On the Complexity of UC Commitments*

Juan A. Garay' Yuval Ishait 8 Ranjit Kumaresan? Hoeteck Weell

May 14, 2014

Abstract

Motivated by applications to secure multiparty computation, we study the complexity of realizing
universally composable (UC) commitments. Several recent works obtain practical UC commitment
protocols in the common reference string (CRS) model under the DDH assumption. These protocols
have two main disadvantages. First, even when applied to long messages, they can only achieve a small
constant rate (namely, the communication complexity is larger than the length of the message by a large
constant factor). Second, they require computationally expensive public-key operations for each block
of each message being committed.

Our main positive result is a UC commitment protocol that simultaneously avoids both of these limi-
tations. It achieves an optimal rate of 1 (strictly speaking, 1 — o(1)) by making only few calls to an ideal
oblivious transfer (OT) oracle and additionally making a black-box use of a (computationally inexpen-
sive) PRG. By plugging in known efficient protocols for UC-secure OT, we get rate-1, computationally
efficient UC commitment protocols under a variety of setup assumptions (including the CRS model)
and under a variety of standard cryptographic assumptions (including DDH). We are not aware of any
previous UC commitment protocols that achieve an optimal asymptotic rate.

A corollary of our technique is a rate-1 construction for UC commitment length extension, that is,
a UC commitment protocol for a long message using a single ideal commitment for a short message.
The extension protocol additionally requires the use of a semi-honest (stand-alone) OT protocol. This
raises a natural question: can we achieve UC commitment length extension while using only inexpensive
PRG operations as is the case for stand-alone commitments and UC OT? We answer this question in the
negative, showing that the existence of a semi-honest OT protocol is necessary (and sufficient) for UC
commitment length extension. This shows, quite surprisingly, that UC commitments are qualitatively
different from both stand-alone commitments and UC OT.

Keywords: Universal composability, UC commitments, oblivious transfer.

1 Introduction

A commitment scheme is a digital analogue of a locked box. It enables one party, called the committer, to
transfer a value to another party, called the receiver, while keeping it hidden, and later reveal it while guar-

*Research received funding from the European Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement
no. 259426 ERC-CaC.

"Yahoo Labs. Email: garay@yahoo-inc.com

Department of Computer Science, Technion. Email: {yuvali, ranjit}@cs.technion.ac.il

$Supported in part by ISF grant 1361/10 and BSF grant 2012378.

YENS, Paris, France. Email: wee@di.ens.fr

ICNRS (UMR 8548) and INRIA. Part of this work was done at George Washington University, supported by NSF Award
CNS-1237429.

anteeing to the receiver its originality. Commitment schemes are a fundamental building block for crypto-
graphic protocols withstanding active adversarial attacks. As such, efficient implementations of the latter—
particularly in realistic complex environments where they are to execute—crucially hinge on them. Such
complex environments are today epitomized by the universal composability (UC) framework [6], which al-
lows for a protocol to run concurrently and asynchronously with arbitrarily many others, while guaranteeing
its security.

The first constructions of UC commitments were given by Canetti ef al. [7, 8] as a feasibility result.
(It was also shown in [7] that it is impossible to construct UC commitments in the plain model, and that
some setup such as a common reference string (CRS) is required.) Since then, and motivated by the above,
a series of improvements (e.g., [14, 13, 28, 19, 33, 4, 1, 25]) culminated in constructions achieving under
various cryptographic assumptions constant communication rate and practical computational complexity,
making it possible to commit to, say, L group elements by sending O(L) group elements and performing
O(L) public-key operations (e.g., exponentiations).

Shortcomings—as well as ample room for improvement, however, remain, as the constant rate currently
achieved is small and the computational cost per committed bit is high. This is the case even when com-
mitting to long messages and even when ignoring the cost of offline interaction that does not depend on
the committed message. More concretely, the communication complexity is bigger than the length of the
message by a large constant factor, and the online computation includes a large number of computationally
expensive public-key operations for each block of the message being committed.! This is not satisfactory
when considering concrete applications where UC commitments are used, such as UC secure computation
and UC zero-knowledge. (See [4, 28, 1] for additional motivation on these applications.)

1.1 Our results

We obtain both positive and negative results on the complexity of UC commitments. Our main positive
result is a UC commitment protocol which simultaneously overcomes both of these limitations. Specifically,
it achieves an optimal rate of 1 (strictly speaking, 1 — o(1)) by making only few calls to an ideal oblivious
transfer (OT) oracle and additionally making a black-box use of a (computationally inexpensive) PRG. By
plugging in known efficient protocols for UC-secure OT (e.g., [34]), we get rate-1, computationally efficient
UC commitment protocols under a variety of setup assumptions (including the CRS model) and under a
variety of standard cryptographic assumptions (including DDH). We are not aware of any previous UC
commitment protocols which achieve an optimal asymptotic rate.

Basic construction. Our main idea is to use a simple code-based generalization of the standard construc-
tion of commitment from §-Rabin-string-OTs [11, 26, 24, 18]. The key observation is that the use of a rate-1
encoding scheme with a judicious choice of parameters yields a rate-1 construction of UC commitments. In
a bit more detail, we will identity the message space {0, 1}5 with ", and encode the message as a code-
word in F?(1+9) using the multi-secret sharing scheme in [17]. The codeword is then transmitted to the
receiver using n(1 + 0) calls to a 6-Rabin-OT functionality, which can be in turn realized from a standard
OT functionality. The sender would send in total roughly

A+ +n(l+06)-1/6-k

bits in the commit phase, where the first term comes from the encoding and the second term is the additive
overhead incurred by simulating a 6-Rabin-OT functionality using a standard OT functionality and a PRG

"Recent constructions [28, 4] that work over standard DDH groups require at least 10 group elements and at least 20 public
key operations per commitment instance. A very recent work by [25] (improving over [16]) requires 5 group elements in a bilinear
group (assuming SXDH).

with security parameter . Settingn = 1/§ = (/3 yields a commitment scheme where the sender sends
¢+ o(?) bits and performs o(¢) public-key operations for a single commitment to a ¢-bit string.

Efficiency improvements. Next, we show how to further reduce the computational complexity of the
basic construction by using OT extension [2, 23, 24]. Our improvement ideally suits the setting where we
need to perform a large number of commitments in a single parallel commit phase (with potentially several
reveal phases), as with applications involving cut-and-choose. In particular, we show that the number of
calls to the OT oracle can be made independent of the number of instances of UC commitments required.
(Note that such a result does not follow from multiple applications of the basic construction.) We stress
that when handling a large number of commitment instances (say, in garbled circuit applications of cut-and-
choose), the number of public-key operations plays a significant role (perhaps more than the communication)
in determining efficiency. While current state-of-the-art UC commitment protocols [28, 4] suffer from the
need to perform many computationally expensive public-key operations, our result above enables us to
obtain better computational as well as overall efficiency.

UC commitment length extension. Another corollary of our technique is a rate-1 construction for UC
commitment length extension, that is, a UC commitment protocol for a long message using a single ideal
commitment for a short message. The extension protocol additionally requires the use of a semi-honest
(stand-alone) OT protocol. This raises a natural question of whether we can achieve UC commitment length
extension while using only inexpensive PRG operations as is the case for stand-alone commitments and
UC OT. We answer this question in the negative, showing that the existence of a semi-honest OT protocol
is necessary (and sufficient) for UC commitment length extension. This shows that UC commitments are
qualitatively different from both stand-alone commitments and UC OT, which can be extended using any
PRG [2], and are similar to adaptively-secure OT whose extension requires the existence of (non-adaptively
secure) oblivious transfer [29].

Open questions. We note that our constructions are only secure against a static (non-adaptive) adversary;
we leave the extension to adaptive security for future work. Another open question is to obtain a UC
commitment scheme where the sender sends ¢ + poly(k) bits to commit to a ¢-bit string, as is the case for
both stand-alone commitment and UC OT.

1.2 Related work

We already mentioned above the series of results leading to constant-rate UC-commitments. Here we give a
brief overview. Canetti et al. [7, 8] were the first to construct (inefficient) UC commitments in the CRS model
from general assumptions, and also achieve adaptive security. Shortly thereafter, Damgard and Nielsen [14]
presented UC commitments with O(1) exponentiations for committing to a single group element. Their
construction is based on N-residuosity and p-subgroup assumptions, and is also adaptively secure (without
erasures), but requires a CRS that grows linearly with the number of parties. A construction of Damgard
and Groth [13], also adaptively secure without erasures and based on the strong RSA assumption, requires
a fixed-length CRS.

An important improvement in concrete efficiency was presented recently by Lindell [28]; this is achieved
for static corruptions based on the DDH assumption in the CRS model. Blazy ef al. [4] build on Lindell’s
scheme to achieve adaptive security (assuming erasures); they also obtain improvements in concrete ef-
ficiency. Fischlin et al. [16] also build on Lindell’s scheme and present a non-interactive scheme using
Groth-Sahai proofs [21]. Furthermore, they also provide an adaptively secure variant (with erasures) based

on the DLIN assumption on symmetric bilinear groups. As mentioned above, none of these works achieve
rate 1. We provide a concrete analysis of our protocol, with a comparison to [28, 4] in Section 3.3.

A code-based construction of UC commitments from OT was recently used by Frederiksen et al. [18] as
part of an efficient protocol for secure two-party computation. While this construction uses a similar high
level technique as our basic construction, its suggested instantiation in [18] only achieves a small constant
rate.

Our work also considers the extension of UC commitments. We mainly focus on the goal of length
extension, namely using an ideal commitment to a short string for implementing a UC commitment to a
long string. For standalone commitments, such a length extension is easy to implement using any PRG.
This is done similarly to the standard use of a PRG for implementing a hybrid encryption scheme. It
was previously shown by Kraschewski [27] that this simple extension technique does not apply to UC
commitments. We strengthen this negative result to show that any extension protocol for UC commitments
implies oblivious transfer. Similar negative results for adaptively secure OT extension were obtained by
Lindell and Zarosim [29], and for reductions between finite functionalities by Maji et al. [30]. Negative
results for statistical UC coin-tossing extension were obtained by Hofheinz et al. [22].

In an independent work, Damgard et al. [12] also construct UC commitments using OT, PRG, and
secret sharing as the main ingredients. While the basic approach is closely related to ours, the concrete
constructions are somewhat different, leading to incomparable results. In particular, a major goal in [12]
is to optimize the asymptotic computational complexity as a function of the security parameter, achieving
in one variant constant (amortized) computational overhead for the receiver. Moreover, they achieve both
additive and multiplicative properties for UC commitments, which are not considered in our work.

Organization of the paper. The rest of the paper is organized as follows. Model, definitions, and basic
functionalities are presented in Section 2. Our main construction—rate-1 UC commitment from OT—is
presented in Section 3, together with the case of multiple commitment instances and a concrete efficiency
analysis. Finally, the treatment of UC commitment extension—rate-1 construction and necessity of OT—is
presented in Section 4. Due to space limitations, only proof sketches are presented in the main body; full
proofs as well as complementary material can be found in the appendix.

2 Model and Definitions

In this section we introduce some notation and definitions that will be used throughout the paper. We
denote the computational security parameter by x, and the statistical security parameter by o. A function
w is negligible if for every polynomial p there exists an integer N such that for every n > N it holds that
n(n) < 1/p(n).

In this paper we will be concerned with efficient universally composable (UC) [6] realizations of func-
tionalities such as commitments. We include a succint description of the UC basics in Appendix A. As-
suming already some familiarity with the framework, we note that it is possible to consider variants of the
definition of UC security in which the order of quantifiers is “V.A3SVZ”. Contrast this with our definition
(and also the definition in [28]) in which the order of quantifiers is “ISVZV.A”. Both definitions are equiva-
lent as long as S, in the former definition makes only a blackbox use of A [6]. Indeed, this will be the case in
our constructions. Therefore, as in [28], we demonstrate a single simulator S that works for all adversaries
and environments, and makes only a blackbox use of the adversary. (In this case, one may also denote the
ideal process by IDEAL r g4 z.)

We will sometimes explicitly describe the functionalities we realize. For instance, if a functionality F
accepts inputs only of a certain length ¢, then we will use the notation F[¢] to denote this functionality. We
let cc(F) denote the communication cost, measured in bits, of realizing F in the plain model.

4

Functionality Fyicom

Fumcom with session identifier sid proceeds as follows, running with parties Py, ..., P,, a parameter 1, and an
adversary S:

e Commit phase: Upon receiving a message (commit, sid, ssid, s, 7, m) from P, where m € {0, 1}, record
the tuple (ssid, s,7,m) and send the message (receipt, sid, ssid, s,r) to P, and S. (The length of the
strings £ is fixed and known to all parties.) Ignore any future commit messages with the same ssid from
P, to P,.

e Decommit phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a tuple (ssid, s,r,m) was
previously recorded, then send the message (reveal, sid, ssid, s,r7,m) to P, and S. Otherwise, ignore.

Figure 1: Functionality Fyicon for multiple commitments.

Functionality FJ

F&r with session identifier sid proceeds as follows, running with parties P, ..., P,, a parameter 1%, and an
adversary S:

e Upon receiving a message (sender, sid, ssid, s,r,x1,...,zy) from P;, where each z; € {0, 1}, record
the tuple (sid, ssid, s,r,x1,...,zN). (The length of the strings is fixed and known to all parties.) Ignore
any future sender messages with the same sid, ssid pair from Ps to P,.

e Upon receiving a message (receiver, sid, ssid, s,r,q) from P,, where ¢ € [N}, send (sid, ssid, s,r,x4)
to P, and (sid, ssid, s,r) to Ps, and halt. (If no (sender, sid, ssid, s, r,...) message was previously sent,
then send nothing to P;.)

Figure 2: Functionality]-"(])VT for 1-out-of-V oblivious transfer. We omit superscript N when N = 2.

The multi-commitment ideal functionality Fycon, Which is the functionality that we UC realize in
this work, is given in Figure 1. As mentioned above, Fnicom[¢] will explicitly denote that the functionality
accepts inputs of length exactly £. We will be giving our constructions in the OT-hybrid model. The oblivious
transfer functionality]-"évT, capturing 1-out-of-N OT for N € Z, is described in Figure 2. When N = 2, this
is the standard 1-out-of-2 string-OT functionality, denoted by For1. The §-Rabin-string-OT functionality,
denoted ngR, is described in Figure 3.

3 Rate-1 UC Commitments from OT

A recent line of work has focused on the practical efficiency of UC commitment in the CRS model [28, 4,
1, 19, 33]. In these works, a x-bit string commitment is implemented by sending O(1) group elements and
computing O(1) exponentiations in a DDH group of size 20(%) | We start this section by presenting a r-bit
UC-secure string commitment protocol in the Fo-hybrid model where the total communication complexity
of each phase (including communication with the OT oracle) is (1 + o(1)). The above implies that if OT
exists (in the plain model), then there is a UC-secure protocol for an N-bit string commitment in the CRS
model which uses only N + o(N) bits of communication.

Thus, our construction improves over previous protocols which achieve constant rate, but not rate 1.
Using, for example, the DDH-based OT protocol of [34], we can get a rate-1 UC-commitment protocol in

Functionality 7,y

]:gTR with session identifier sid proceeds as follows, running with parties P, ..., P,, parameters 1” and a real
number §, 0 < é < 1, and an adversary S:

e Upon receiving a message (sender, sid, ssid, s,r,z) from Ps;, where x € {0, 1}5, record the tuple
(sid, ssid, s,r,x). (The length of the strings ¢ is fixed and known to all parties.)

e Upon receiving a message (receiver, sid, ssid, s,r) from P,, set y = x with probability ¢, and y = L
with probability 1 — §. Send (sid, ssid, s,r,y) to P, and (sid, ssid,s,r) to P,, and halt. (If no
(sender, sid, ssid, s, r, ...) message was previously sent, then send nothing to P,.)

Figure 3: Functionality]—'gTR for Rabin-OT with noise rate 4.

the CRS model which is quite efficient in practice; alternatively, if we wish to obtain a construction in the
single global CRS model, we may instead start with the OT protocols given in [10, 1]. We then address the
setting where multiple UC commitments need to be realized, showing again a rate-1 construction where, in
particular, the number of calls to the OT oracle is independent of the number of UC commitments required.
We conclude the section with concrete efficiency analysis of our constructions.

On the “optimality” of our construction. We note that our construction achieves essentially “optimal”
rate. In any statistically binding commitment scheme as with our construction, the commit phase commu-
nication must be at least the message size. Moreover, any static UC secure commitment scheme must be
equivocable, since the simulator for an honest sender does not know the message during the commit phase,
and yet must be able to provide openings to any message. Therefore the communication in the decommit
phase must be at least the message size, via an argument similar to the lower bound on secret key size in
non-committing encryption [32].

3.1 Main construction

Our idea is to use a simple code-based generalization of the standard construction of commitment from
0-Rabin-string-OTs [11, 26, 24, 18]. Our key observation is that the use of a rate-1 encoding scheme with
a judicious choice of parameters yields a rate-1 construction of UC commitments. We start off with the
following reduction.

Rate-1 Rabin-OT from OT. We first show an efficient realization of Rabin-OT for a given § € (0, 1),
denoted]:gTR’ in the For-hybrid model, making black-box use of a PRG.

Lemma 1 (Rabin-OT from OT [5, 11, 26, 24]). Let G : {0,1}*¢—{0,1} be a secure PRG, and let

d € (0,1) such that 1/6 is an integer. Then, there exists a protocol which UC-realizes a single instance of

]:gTR [€] in the For [kprg|-hybrid model such that:

— The protocol has total communication complexity at most £ + (1/6) + 3kprg - 1/0 bits, including com-
munication with For|Kprg)-

— The protocol makes at most 1/6 calls to the For|kprg] functionality and requires each party to make a
single invocation of G.

The protocol works by implementing ngR [¢] in the F{1[¢]-hybrid model for N = 1/§. Then FJ[/] is
realized in the For[Kprg]-hybrid model. The proof is presented in Appendix B.

6

Encoding scheme Enc

Parameters: n’, d, n such that n’ > d > n.

Input: m € {0, 1} for any £ > nlog(n + n’).

— Parsem € {0,1}* as (my,...,m,) € F* where F is such that log [F| = ¢/n.
— Letey,...,epand ay,. .., ay be (n + n') distinct elements in FF.

— Pick random polynomial p of degree d such that m; = p(e;) for all ¢ € [n].

— Output encoding m’ = (p(ev1), . .., play)) € B

Figure 4: A rate-1 encoding scheme based on the multi-secret sharing scheme of [17].

Rate-1 UC-commitments from Rabin-OT. The construction is presented in the following lemma. Fur-
ther construction and proof details can be found in Appendix C.

Lemma 2. Let o be a statistical security parameter, and let n be such that there exists € € (0, 1/2) satisfying

n'=2¢ = o), Then, for § = (2n° 4+ 4)~%, and any £ > nlog(2n + 2n'~°), there exists a protocol that

statistically UC realizes (cf. Definition 2) a single instance of Fnicom|[¢] in the ngR [¢/n]-hybrid model in

the presence of static adversaries such that:

— The protocol has communication complexity (1 + 2n~°) bits in each phase, including communication
with]:gTR [¢/n].

— The protocol makes n(1 + 2n~°) calls to the ngR [¢/n] functionality.

Proof. The protocol uses the randomized encoding scheme Enc described in Figure 4 with parameters n as
in the Lemma, and n/ = n+2n'~¢and d = n+n'~¢—1. Note that § = (d+1—n)/2n’. Scheme Enc takes
as input m € {0, 1}5 and parses them as n elements from a field IF and satisfies the following properties (see
Lemma 10):

— ithasrate 1 4+ 2n™¢;

— any (d+ 1 —n)/n’ = 2§ fraction of the symbols reveal no information about the encoded message?;

. L e def .. .
— any encodings of two distinct messages differ in A = n’ — d positions (and we can efficiently correct

A /2 errors);
The construction realizing Fycom|[¢] in the ‘F((S)TR, [¢/n]-hybrid model is described in Figure 5. We first
analyze the protocol’s complexity:

Communication. In the commit phase, the sender transmits the encoding, i.e., n(1 + 2n~¢) symbols of F
via]:gTR [¢/n]. Since log |F| = ¢/n, the communication complexity is (n + 2n'=¢) - £/n = (1 + 2n7°)
bits. In the reveal phase, the sender sends the encoding in the clear. It follows from the calculations above
that the communication complexity of this phase is also ¢(1 + 2n ™) bits.

Computation. In the commit phase, the sender makes n(1 + 2n™°) calls to]:gTR [¢/n].

We now turn to the proof of security. Note that § = O(n~¢) while A = O(n'~¢). Simulating when
no party is corrupted or both parties are corrupted is straightforward. We briefly sketch how we simulate a
corrupted sender and a corrupted receiver:

Corrupt sender. Here the simulator extracts the committed value by looking at the corrupted codeword c that
P; sends to the ideal OT functionality and compute the unique codeword c* that differs from c in at most
A /2 positions. In addition, the simulator reveals each symbol of c to the honest receiver with probability J.

2We actually require a slightly stronger property to achieve equivocation, namely, that we can efficiently extend a random partial
assignment to less than 24 fraction of the symbols to an encoding of any message.

Realizing Fricow in the O -hybrid model

Let Enc : F*—F" be a randomized encoding scheme as in Figure 4. (See also Appendix C.1.)

Commit Phase.

1. Upon receiving input (commit, sid, ssid, s, r, m) with £-bit input m, party Ps parses m as (mq,...,my,) €
F™. It then computes m' = (m}, ..., m},) < Enc(m).

2. Foreachj e [n]:

Ps sends (sender, sid, ssid o j, s,7,m’;) to ngR.

P, sends (receiver, sid, ssid o j, s,7) to ngR.
— P, and P, receive (sid, ssid o j,s,r) and (sid, ssid o j, s,T,y,) respectively from]—"gTR.
P keeps state (sid, ssid, s,r,m,m’).

4. P, keeps state (sid, ssid, s,7,{y;} je[n’]), and outputs (receipt, sid, ssid, s,7). Also, P, ignores any later
commitment messages with the same (sid, ssid) from Ps.

Opening Phase.
1. Upon input (reveal, sid, ssid, Ps, P,.), party Ps sends (sid, ssid, m’), where m’ € F"', to P.. Let P,
receive (sid, ssid,m’), where m' = (mf,...,m.,).

2. LetJdenotetheset {j : y; # L}. P. outputs L if any of the following checks fail:
— m/ is an (error-free) codeword;
— forall j € J, it holds that y; = m/.
If both conditions hold, P, decodes /' to obtain m, and outputs (reveal, sid, ssid, s,r, m).

Figure 5: A statistically UC-secure protocol for Fyicom in the ngR -hybrid model.

If c and c* agree on all the positions that are revealed, then the committed value is the message corresponding
to c*; else the committed value is L.
Next, suppose Ps sends a codeword ¢’ in the reveal phase. We consider two cases:
— if ¢’ and c differ in at most A /2 positions, then ¢ = ¢* and the simulator extracted the correct value;
— otherwise, the honest receiver accepts with probability at most (1 — §)A/ 2 which is negligible in o.

Corrupt receiver. In the commit phase, the simulator acts as the ideal OT functionality and for each symbol

of the encoding, decides with probability § whether to send (and, thereby fix) a random element of F as that

symbol to the receiver.
Next, the simulator receives the actual message m in the reveal phase. We consider two cases:

— Aslong as less than a 26 fraction of the symbols are transmitted in the simulated commit phase above,
the simulator can efficiently extend a random partial assignment implied by the transmitted symbols to
the encoding of m;

— otherwise, the simulation of the reveal phase fails with probability at most e~"'%/3 which is negligible
ino.

O]

Putting things together:

Theorem 3 (Rate-1 UC commitments from OT). Let x be a computational security parameter, and let
a € (0,1/2). Then, there is a protocol which UC-realizes a single instance of Fyicom k] using k% calls to
For|k?] and a black-box use of a PRG, where the total communication complexity of each phase (including
communication with For) is k(1 + o(1)).

Proof. We set £ = r and o = k. Then we pick n, ¢ € (0,1/2) such that n'*¢ = £%/10. Note that o, n, €, £
satisfy conditions of Lemma 2. Further, setting rpg = £%, also ensures that O(kpen! ™€) = o(k). The
security proof readily follows from composing the protocols given in the Lemmas 1 and 2. We just need to
analyze the complexity of the resulting protocol.

Communication. By Lemma 1, to implement n + 2n'~¢ calls to]:(5)TR [k/n], we need to communicate
(n +2n'=)((5/n) + O(Kprgn®)) = Kk + 26017 + O(kprgn ™€) bits in the For[kprg)-hybrid model. For
n, €, Kprg as set above, it follows that the communication cost of this phase is (1 + o(1)) bits in each phase.
Computation. By Lemma 1, to implement the required n + 2n!~¢ calls to ngR [£/n], we need to make

blackbox use of PRG, and additionally (n + 2n'=¢) - (1/6) = 2n!*¢ + 8n, i.e., at most x“ calls to the
For|x?*] functionality. O

3.2 Multiple commitment instances

Next, we show how to further reduce the computational complexity of the previous construction by using
OT extension [2, 23, 24]. Our improvement here extends to the setting where we need to perform a large
number of commitments in a single parallel commit phase (with potentially many reveal phases), as with
applications involving cut-and-choose. In particular, we show that the number of calls to FoT[kpre| can be
made independent of the number of instances of UC commitments required. (Note that such a result does
not follow from multiple applications of the protocol implied by Theorem 3.)

Theorem 4. Let k be a computational security parameter, and let o« € (0,1/2). For all ¢ > 0, there exists
a protocol which UC-realizes k€ instances of Farcom k] with rate 1 + o(1) that makes k* calls to For[K®]
and a blackbox use of correlation robust hash functions (alternatively, random oracle, or non-blackbox use
of one-way functions).

Proof. We repeat the protocol of Theorem 3 x€ times to construct ¢ instances of Fyicom|x] using k6T
calls to For[k®]. By Theorem 3, the communication cost of this construction is (1 + o(1)). We note that
for each instance of this protocol, the commit phase has o(x) communication in addition to the cost involved
in communicating with For[x?].

We then implement the required kT calls to For[x®] using the constant rate UC-secure OT exten-
sion protocol of [24] which makes blackbox use of correlation robust hash functions (alternatively, random
oracle, or non-blackbox use of one-way functions). This implementation requires k“ calls to the For[x?]
functionality, and has communication complexity O(k°t2%) = o(k°T1) bits for o € (0, 1/2). Therefore, the
total communication complexity of this protocol in each phase (including communication with the For[®]
functionality) is k(1 + o(1)) for ¢ > 1.

O

3.3 Concrete efficiency analysis

In this section, we provide an analysis of the concrete efficiency of our protocol, specifically requiring that
the statistical security loss be < 277 for statistical security parameter ¢, and the seedlength for PRG be 128.
This reflects the state-of-the-art choices for similar parameters in implementations of secure computation
protocols. In addition to the communication complexity, we will also be interested in the number of public
key operations. (In practice, public-key operations (e.g., modular exponentiation) are (at least) 3-4 orders of
magnitude slower than symmetric-key operations (e.g., AES).)

In the concrete instantiation of our UC commitment protocol in the CRS model, we will use (1) the
protocol of Nielsen et al. [31] for OT extension in the RO model since it has better concrete security (cost
~ 6 - 128 bits for each instance of 128-bit OT excluding the “seed” OTs) than the protocol of [24]), and

(2) the protocol of Peikert et al. [34] to realize “seed” OTs in the CRS model (with concrete cost per OT
instance equal to 5 modular exponentiations and 6 elements in a DDH group of size 256). Note that for
realizing 128 instances of FoT[128], the cost is 6 - 128 - 256 = 196608 bits and the number of modular
exponentiations is 5 - 128 = 640.> We stress that this cost is independent of parameters ¢, o, and number
of commitment instances. In the following we summarize the cost of our construction for some parameters.
Our costs are calculated by choosing concrete parameters for the encoding scheme Enc used in Lemma 2,
and then apply the transformation of Lemma 1, and finally realizing FoT using state-of-the-art protocols as
discussed above.

For long strings, say of length ¢ = 23°, and for & = 30, we can get concrete rate as low as 1.5~ ! in
each phase. However, the choice of parameters necessitate working over a field F with log |F| = 219, If we
work over relatively smaller fields [F with say log |F| = 512, then the rate of the encoding can be made 3.04
while keeping the total rate of the commit phase (including cost of realizing OTs + OT extension) 12.771.
Note, however, that there are standard techniques to reduce the communication cost of realizing OTs in our
setting. For instance, by replacing Rabin-OT with d-out-of-n’ OT (for d,n’ as in Figure 4), we may then
use standard OT length extension techniques. This however has the drawback that RS encodings need to be
performed over large fields, and further the number of public-key operations increases with the number of
commitment instances.

Consider the following alternative approach that ports our construction to work with smaller fields, and
yet get concrete rate close to 1. First, the sender parses the message m as a matrix where each element of
the matrix is now from the field of desired size. Next, the sender performs a row-wise encoding (using Enc)
of this matrix, and sends each column of the encoded matrix via]:((S)TR' Later in the reveal phase, the sender
simply transmits the encoded matrix. As noted earlier, the above approach lets us work over small fields,
and the concrete rate would be as good as the concrete rate for encoding each row.

Next, we discuss the cost of our basic construction when committing to short strings. For short strings,
say of length ¢ = 512 (resp. 256) and o = 20, while the rate of our reveal phase can be as low as 4.971
(resp. 8.1271), the rate of our commit phase can be very high (= 2000~!). While we concede that this
is not very impressive in terms of communication cost, we wish to stress that our constructions do offer a
significant computational advantage over the protocols of [28, 4] since we perform only a fixed number of
public key operations independent of the number of commitment instances. In Appendix E, we propose
efficient constructions to handle commitments over short strings in settings where a large number of such
short commitments are used, e.g., in cut-and-choose techniques.

Efficiency in the preprocessing model. Our protocols can be efficiently adapted to the preprocessing model [3,
31], and further, the online phase of our protocol can be made free of cryptographic operations. First, note
that any UC commitment protocol can be preprocessed, for example by committing to a random string in the
offline model, and sending the real input masked with this random string in the online commit phase. There-
fore, the online rate of the commit phase of the protocol in the preprocessing model can always be made 1.
Next, the online rate in the reveal phase of our protocol is exactly the rate of the underlying encoding. Note
that in the online reveal phase, we only need the receiver to check the validity of the encoding.

3The protocol of [34] requires CRS of size m for m parties (cf. [10]). However, since CRS is a one-time setup, this does not
affect our (amortized) communication cost. Alternatively, we could use the DDH based construction of [10] which uses a constant
sized (6 group elements) global CRS for all parties and will only mildly increase (by a multiplicative factor == 6) the cost of realizing
the “seed” OTs).

10

4 UC Commitment Extension

As a corollary of our technique above, we start this section by showing a rate-1 construction for UC commit-
ment length extension, that is, a UC commitment protocol for a long message using a single ideal commit-
ment for a short message. The extension protocol additionally requires the use of a semi-honest (stand-alone)
OT protocol. We then show that the existence of a semi-honest OT protocol is necessary for UC commitment
length extension.

4.1 Rate-1 UC commitment length extension

In this setting, we want a secure realization of a single instance of UC commitment on a ¢-bit string, for
¢ = poly(k), while allowing the parties to access ideal functionality Fyiconm[x] exactly once. We show that
UC commitment length extension can be realized with rate 1 — o(1).

Theorem 5 (Rate-1 UC commitment length extension). Let k be a computational security parameter, and
assume the existence of semi-honest stand-alone oblivious transfer. Then, for all ¢ > 0, there exists a
protocol which UC-realizes a single instance of Fanicom|k€] with rate 1 — o(1) and makes a single call to

Frcom |kl

Proof. The desired protocol is obtained by using the results of [15, 9] to implement the necessary calls to
the OT functionality in a protocol obtained by composing protocols of Lemma 2 and Lemma 1.

Using a single call to Fyrcom|[k], we can generate a uniformly random string (URS) of length «. Inter-
preting this x-bit string as a £'/2 instances of a x'/2-bit URS, and assuming the existence of semi-honest
stand-alone OT, one can apply the results of Damgard et al. [15], or Choi ef a. [9] to obtain x“ instances
of For[k®] with p(k®) invocations of a semi-honest stand-alone OT and communication cost p(x®), where
p(+) is some polynomial, as long as o« < 1/2. We set « € (0, 1/2) such that p(k®) = o(k).

Using Lemma 2 with parameters 0 = &, and n, e such that nplte = k*/10, and ¢ = k€, we can
UC-realize Fyicom[k€] by making n + 2n!~¢ calls to ngR [¢/n] with § = (2n€ + 4)~!. Then, setting
Kprg = K% we use Lemma 1 to UC-realize these n + 2n'~¢ calls to ngR [£¢/n] with communication
complexity (n + 2n'~¢) - ((k°/n) + (1/8) + 3x* - (1/4)) while making 2n'*¢ + 8n calls to For[Kprg)-

Thus, for parameters 7, €, kprg as described above, we see that the communication complexity is KE(1+
o(1)) while making (at most) k“ calls to For[x®]. As described in the previous paragraph, these * calls to
For[k“] can be implemented with communication cost o(x¢). Therefore, a single instance of Fyrcom[+°]
can be realized with communication cost (1 + o(1)) in each phase. O

For any setup where it is possible to construct UC-secure commitments on x-bit strings (i.e., realize
Facowm[k)), then assuming the existence of semi-honest stand-alone oblivious transfer, Theorem 5 implies
that it is possible to realize UC-secure commitments on strings of arbitrary length (in particular, on x-bit
strings) with rate 1 — o(1) in that model. We explicitly state this for the CRS model, where it is known that a
protocol for UC commitments in the CRS model implies the existence of semi-honest stand-alone oblivious
transfer [15].

Corollary 6. If UC commitments exist in the CRS model, then they exist with rate 1 — o(1).

4.2 UC commitment length extension implies OT

We now show that the existence of semi-honest stand-alone OT is necessary for the result above.

11

Theorem 7. Let x be a computational security parameter, and suppose there exists a protocol in which at
most one party is allowed to make (at most) a single call to Farcom|[k] to UC-realize a single instance of
JFrmcom|[3k]. Then there exists a protocol for semi-honest stand-alone OT.

Here we present only a proof sketch. The full proof can be found in Appendix D.

Proof. We begin with a proof (sketch) for a weaker statement, namely, that UC commitment length exten-
sion from & bits to 3k bits implies key agreement. Recall that key agreement is implied by OT.

Key agreement from length extension. Let I denote the commitment protocol assumed to exist. We

construct a bit agreement protocol between two parties, A and B, from II as follows:

— A commits to a random 3k-bit string m by acting as the honest sender in an execution of II, and in
addition, sends the query ¢ € {0, 1}" it makes to the short commitment oracle and a random r € {0, 1}";

— B runs the UC straight-line extractor for II to obtain m.

Both parties then agree on the Goldreich-Levin hard-core bit [20] b = (m, r) of m.

We now want to argue that an eavesdropper does not learn anything about b in two steps:

— First, if we ignore the query ¢, then the view of the eavesdropper is exactly the commitment-phase
transcript for I, which reveals no information about m, which means m has 3« bits of information-
theoretic entropy.

— The query g then reveals at most x bits of information about m. Therefore, even upon revealing ¢, the
message m still has &~ 2x bits of (min-)entropy. Then, the Goldreich-Levin hard-core bit works as a
randomness extractor to derive a random bit from m.

Correctness is straightforward. To establish security against an eavesdropper, we crucially use the fact that a

UC commitment scheme is equivocal, which allows us to essentially argue that m has 3« bits of information-

theoretic entropy. (Indeed, revealing « bits of information about a 3x-bit pseudorandom string could reveal

the entire string, as is the case when we reveal the seed used to generate the output of a pseduorandom
generator.)

Remark. For technical reasons, we will require that the equivocal simulator can simulate not only the

public transcript of the protocol, but also the query ¢ made to the short commitment oracle. The existence

of such a simulator does not follow immediately from UC security, since the query ¢ may not be revealed to

the malicious receiver and the environment. To handle this issue, we basically proceed via a case analysis:

— If the honest sender always reveals g to the receiver either in the commit or the reveal phase, then the
equivocal simulator must be able to simulate the query ¢ since it is part of the public transcript.

— Otherwise, we show in Lemma 11 that a cheating receiver can break the hiding property of the commit-
ment scheme.

We are now ready to show the OT implication.

OT from length extension. In the OT protocol, A holds (bg, b1), B holds o, and B wants to learn b,.. The

protocol proceeds as follows:

— Alice runs two independent executions Ilg, II; of the key agreement protocol for two random strings
mo, my € {0,1}* in parallel. In addition, A sends

2o = bg & (mo,10), 21 =b1 & (my,71).

— In the execution II,, B behaves as in the key agreement protocol, which allows him to learn (m, r,)
and thus recover b,. In the other execution, B acts as the honest receiver in an execution of commitment
scheme II.

12

Correctness follows readily from that of key agreement. We argue security as follows:

First, we claim that a corrupted semi-honest A does not learn ¢. This follows from UC security of the
commitment scheme against corrupted senders.
Next, we claim that a corrupted semi-honest B does not learn b;_,. This follows essentially from a
similar argument to that for the security of the key agreement protocol with two notable differences:
(i) in the execution IT; _,, B acts as the honest receiver in 11 (instead of running the extractor as in the
key agreement protocol), and (ii) a semi-honest B learns the coin tosses of the receiver in 11, whereas
an eavesdropper for the key agreement protocol does not. Handling (i) is fairly straightforward albeit
a bit technical; to handle (ii), we simply use the fact that the commitment phase transcript reveals no
information about the committed value, even given the coin tosses of the honest receiver.

O

Acknowledgments. We thank the anonymous reviewers of Eurocrypt 2014 for their helpful comments. We
would also like to thank Luis Brandao for alerting us to errors in our cost calculations.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Cline Chevalier, and David Pointcheval. SPHF-friendly non-interactive
commitments. In Asiacrypt, 2013.

Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th Annual ACM Symposium
on Theory of Computing (STOC), pages 479-488. ACM Press, May 1996.

Rikke Bendlin, Ivan Damgérd, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multiparty compu-
tation. In Advances in Cryptology — Eurocrypt 2011, volume 6632 of LNCS, pages 169—188. Springer, 2011.

Olivier Blazy, Celine Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement of Lindell’s UC-secure
commitment schemes. In ACNS, 2013.

G. Brassard, C. Crepeau, and J.-M. Robert. Information theoretic reduction among disclosure problems. In FOCS, pages
168-173, 1986.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 136-145. IEEE, October 2001.

Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, Advances in Cryptology —
Crypto 2001, volume 2139 of LNCS, pages 19-40. Springer, 2001.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party secure
computation. In 34th Annual ACM Symposium on Theory of Computing (STOC), pages 494-503. ACM Press, May 2002.

Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box constructions of adaptively secure
protocols. In 6th Theory of Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 387-402. Springer, 20009.

Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure, and composable oblivi-
ous transfer with a single, global crs. In PKC, pages 73-88, 2013.

Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance, editor, Advances in Cryptology
— Crypto 87, volume 293 of LNCS, pages 350-354. Springer, 1988.

Ivan Damgard, Bernardo David, Irene Giacomelli, and Jesper Buus Nielsen. Homomorphic uc commitments in uc.
Manuscript., 2013.

Ivan Damgérd and Jens Groth. Non-interactive and reusable non-malleable commitment schemes. In 35th Annual ACM
Symposium on Theory of Computing (STOC), pages 426—437. ACM Press, June 2003.

Ivan Damgard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable commitment schemes
with constant expansion factor. In Moti Yung, editor, Advances in Cryptology — Crypto 2002, volume 2442 of LNCS, pages
581-596. Springer, 2002.

Ivan Damgérd, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and sufficient assumptions for UC computation.
In 7th Theory of Cryptography Conference — TCC 2010, volume 5978 of LNCS, pages 109-127. Springer, 2010.

13

[16] Marc Fischlin, Benoit Libert, and Mark Manulis. Non-interactive and reusable universally composable string commitments
with adaptive security. In Asiacrypt, pages 468—485, 2011.

[17] Matthew Franklin and Moti Yung. Communication complexity of secure computation. In STOC, pages 699-710, 1992.

[18] T. Frederiksen, T. Jakobsen, J. Nielsen, P. Nordholt, and C. Orlandi. Minilego: Efficient secure two-party computation from
general assumptions. In Eurocrypt, pages 537-556, 2013.

[19] Eiichiro Fujisaki. A framework for efficient fully-equipped UC commitments. In ePrint 2012/379, 2012.

[20] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 25-32. ACM Press, May 1989.

[21] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor, Advances
in Cryptology — Eurocrypt 2008, volume 4965 of LNCS, pages 415-432. Springer, 2008.

[22] Dennis Hofheinz, Jorn Miiller-Quade, and Dominique Unruh. On the (im-)possibility of extending coin toss. In Serge
Vaudenay, editor, Advances in Cryptology — Eurocrypt 2006, volume 4004 of LNCS, pages 504-521. Springer, 2006.

[23] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Dan Boneh, editor,
Advances in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 145-161. Springer, 2003.

[24] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David Wagner,
editor, Advances in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 572-591. Springer, 2008.

[25] Charanjit Jutla and Arnab Roy. Shorter quasi-adaptive nizk proofs for linear subspaces. In Asiacrypt, pages 1-20, 2013.
[26] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20-31, 1988.

[27] Daniel Kraschewski. Complete primitives for information-theoretically secure two-party computation. . Retrieved Oct 14,
2013, 2013.

[28] Yehuda Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. In Advances in
Cryptology — Eurocrypt 2011, volume 6632 of LNCS, pages 446—466. Springer, 2011.

[29] Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer. In TCC, pages 519-538, 2013.

[30] Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Cryptographic complexity classes and computational intractability
assumptions. In ICS, pages 266-289, 2010.

[31] Jesper Nielsen, Peter Nordholt, Claudio Orlandi, and Sai Seshank Burra. A new approach to practical active-secure two-party
computation. In Crypto, pages 681-700, 2012.

[32] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption
case. In Moti Yung, editor, Advances in Cryptology — Crypto 2002, volume 2442 of LNCS, pages 111-126. Springer, 2002.

[33] Ryo Nishimaki, Eiichiro Fujisaki, and Keisuke Tanaka. An eficient non-interactive universally composable string-
commitment scheme. In IEICE Transactions, pages 167-175, 2012.

[34] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer. In
David Wagner, editor, Advances in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 554-571. Springer, 2008.

A Model and Definitions (cont’d)

In this section we provide a brief description of the UC security model. Most of the material in this section
is standard and we follow the presentation in [28, 8].

Two distribution ensembles { X (k, @)} xen aefo,13+ and {Y (K, @) }ren,aefo,1}+ are computationally in-
distinguishable, denoted { X (x, a)} = {Y (k,a)}, if for every non-uniform polynomial-time distinguisher
D there exists a negligible function x4 such that for all @ € {0,1}* and k € N, |Pr[D(X(k,a)) =
1] = Pr[D(Y(k,a)) = 1]| < p(x). Similary, two distribution ensembles {X (0, a)}sen,acfo,1}+ and
{Y (0, a)}sen,aeqo,1)+ are statistically indistinguishable, denoted {X (o, a)} = {Y(0,a)}, if for every
non-uniform (possibly unbounded) distinguisher D there exists a negligible function p such that for all a €
{0,1}*and o € N, |Pr[D(X (0,a)) = 1]-Pr[D(Y(0,a)) = 1]| < pu(o). Wewrite { X (c,a)} ={Y (0,a)}
if the distributions are identical, in which case we say that the distributions are perfectly indistinguishable.

Universal Composability [6]. Universal composability is a definition of security that considers a stand-
alone execution of a protocol in a special setting involving an environment machine Z, in addition to the

14

honest parties and adversary. As with the classical definition of secure computation, ideal and real models
are considered where a trusted party carries out the computation in the ideal model and the real protocol is
run in the real model. The environment adaptively chooses the inputs for the honest parties, interacts with
the adversary throughout the computation, and receives the honest parties’ outputs. Security is formulated
by requiring the existence of an ideal-model simulator S so that no environment Z can distinguish between
the case that it runs with the real adversary 4 in the real model and the case that it runs with the ideal-model
simulator S in the ideal model. We use the formulation of the definition of UC security that appears in [8].

In slightly more detail, we denote by IDEALfr s z(k, 2) (resp. IDEALF s z(0, 2)) the output of the en-
vironment Z modeled by a probabilistic polynomial-time I'TM (resp. unbounded ITM) with input z after
an ideal execution with the ideal adversary (simulator) S modeled by a probabilistic polynomial-time ITM
(resp. unbounded ITM) and functionality F, with security parameter x (resp. statistical security parameter
o). Furthermore, we denote by REAL, 4 z(k, 2) (resp. REAL, 4 z(0, z)) the output of environment Z mod-
eled by a probabilistic polynomial-time ITM (resp. unbounded I'TM) with input z after a real execution of
the protocol 7 with adversary A modeled by a probabilistic polynomial-time ITM (resp. unbounded ITM),
with security parameter « (resp. statistical security parameter o).

Our protocols will be run in a hybrid model where the parties have access to an ideal functionality G. In
such a case, according to the definition in [8], all messages between the parties and the ideal functionality are
delivered by the adversary. We consider a model with ideally authenticated channels, and so the adversary
is allowed to read the messages sent but cannot modify them. In contrast to messages sent between the
parties which can be read by the adversary, messages sent between the parties and the ideal functionality
are comprimised of a public header and private content. The public header contains information that is
not secret (like the message type, session identifier, the sending and receiving party), whereas the private
content contains information that the adversary is not allowed to learn like the parties’ private inputs. See [8]
for more details. We denote an execution of 7 in such a model with probablistic polynomial-time (resp.
unbounded) ITMs A,S,Z by HYBRIDY , (&, 2) (resp. HYBRIDY , - (0, 2)).

We now define when a protocol 7T7Cé)mputationa||y UC realizes a functionality F in the G hybrid
model.

Definition 1. Let n € N. Let F be an ideal functionality and let 7 be an n-party protocol. We say that
m computationally UC realizes F if there exists an probabilistic polynomial-time ideal-process adversary
S such that for any probabilistic polynomial-time adversary A and for any non-uniform polynomial-time
environment 2,

C
{IDEALF 5 z(K, 2) }reN zef0,1} = {HYBRIDg,A,z("% 2) }reN,ze{0,1}*

Next, we define when a protocol 7 statistically UC realizes a functionality F in the G hybrid model.

Definition 2. Let n € N. Let F be an ideal functionality and let 7 be an n-party protocol. We say that
7w UC realizes F if there exists an probabilistic unbounded ideal-process adversary S such that for any
probabilistic unbounded adversary A and for any non-uniform unbounded environment Z,

S
{IDEALF 5 2(0, 2) }peN 2ef0,1}+ = {HYBRIDg,A,z(Ua 2) }oeN,ze{0,1}*

Finally, we define when a protocol 7 perfectly UC realizes a functionality . in the G hybrid model.

15

Definition 3. Let n € N. Let F be an ideal functionality and let 7 be an n-party protocol. We say that
7 UC realizes F if there exists an probabilistic unbounded ideal-process adversary S such that for any
probabilistic unbounded adversary A and for any non-uniform unbounded environment Z,

{IDEALZ 5 z (0, z)}aeN,ze{OJ}*E{HYBRID%}AZ(U, 2)}oen 2e{0,1}*

Note that when G is the empty functionality, the G-hybrid model is actually the real model.

The importance of the above definitions is a composition theorem that states that any protocol that is
universally composable is secure when run concurrently with many other arbitrary protocols; see [6, 8] for
discussions and definitions.

B Realizations of Variants of UC-Secure Oblivious Transfer

B.1 Proof of Lemma 1

Proof. First, we design a UC-secure protocol for]—"gTR €] in the 31 [prg]-hybrid model, where N = 1/4,
making blackbox use of the pseudorandom generator G. The protocol uses ideas from [24], and is presented
in Figure 6. (A proof of security of this protocol appears in Appendix B.2.) From the protocol description
in Figure 6, it follows that for § = 1/N,

cc(For, [0]) = N + £+ cc(Fr[Kprg))- (1)

Next, we design a UC-secure protocol for FAp[kprg] in the FoT[prg]-hybrid model. For this we use
the information-theoretically secure transformation of Brassard et al. [5] described in Figure 7. (A proof of
security appears in Appendix B.3.) From the protocol description in Figure 7, it follows that

Cc(f(])VT[“prg]) = (N =1) - cc(Forlkpeg])- (2)

Then we obtain the desired protocol satisfying Lemma 1 by composing the UC-secure protocols above,
and the proof of security is obtained by a straightforward application of the composition theorem. From
Equations 1 and 2, it follows that

cc(Forg[l]) = £+ N + (N — 1) - cc(For|[kprg))- 3)

It is easy to see that the total communication complexity of the protocol, including communication with
For|[kprg] (Which induces a factor 3) is £ + (1/0) + 3kprg - (1/8)), and that the protocol makes at most 1/§
calls to For[kprg) and each party makes a single invocation of G. O

B.2 Realizing 7 _[(] in the F[[k]-Hybrid Model

The protocol realizing FQr, [€] in the FJ1[Kprg]-hybrid model is described in Figure 6.

Lemma 8. Let parameters 6 and N satisfy the following relation: there exists an integer a such that a € [N],
and 6 = a/N. Further let G : {0,1}%0—{0,1}¢ be a pseudorandom generator. Then the protocol in
Figure 6 computationally UC realizes (cf. Definition 1) the ngR [¢] functionality in the ngR [Kprg|-hybrid
model in the presence of static adversaries.

Proof. We give the description of the simulator.

The simulator S:

16

Realizing 71 [¢] in the Fp[prg]-hybrid model

The parameters § and N satisfy the following relation: there exists an integer a € [N] such that 6 = a/N holds.

Let G : {0,1}"»=—{0, 1} be a pseudorandom generator.
Given input (sender, sid, ssid, s, r, x), party Py chooses K, K1,

o [{; : (K, = K) Aj € [N]}] = a.
P, chooses random i € [m] and sends (receiver, sid, ssid, s,7,1) to]—'évT, and receives back K.

P sends (sender, sid, ssid, s, r, K1,
Upon receiving (sid, ssid, s,r) from FO., P; sends the N-bit characteristic vector of the set A = {j

., Kn € {0,1}"r= at random subject

.,KN) to ng

K; = K} along with the value ¢ = G(K)&z to F,.

Upon receiving characteristic vector of A from Py, party P, generates its output z as z = c¢c®G(K;) if

1€ Aelsez= 1.

Figure 6: A computationally UC-secure protocol for ngR [€] in the F&7 [Kpre]-hybrid model.

Simulating the communication with Z: Every input value that S receives from Z is written on A’s
., Kn) from A controlling P, and

input tape (as if coming from Z) and vice versa.
e Simulating the protocol when P is corrupted and P, is honest: Acting as the ideal functionality
FAr[Kprels the simulator S receives (sender, sid, ssid, s,7, K1, . .
sends back (sid, ssid, s, r) to A. Then, S receives the N-bit characterstic vector of a set A and a value
c € {0,1}* from A. If |A| # a, then S sends (sender, sid, ssid, s,r, L) to ngR, and terminates
the simulation. Else, it picks a random index j € A and sends (sender, sid, ssid, s, 7, cdG(Kj)) to

]:gTR [/], and terminates the simulation.
Simulating the protocol when P, is corrupted and P is honest: Acting as the ideal functionality
FgT, the simulator S receives (receiver, sid, ssid, s, r, 1) from A controlling P,. S chooses a random
K € {0,1}"re and sends (sid, ssid, K) to P.. Upon receiving (sid, ssid, s, r,y) from]:gTR’ the

simulator checks whether y = | holds. If y = L, then S chooses random ¢ € {0, 1}/, and a random
set A C [N] such thati ¢ A and |A| = a. Else, S sets ¢ = G(K)®y, and chooses a random set
A C [N]suchthati € Aand |A| = a. S sends the N-bit characteristic vector of the set A along with

the value ¢ to A.
Analysis of the simulation: Denoting the protocol in Figure 6 by 7, and recalling that it runs in the féVT—

Simulation in the case when both P; and P, are honest is straightforward.
hybrid model, we need to prove that the simulator S described above is such that for for every A, and for

For
{HYBRID ' }cen,ze 0,1}

llle

every Z,
{IDEAL]-'gTR 5.2 (K, 2) treN,zef0,1}
The case when A corrupts P is easy to handle. In this case, note that .4 does not receive any message

in the protocol other than (sid, ssid, s,r). It is also straightforward to see that the output of honest P, is
identically distributed in both the ideal and hybrid processes.

When A corrupts P,, we argue that the simulation is indistinguishable from the hybrid protocol as long

as G is a computationally secure pseudorandom generator. More precisely, given an environment Z which

17

Realizing ng[é] in the For[£]-hybrid model [5]
e Given input (sender, sid, ssid, s,7,71,...,2x) withz1,...,2x € {0, 1}, party P initializes y; o = 21,
and then for j = 1to N — 2, performs the following:
— Choose r; « {0, 1}¢ at random.
- Set yj,l = Tj.
~ Sety;i1,0 = 2418 (Bhoy7h)-
Finally, Ps sets yn_1,1 = xN@(@fCV:_lzrk).

e Given input (sender, sid, ssid, s, r, q), party P, computes values ¢1,...,qy—1 € {0, 1} such that for each
J € [N — 1], the value ¢; equals 0 iff ¢; = g.

e Foreachj € [N —1]:
- P; sends (sender, sid, ssid o j, s,7,Y;.0,Yj1) t0 FOT.
- P, sends (receiver, sid, ssid o j, s,7,q;) to For.

- P; and P, receive (sid, ssid o j,s,r) and (sid, ssid o j, s,7,y; 4;) respectively from For.

e P, sets yno = 0 and outputs z = yq,o@(@z;iyk’l).

Figure 7: A perfectly UC-secure protocol for]:é)VT in the For-hybrid model.

distinguishes between the ideal and hybrid processes in which A corrupts P, we demonstrate an adversary
Apre that can break the pseudorandomness of ;. Upon input w which is either random or pseudorandom
(i.e., G(u) for some u € {0, 1}*rre), Ay, interacting with Z and A corrupting P,, simulates an execution
. . 6 .
of IDEAL Fop 5.2 playing the roles of honest P; and emulating F . honestly, except that when L is

received from (the simulated) ngR, Aprg sets ¢ = wdy, where y is the honest F;’s input chosen by Z.
Finally, A, outputs what Z outputs.

It is easy to see that when w is random, A,,’s simulation is identical to the ideal process. On the
other hand when w is pseudorandom, A,’s simulation is identical to the protocol in the f(])VT—hybrid model
described in Figure 6.

Given this, we conclude that the ideal process and the hybrid process are computationally indistinguish-
able by the fact that G is a computationally secure pseudorandom generator. O

B.3 Realizing 7);[(] in the For[(]-Hybrid Model
The protocol realizing F)1[¢] in the For[¢]-hybrid model is described in Figure 7.

Lemma 9. The protocol in Figure 7 perfectly UC realizes (cf. Definition 3) the]:éVT [¢] functionality in the
Forl|l]-hybrid model in the presence of static adversaries.

Proof. We give the description of the simulator.

The simulator S:

e Simulating the communication with Z: Every input value that S receives from Z is written on A’s
input tape (as if coming from Z) and vice versa.

18

e Simulating the protocol when P is corrupted and P, is honest: Acting as the ideal functionality
For[l], the simulator S performs the following actions for all j € [N — 1]: S receives (sender, sid,
ssid o j,s,7,9j0,Y51) from A controlling P, and sends back (sid, ssid o j,s,r) to A. Then, S
locally sets yno = 0°. Forall ¢ € [N], S computes 7, = yq70®(@z;iyk71). Finally, S sends
(sender, sid, ssid, s,r,x1,...,2N) to Fyp[/].

e Simulating the protocol when P, is corrupted and P; is honest: Acting as the ideal functionality
Forl¢], the simulator S initializes flag = 0, and performs the following actions for j = 1,..., N —1:

- Sreceives (receiver, sid, ssid o j, s, 1, q;) from A controlling P,.

- If flag = 1 holds or if (¢; # 0 and flag = 0 and j # N — 1) holds, then S chooses ran-
QOm 'l <40, 1}, sets yjo = a:QEB(fc;llrj) and y;1 = rj, and sends back (sid, ssid o
J> 8,75 Yjq;) to A,

- If (¢; = 0 and flag = 0) holds, then S sets values ¢ = j and flag = 1, and sends (receiver, sid,
ssid, s,r,q) to J—"(])VT [¢] and receives back (sid, ssid, s, 7,z'). S then chooses random r; < {0, 1},
sets y;0 = «'®(@]_7x) and y;1 = r;, and sends back (sid, ssid o j, 5,7,y;4,) to A.

- If (flag = 0and j = N — 1) holds, then S sets values ¢ = N and flag = 1, and sends
(receiver, sid, ssid, s, T, q) to févT [¢] and receives back (sid, ssid, s,r,2'). S then chooses ran-
dom ; —{0,1}", sets y;0 = até@(@fc;llrk) and y;1 = '@ (@ ’rx), and sends back
(sid, ssid o j,s,7,yj4,) to A

Simulation in the case when both P; and P, are honest is straightforward.

Analysis of the simulation: Denoting the protocol in Figure 7 by 7, and recalling that it runs in the Fo-
hybrid model, we need to prove that the simulator S described above is such that for for every A, and for
every Z,

< F
{IDEALJ-‘gT,s,z(Hy 2) b reN,zef0,1} = {HYBRIDW%Z}REN,ZE{OJ}*-

The case when A corrupts P is easy to handle. In this case, note that .4 does not receive any message
other than (sid, ssid o j, s,r) forall j € [N — 1]. It is also straightforward to see that the values {z} e[
extracted from {0, Yq,1}qe[v—1] correspond to the input values used by .A. Therefore, the output of honest
P, is identically distributed in both the ideal and hybrid processes.

When A corrupts P, we argue that the simulation is perfectly indistinguishable from the hybrid proto-
col. First, we note that the variable flag is used to indicate when the simulator extracts the selection ¢ € [N]
from 4. More concretely, the variable flag is set to 1 (indicating the selection has been extracted from .4)
when A makes query ¢; = 0 to For[/] for some j. In this case, the extracted selection ¢ = j. When A
never queries ¢; = 0 to For[¢] for any j € [N — 1], then this corresponds to the extracted selection ¢ = .
Note that the way in which the selection value of A is extracted corresponds exactly to its input value used
in the hybrid protocol.

Next, we note that until iteration j = ¢, the view of A in both the ideal and hybrid executions is
{7k }ke[g—1)» i-€., uniform random values in {0, 1}£. When ¢ < N, in iteration j = ¢, the simulator uses the
output value 2’ obtained from F21.[¢] to construct the values y; 0, ;1 such that A is able to learn the output
' from y; o while the value y;; is uniformly random and distributed identically as in the hybrid protocol,
thus leaking no information about values {xy, },. Likewise when ¢ = NV, in iteration j = ¢, the simulator
uses the output value " obtained from f(J)VT [€] to construct the values y; 0, y;1 such that A is able to learn
the output 2’ from y; 1 while the value y; o, as in the hybrid protocol, is completely hidden from A, thus
leaking no information about values {x, } ;4.

19

Note that in iteration j = g, the variable flag is set to 1. Once this event occurs, the simulator provides
only random values as input to For[¢] for all iterations j > g. We now argue that the distribution of
simulated inputs to For[¢] for 7 > ¢ is identical to the distribution of inputs to For[£] in the hybrid
protocol. First, note that .4 does not have any information on the value 7,. Then, the next time that 4
queries ¢; = 0 for some j = p; > ¢, A does not learn any information since the value y; o is a value masked
with r, which the adversary does not know. Therefore, the value y; o appears completely random from the
point of view of A. Also, note that at this point, A does not know the value of r, . This allows us to argue
that the next time that .4 queries g; = 0 for some j = p2 > p1, A does not learn any information since the
value y; o is a value masked with r;,, which the adversary does not know. Therefore, the value y; o appears
completely random from the point of view of .A. Once again, we observe that at this point, .A does not know
the value of 7,,. In other words, each time the adversary makes a query ¢; = 0, it misses knowing (a new)
value 7; which prevents it from learning any information about the value x;, (which is masked with the pad
r;) from y;r o, y;.1, where j' is the next index greater than j such that query ¢ = 0. We complete the
argument by noting that whenever ¢; = 1 for j < N — 1, the adversary simply learns a uniformly random
pad r; that is independent of the values {x}} ke[N]- When ¢g; = 1 for j = N — 1, as argued before, the
adversary learns z iff for all j € [N — 1], the query ¢; = 1.

Given this, we conclude that the ideal process and the hybrid process are perfectly indistinguishable. [J

C Rate-1 UC-Commitments from Rabin-OT (cont’d)

C.1 An Encoding Scheme based on Multi-Secret Sharing Schemes

Let m € {0,1}" represent the message. We parse m = (mj,...,m,) as a vector in F". Note that
|m;| = £/n, and hence log |F| = ¢/n.

Our randomized encoding scheme Enc maps a message from F" to a codeword in F™. The encoding
scheme is a variant of RS codes used in [17] to obtain multi-secret sharing schemes. More concretely, let d

be a parameter such that n < d < n'. Letay,...,a, and eq, ..., e, be (publicly known) mutually disjoint
set of points in [F. Let p(x) be a random degree-d polynomial subject to p(e;) = m; for all ¢ € [n]. For
j €[], let m; = p(a;). Wecall m' = (m,...,m;,) € F" as the encoding of i € F™, and use the

notation m’ < Enc(m).
Observe that for any 7' C [n] satisfying |T| > d, the coordinates {m’;}jcr can be used to decode m’

and recover m. Furthermore, for any ' C [n/] satisfying |T'| < ¢ 4" 44+ 1 — n, the coordinates {m}jer do

not reveal any information about m. Also, observe that for any two messages mg, m; € F", their respective

d def

encodings mg, and m/ differ in at least ' = n’ — d locations.

Lemma 10. Foranyn > 0, d > n, n’ > d, and any { > nlog(n + n’), and any field F with |F| > n +n/,
there exists a randomized encoding scheme mapping messages from F™ to codewords in ™ such that

e any 26 def (d + 1 —n)/n fraction of the symbols of the encoding reveal no information about the

encoded message, and furthermore, any random partial assignment to less than 20 fraction of the
symbols can be efficiently extended to an encoding of any message;

. def .. .
e any encodings of two distinct messages differ in A = n' — d positions (and we can efficiently correct
A/2 errors).

Proof. We show that the encoding scheme Enc with parameters n,d, n’ is the desired encoding scheme.
Note that this is possible as long as [F| > n + n'.

20

From the discussion above, we have that ¢/n’ = 26 fraction of the symbols of the encoding reveal
no information about the encoded message. It is easy to see from the construction above that any random
partial assignment to less than ¢/n’ fraction of the symbols can be efficiently extended to an encoding of
any message. More concretely, given a random partial assignment to less than ¢ symbols, then for any given
message consisting of n symbols, we can always fit a degree-d polynomial through these < n+t—1=d
symbols.

Lastly, any encoding of two distinct messages differin A = d’ = n/ —d = n'~¢ — 6n'~2¢ 4 1 positions,
and we can efficiently correct A /2 errors (say, using decoding algorithms for RS codes). 0

C.2 Proof of Lemma 2

We borrow some notation from Appendix C.1. In particular, we use auxiliary variables t = 2n/0, d =
n+t—1,and d = n' — d = A to simplify the exposition.

Proof. We give the description of the simulator.

The simulator S:

e Simulating the communication with Z: Every input value that S receives from Z is written on A’s
input tape (as if coming from Z) and vice versa.

e Simulating the commit stage when the committer P; is corrupted and the receiver P, is honest:
For each j € [n/], acting as the ideal functionality ngR, S receives (sender, sid, ssid o j, s,7,m)
from A controlling Ps, and sends back (sid, ssid o j, s,7) to A.

Next, S performs an error correction procedure for Enconm’ = (m/, ..., m/,) to compute the unique
codeword m* that differs from m’ in at most A /2 positions. Let m” € F™ be message obtained by
decoding codeword m*, and let p” be the corresponding degree-d polynomial such that p”(e;) = m/
forall j € [n].

Then, S constructs a set J” by picking each index j € [n’] with probability § = ¢/2n’. This process
defines variables y; for j € [n'] as y; = m/; for j € J”, and y; = L otherwise.

If m}; = mJ forall j € J”, then S sends (commit, sid, ssid, s,r,m" = (mf,...,my)) to Fmcowm,
where m” is expected to be parsed as an element of {0, 1}¢. Else, S sends a dummy commitment
(commit, sid, ssid, s,r,0) to Farcowm (and in this case, we will see that S will not send anything in
the reveal phase).

e Simulating the decommit stage when P is corrupted and P. is honest: S receives (sid, ssid, m’),
where m’ € F"', from A controlling Ps. If (1) m’ is an (error-free) codeword, and (2) for all j € J”,
it holds that ﬁz; = mg-, then S sends (reveal, sid, ssid, s, 1) to Facom. Otherwise, it does nothing.

¢ Simulating the commit stage when P; is honest and P, is corrupted: Upon receiving (receipt, sid,
ssid, s,r) from Fycom the simulator S interacts with A controlling P, by acting as ideal function-
ality]-"gTR in the following way: for each j € [n/], S receives (receiver, sid, ssid o j, s,r) from A,
and returns (sid, ssid o j, s, r,y;), where y; is chosen to be a random element of IF with probability
d =t/2n’, and as | with probability 1 —§ =1 —t/2n/.

¢ Simulating the decommit stage when P is honest and P, is corrupted: Upon receiving (reveal,
sid, ssid, s,r, m) from Fyicom, the simulator S works as follows.

Let J denote the set {j : y; # L}. S computes a degree-d polynomial p’(x) such that (1) p'(cw;) = y;
fori € J, and (2) p'(e;) = m; fori € [n]. If such a polynomial cannot be constructed, then S outputs

21

fail and terminates the simulation. Otherwise, S computes m, = p(o;) for ¢ € [n], and hands
(sid, ssid,m' = (m},...,m],)) to A, as it expects to receive from Ps.

Simulation in the case when both P; and P, are honest is straightforward.

Analysis of the simulation: Denoting the protocol in Figure 5 by 7, and recalling that it runs in the]:gTR—
hybrid model, we need to prove that the simulator S described above is such that for for every A, and for
every Z,

. 7
{IDEALJ‘—MCOMvS,Z(Ua Z)}JEN,zE{O,l}* = {HYBRIDme%}UEN,zE{O,I}* .

We analyze separately the case when the A corrupts P, and the case when the A corrupts Ps.

When A corrupts P, the simulator, acting as the ideal functionality FgTR, chooses symbols of the
encoding of the message uniformly at random, and delivers them to .4 with probability . Let J denote the
set of indices corresponding to symbols delivered to .A. The distribution of .J itself is identical between the
ideal and hybrid processes, but the distribution of symbols of the encoding corresponding to indices in J are
identical (in this case, uniform and independent of the message m) only as long as |J| < d+ 1 —n = t.
This is because as long as |J| < d + 1 — n, the simulator will be able to compute a degree-d polynomial
p/(x) that is consistent both with the n message symbols that will be revealed in the decommit phase, and
with the |J| random symbols delivered by S during the commit phase. When |J| > d + 1 — n, S outputs
fail since it is unable to compute a degree-d polynomial consistent with |.J| + n interpolation points. Since
A corrupting P, does not send any messages in the protocol, it follows that the ideal and hybrid processes
are indistinguishable as long as S does not output fail. Since expected value of |J| is ¢/2, by a Chernoff
bound, the probability that |.J| > ¢, i.e., S outputs fail is bounded by e */¢ = ¢="'9/3 = negl(c) for & as in
Lemma 2.

Consider the case when A corrupts P;. Observe first that since .4 does not receive any messages in the
protocol (or the simulation), the view of A in both the ideal and hybrid processes are identical. Next, observe
that the distribution of J” in the ideal process is identical to the distribution of .J in the hybrid process.

It is easy to see that if A does not reveal an error-free codeword, the output of honest receiver in both the
ideal and hybrid world are identical. Therefore, we assume that the A reveals an error-free codeword. Given
the above, the distribution of the ideal process and hybrid process differs only when the value m” extracted
by S differs from the value m output by P, in the hybrid process. The key observation is that the values
m' and m are valid codewords and hence have minimum distance A. This implies that the corrupt sender’s
encoding m’ that it provided in the commit phase differs from m/ that it provides in the reveal phase in at
least A /2 symbols. Clearly this adversarial strategy succeeds only when none of the differing position occur
in J” (in which case the honest receiver accepts a value different from what the simulator extracted). Recall
that S chooses each position j € J” with probability 0, as in the real process. Therefore, the probability that
none of the A /2 differing positions occurred in J” is (1 —§)2/2 < e=94/2 = negl(0), for o as in Lemma 2.

O

D UC Commitment Length Extension Implies OT (cont’d)

Here we present the full proof of Theorem 7. Let II denote a UC-secure 3x-bit commitment protocol in the
Fucom|k]-hybrid model, with a single query.

We make a simplifying assumption that the sender Ps in II acts as the sender in the underlying -bit
commitment. (It is easy to see that the proof extends to the other setting too.) In the following we will
denote the string committed to by the sender to Fyrcom[k] as the value g. The input to Pj is a 3k-bit string
m.

22

Lemma 11 (Informal). For all 3k-bit messages m, with probability 1 — negl(k), sender in I1 must issue an
reveal request to Fyicom k| (i.e., on value q) in either commit or reveal phase.

Proof. We prove this by contradiction, by showing a malicious P} which breaks hiding of II.

Claim 12. There exists a cheating 1l-receiver P} such that for all 3x-bit message m, if
Pr[Ps(m) doesn’t open commitment to q when interacting with honest P, in II| > e,

then,
Pr[P extracts m when interacting with Ps(m)] > € — negl(k).

We construct P as follows: P runs the extractor for II to extract m, while “pretending” that ¢ is the
all zeroes string. (Note P’ doesn’t get to see the “short” committed value.)

The reason this works is that if Ps(m) doesn’t open the commitment to ¢, then from the view-point of
an honest receiver, it doesn’t matter whether Ps(m) commits to g or to all-zeroes. More concretely, consider
P that behaves like P;(m) in both commit and open phases except it queries all-zeroes instead of ¢. Then,
PZ will be able to commit and open to m with probability e when interacting with an honest P,. This means
the extractor must extract m from P (m), and thus P} extracts m from Ps(m). Therefore, ¢ = negl(k)
must hold. O

Lemma 13 (Informal). Suppose that sender in 11 opens the commitment to q in either commitment or reveal
phase with all but negligible probability (for a random m). Then, there exists a protocol for semi-honest
stand-alone OT.

Proof. We will prove that the following protocol mo is a semihonest secure protocol for oblivious transfer.

e Inputs. P acts as the sender in mop with inputs (b, b1) € {0, 1}2. P, acts as the receiver in woT
with input o € {0, 1}.

e Protocol.

1. Ps chooses two random strings mg, m; € {0, 1}3"‘.

2. P and P, participate in two executions of the commitment length extension protocol 11, denoted
11y, I1;, as follows. For ¢ = 0, 1: In execution II:

— The sender P; uses II. to commit to m. € {0, 1}3"‘. The sender follows instructions of II.
exactly except whenever I1. instructs it to make a call to Fyicom[r] on some value ¢, the
sender sends a message (“query”, ¢.) to P,.

— The receiver plays the role of the receiver in II. except it ignores messages of the form
(“query”, *).

x If ¢ = o, then the receiver in moT runs the simulation extractor for II. (which may use
the value ¢, that P, received from P;) to extract m..

x If ¢ # o, then the receiver in moT runs the honest receiver algorithm for II..

3. Ps chooses two random strings 9,71 € {0, 1}3"“, and sends rg,r; along with values zp =
b0@<m0,7“0> and z; = b1@<m1,r1).

4. P, outputs bit z = z,®(m/ ,ry).

23

Correctness of the OT protocol follows from the security of the UC commitment protocol. More con-
cretely, the value extracted by the simulation extractor (interacting with a corrupt sender in the commitment
protocol) in execution I1,; i.e., m/, equals m, with all but negligible probability. Given this, it is easy to see
that with all but negligible probability P,’s output z equals b,-.

Next, we prove security of the OT protocol.

Corrupted sender P}. Loosely speaking, by the UC security of II (against a corrupt sender), corrupt P;
cannot distinguish between execution II, (where the receiver plays the role of the honest receiver for 1I)
and execution II;_, (where the receiver plays the role of the simulation extractor for II), and so P has
negligible advantage in guessing the receiver input o. We provide a sketch of the simulation below.

Simulator S for a corrupt sender in mo receives (bg, b1) as input. To obtain simulated view of execution
Iy, S chooses random mq € {0, 1}3* and runs the honest sender algorithm with input mq for IT with the
honest receiver algorithm for II, except (as in protocol moT) sends the value of the sender’s query go to
Fumcowmlk] to the receiver in the clear. Let vy be the resulting view of the sender which in particular
includes the query qq that S obtains while acting as Fyicom[] to the honest sender.

Similarly, S chooses a random m; € {0, 1}3* and runs the honest sender algorithm with input m; for
IT with the honest receiver algorithm for II, except (as in protocol woT) sends the value of the sender’s
query g1 to Favcomlk] to the receiver in the clear. Let vy be the resulting view of the sender which in
particular includes the query ¢; that S obtains while acting as Fyicom[x] to the honest sender. The rest of
the transcript of mor is generated using the honest sender algorithm for moT with input (b, by), and random
messages mg, m1. Finally, output the view of the honest sender, including the views vy, v;.

It is easy to see that the view v1_, is distributed identically to the view generated in protocol II;_,
in the real execution. From the UC security of II (against a corrupt sender), it follows that the view v, is
indistinguishable from the view generated in protocol I, in the real execution. Given the above, it is easy
to see that the output of the simulator is indistinguishable from the output of a corrupt sender P; in the real
protocol.

Corrupted receiver PY. We provide a sketch of the simulation, and show its correctness by contradiction.

The simulator S for a corrupt receiver in wor receives o and b, as input. To obtain simulated view of
execution II,, it begins simulating an execution between the honest sender with random input m, and the
simulation extractor, in particular S acts as Fyicomlk] and receives the query g, from the honest sender
which it then forwards to the simulation extractor. Let v, be the resulting view of the simulation extractor.

To generate a simulated view of execution IT; _,, the simulator S chooses a random m; € {0, 1}3"‘ and
starts an execution of the simulator for a corrupt receiver in II, denoted S’, with the honest receiver algorithm
in II in both the commit and reveal phases, while providing random value m;_, as input of the sender to
S’. Note at the end of this simulated interaction, S obtains the opened query g1, from S’. Let v1_, be
this simulated view of II;_, along with the query q;_,. The rest of the transcript of mo is generated by
choosing random values rg, 71 € {0, 1}?* and setting z, = b,®(m,,r,) and 2;_, at random from {0,1}.
Finally, output the view of the receiver, including the views vg, v1, and values zgp, z;. We show that the
simulated view obtained as described above is indistinguishable from an execution of the real protocol.

It is easy to see that the view v, and values g, 2, are distributed identically to the view generated in
protocol 11, in the real execution. Also, by the UC security of II (against a corrupt receiver), the view
v1_o and query q;_, are indistinguishable from the view and the query generated in protocol II;_, in the
real execution. Given the above, it remains to show that the distribution of z;_, in the simulated view is
indistinguishable from the corresponding distribution in the real execution of moT. Since z1_, is distributed
uniformly in the simulated view, it suffices to show that the value (mj_,,r1_,) is distributed negligibly
close to uniform in the real protocol.

To show this we use the following fact. Suppose there exists a distinguisher that guesses (m1—_4,71—¢)

24

for a random 7 _, with 1/poly () advantage, then by Goldreich-Levin theorem [20], it can compute m1_,
with probability 1/poly(x). We derive a contradiction as follows:

Game 0: This is the real protocol execution of wor.

Game 1: This game is identical to Game 0 except we replace honest sender in execution 1I;_, of protocol
mot by the simulated honest sender (i.e., this is the equivocal simulator who’s interacting with a cheating
receiver P that simply runs the honest receiver strategy but also outputs the internal coin tosses) as follows:

e For the protocol messages that are already in II;_,, we can use the simulator.

e For the query q;_,, we use the simulated opening to q; . (This is where we use the fact that with all
but negligible probability, an honest sender opens to q;_, in either the commit or reveal phase, which
means that ¢; —, will be part of either the commit phase or the open phase transcript, and therefore the
simulator must simulate q;_.. In particular, if the honest sender opens to ¢;_, in the open phase, then
the simulator knows m when simulating ¢; _,, in which case q;_, could leak x bits of information
about mi_g.)

By the UC security of II (against a corrupt receiver), the distribution of the view v;_, in execution II;_,
and the distribution of the query q;_, in Game 1 are indistinguishable from the corresponding distribution
of the view and the query generated in protocol II;_, in Game 0. This suffices to show that Game 1 is
indistinguishable from Game 0.

In particular, this implies that a distinguisher that guesses m;_, with (1/poly(x)) — negl(x) advantage
in Game 0 will be able to do the same in Game 1 with at least (1/poly(x)) — negl(x) advantage.

Game 2: This game is identical to Game 1 except we use simulated view of moT as in Game 2, but guess
the query q1_, at random (instead of obtaining it via the simulated honest sender).

Clearly, when the guess for query q;_, equals the value produced by the simulator for a corrupt receiver
in Game 1, the view of the eavesdropper is identical in Game 1 and Game 2. This happens with proba-
bility 27" since the guess for ¢;_, € {0,1}" is made at random in Game 2. Therefore, in this case, the
eavesdropper must guess the value of m with probability at least 27" - ((1/poly(k)) — negl(k)).

However, note that Game 2 is designed in a way such that the transcript of the OT protocol is statistically
independent of m;_,. Therefore, any eavesdropper that relies solely on the transcript of Game 2 must be
able to guess the value of a randomly chosen m;_, € {0, 1}3* with probability at most 273~

Thus we have a contradiction. Therefore, we conclude that the value (mi_,,71_) is distributed negli-
gibly close to uniform in the real OT protocol, and that the simulated view output by simulator for a corrupt
receiver in mor is indistinguishable from the view of a corrupt receiver in the real protcol. 0

E Efficient Commitments for Cut-and-Choose

While our rate 1 construction has good concrete efficiency for large string commitments, the case of short
string commitments leaves a lot to be desired. An obvious approach to handle short strings is simply to
concatenate these strings together to form one large string, and then use the rate 1 construction with this
string as the input message. While this approach does provide a concrete rate close to 1 when the number of
instances is large, it has the drawback that all instances of short strings must be opened simultaneously. In
this section, we design more efficient commitment scheme for handling multiple instances of x-bit strings
with two opening phases (as required in techniques such as cut-and-choose). The extension to three or more
opening phases is straightforward.

For i € [n], let the i-th k-bit string be denoted by m;, and let m = (my,...,m,). Let p denote the
number of opening phases, and for j € [p], let u; denote the characteristic vector of the subset S; C [n] of

25

the strings that need to opened in the j-th opening phase. Note that u; is not known to the sender during the
commit phase.

Our high level idea is as follows. As in our rate 1 construction, we let the sender encode m in to m’
using the rate 1 encoding scheme. In addition, for each i € [p], the sender uses the rate 1/2 encoding scheme
(naturally derived from Enc) to encode the zero string (0, ..., 0) € F” twice using independent randomness
to obtain codewords z(1), z(2) (each of length 2n’). Next the sender prepares to send symbols through the
Rabin-OT oracle. For this, it constructs M, = (my,, z,(cl), 21532)) for k < n’/, and symbols M;, = (z,gl), 215,2))
fork € {n’ +1,...,2n'}, as the k-th input to the Rabin-OT oracle. Then, it transmits M}, through Rabin-
OT oracle with parameter &’ = ¢/2 (where § is the best parameter for obtaining commitments on strings
of length nx). Then, in the j-th opening phase, the receiver sends the randomness (alternatively, a seed to
a PRG) to encode u; into u; using the rate 1 encoding scheme. Now, denote the underlying polynomials

(cf. Figure 4) for (1) the rate 1 encoding of m by ¢, (2) the rate 1/2 encoding of 20 as qgj), and (3)
the rate 1 encoding of u; by ¢7,. In the j-th opening phase, the sender simply reveals the polynomial
q(j) = (gm - qi) + qgj). Now, let {Mk}ke 7 denote the messages received by the receiver. The receiver
checks if for all k € J N [’], it holds that M}, = (mg,zgg”,g,f)) satisfies ¢9) (k) = (ml, - gh(k)) + 2.
If the check succeeds, then the receiver computes v; = ¢\) (e;), where e; are the publicly known points as
described in Figure 4. If for all i ¢ S, it holds that v; = 0, then receiver outputs {v; } jes; and terminates,
else it outputs | and terminates. Let ci, co, c3 represent our concrete cost of realizing commitments on
strings of length nk in the offline, the online commit, and the online reveal phases respectively. It can
be verified that the cost of the above scheme that implements n instances of x-bit commitments with two
opening phases is ~ 8cy, 2c2, 2c3 in the offline, the online commit, and the online reveal phases respectively.

26

