j,bk,i

=
⊕

`∈[t]x
(i,`)
j,bk,i

.

5. ∀j ∈ [n] \ ∪kEk, ∀i ∈ [m], ∀b ∈ {0, 1}, R reconstructs x
(i)
j,b =

⊕
`∈[t]x

(i,`)
j,b .

Reveal phase: R sends (J, Ψ, Φ) to S. S aborts if these values are not consistent
with its input/check values.

Fig. 7. Realizing F+
mcot in the FOT-hybrid model.
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Additional optimizations. Instead of sending the values Ψ = {x̃j,0, x̃j,1}j∈J
and Φ = {φ̃j}j 6∈J , R could send (J,H ′(Ψ), H ′′(Φ)) to S, where H ′, H ′′ are mod-
eled as collision-resistant hash functions (alternatively, random oracles). Note
that these optimizations are applicable in a straightforward way in other con-
structions we present. We omit detailing them to keep the exposition more clear.

In applications to secure computation, full receiver simulation in CCOT is
also not required. We require only privacy, i.e., we do not need to consider the
joint distribution of receiver’s view and sender’s inputs. This is because sender’s
inputs are just random keys for the garbled circuits, and in the simulation of
the 2PC protocol, it is the simulator that will generate these keys. On the other
hand, extracting receiver inputs is very crucial in order to enable the simulator
to generate correctly faked garbled circuits. However our definitions will require
full receiver simulation (including extraction). Fortunately, achieving full receiver
simulation comes only with a small multiplicative overhead.
Summary of efficiency. All our protocols are presented in the FOT-hybrid
model and thus can take advantage of OT extension techniques. Further, us-
ing standard leveraging techniques (such as ones used in [9]), OT extension
of [14], the XOR-tree encoding scheme of [13], and the constructions in Fig-

ures 4, 5, 6, and 7, one can obtain a rate-1/6 construction for Fbat,sin
ccot (in the

non-programmable RO model) with sender-simulatability and receiver-privacy as
in Definition 4. In concrete terms, it is easy to verify that the additional overhead
of realizing Fbat,sin

ccot is ≤ 6 ·max(4m, 8σ). The efficiency of our CCOT protocol in
the single execution setting is comparable to that of XOR-tree encodings of [23],
but is clearly better than DDH-based CCOT [24, 22] since we take advantage of
OT extension (under the assumption that correlation-robust hash functions ex-
ist [12, 14, 29]). Finally, we can realize F+

mcot (in the non-programmable random
oracle model) with sender-simulatability and receiver-privacy as in Definition 4

while bearing an overhead at most t over the cost of realizing Fbat,sin
ccot where t

denotes the number of executions.
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